1
|
Khalil L, George SV, Brown KL, Ray S, Arridge S. Transitions in intensive care: Investigating critical slowing down post extubation. PLoS One 2025; 20:e0317211. [PMID: 39854305 PMCID: PMC11760018 DOI: 10.1371/journal.pone.0317211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Complex biological systems undergo sudden transitions in their state, which are often preceded by a critical slowing down of dynamics. This results in longer recovery times as systems approach transitions, quantified as an increase in measures such as the autocorrelation and variance. In this study, we analysed paediatric patients in intensive care for whom mechanical ventilation was discontinued through removal of the endotracheal tube (extubation). Some patients failed extubation, and required a re-intubation within 48 hours. We investigated whether critical slowing down could be observed post failed extubations, prior to re-intubation. We tested for significant increases (p <.05) between extubation and re-intubation, in the variance and autocorrelation, over the time series data of heart rate, respiratory rate and mean blood pressure. The autocorrelation of the heart rate showed a significantly higher proportion of increases in the group that failed extubation, compared who those who did not. It also showed a significantly higher magnitude of increase for the failed extubation group in a t-test. Moreover, incorporating these magnitudes significantly improved the fit of a logistic regression model when compared to a model that solely used the mean and standard deviation of the vital signs. While immediate clinical utility is limited, the work marks an important first step towards using dynamical systems theory to understand the dynamics of signals measured at the bedside during intensive care.
Collapse
Affiliation(s)
- Lucinda Khalil
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Sandip V. George
- Department of Computer Science, University College London, London, United Kingdom
- Department of Physics, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine L. Brown
- Cardiac Intensive Care Unit, Great Ormond Street Hospital For Children NHS Foundation Trust, London, United Kingdom
| | - Samiran Ray
- Paediatric Intensive Care Unit, Great Ormond Street Hospital For Children NHS Foundation Trust, London, United Kingdom
| | - Simon Arridge
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
2
|
Rana N, Thakur T, Jain S. Smart Seizure Detection System: Machine Learning Based Model in Healthcare IoT. Curr Aging Sci 2025; 18:29-38. [PMID: 38706349 DOI: 10.2174/0118746098298618240429102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Epilepsy, the tendency to have recurrent seizures, can have various causes, including brain tumors, genetics, stroke, brain injury, infections, and developmental disorders. Epileptic seizures are usually transient events. They normally leave no trace after the postictal recovery period has passed. AIMS An electroencephalogram (EEG) can only detect brain activity during the recording. It will be detected if an epileptogenic focus or generalized abnormality is active during the recording. OBJECTIVE This work demonstrated a smart seizure detection system for Healthcare IoT, which is a challenging problem of EEG data analysis. METHOD The study suggested an integrated methodology in recognition of the drawbacks of manual identification and the significant negative effects of uncontrollable seizures on patients' lives. RESULT The research shows remarkable accuracy, up to 100% in some experiments, by combining classifier ensembles like Decision Trees, Logistic Regression, and Support Vector Machine with different signal processing techniques like Discrete Wavelet Transform, Hjorth Parameters, and statistical features. The results were compared using the kNN classifier, other datasets and other state-of-the-art techniques. CONCLUSION Healthcare IoT is further utilized by the methodology, which takes a comprehensive approach using classifier ensembles and signal processing approaches resulting in real-time data to help them make better decisions. This demonstrates how well the suggested method works for smart seizure detection, which is a crucial development for better patient outcomes.
Collapse
Affiliation(s)
- Naresh Rana
- Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Tanishk Thakur
- Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Shruti Jain
- Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| |
Collapse
|
3
|
da Silva Lima G, Rosa Cota V, Bessa WM. Intelligent Control to Suppress Epileptic Seizures in the Amygdala: In Silico Investigation Using a Network of Izhikevich Neurons. IEEE Trans Neural Syst Rehabil Eng 2025; 33:868-880. [PMID: 40031444 DOI: 10.1109/tnsre.2025.3543756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Closed-loop electricalstimulation of brain structures is one of the most promising techniques to suppress epileptic seizures in drug-resistant refractory patients who are also ineligible to ablative neurosurgery. In this work, an intelligent controller is presented to block the aberrant activity of a network of Izhikevich neurons of three different types, used here to model the electrical activity of the basolateral amygdala during ictogenesis, i.e. its transition from asynchronous to hypersynchronous state. A Lyapunov-based nonlinear scheme is used as the main framework for the proposed controller. To avoid the issue of accessing each neuron individually, local field potentials are used to gain insight into the overall state of the Izhikevich network. Artificial neural networks are integrated into the control scheme to manage unknown dynamics and disturbances caused by brain electrical activity that are not accounted for in the model. Four different cases of ictogenesis induction were tested. The results show the efficacy of the proposed control strategy to suppress epileptic seizures and suggest its capability to address both patient-specific and patient-to-patient variability.
Collapse
|
4
|
Zarei Eskikand P, Soto-Breceda A, Cook MJ, Burkitt AN, Grayden DB. Neural dynamics and seizure correlations: Insights from neural mass models in a Tetanus Toxin rat model of epilepsy. Neural Netw 2024; 180:106746. [PMID: 39357176 DOI: 10.1016/j.neunet.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/19/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
This study focuses on the use of a neural mass model to investigate potential relationships between functional connectivity and seizure frequency in epilepsy. We fitted a three-layer neural mass model of a cortical column to intracranial EEG (iEEG) data from a Tetanus Toxin rat model of epilepsy, which also included responses to periodic electrical stimulation. Our results show that some of the connectivity weights between different neural populations correlate significantly with the number of seizures each day, offering valuable insights into the dynamics of neural circuits during epileptogenesis. We also simulated single-pulse electrical stimulation of the neuronal populations to observe their responses after the connectivity weights were optimized to fit background (non-seizure) EEG data. The recovery time, defined as the time from stimulation until the membrane potential returns to baseline, was measured as a representation of the critical slowing down phenomenon observed in nonlinear systems operating near a bifurcation boundary. The results revealed that recovery times in the responses of the computational model fitted to the EEG data were longer during 5 min periods preceding seizures compared to 1 hr before seizures in four out of six rats. Analysis of the iEEG recorded in response to electrical stimulation revealed results similar to the computational model in four out of six rats. This study supports the potential use of this computational model as a model-based biomarker for seizure prediction when direct electrical stimulation to the brain is not feasible.
Collapse
Affiliation(s)
- Parvin Zarei Eskikand
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia; Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Victoria, Australia.
| | - Artemio Soto-Breceda
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Mark J Cook
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia; Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Victoria, Australia; Department of Medicine, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Anthony N Burkitt
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia; Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia; Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Victoria, Australia; Department of Medicine, St Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Rosenfeld JV. Neurosurgery and the Brain-Computer Interface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:513-527. [PMID: 39523287 DOI: 10.1007/978-3-031-64892-2_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Brain-computer interfaces (BCIs) are devices that connect the human brain to an effector via a computer and electrode interface. BCIs may also transmit sensory data to the brain. We describe progress with the many types of surgically implanted BCIs, in which electrodes contact or penetrate the cerebral cortex. BCIs developed for restoration of movement in paralyzed limbs or control a robotic arm; restoration of somatic sensation, speech, vision, memory, hearing, and olfaction are also presented. Most devices remain experimental. Commercialization is costly, incurs financial risk, and is time consuming. There are many ethical principles that should be considered by neurosurgeons and by all those responsible for the care of people with serious neurological disability. These considerations are also paramount when the technology is used in for the purpose of enhancement of normal function and where commercial gain is a factor. A new regulatory and legislative framework is urgently required. The evolution of BCIs is occurring rapidly with advances in computer science, artificial intelligence, electronic engineering including wireless transmission, and materials science. The era of the brain-"cloud" interface is approaching.
Collapse
Affiliation(s)
- Jeffrey V Rosenfeld
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia.
- Department of Surgery, Monash University, Clayton, VIC, Australia.
- Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of The Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
6
|
Baud MO, Proix T, Gregg NM, Brinkmann BH, Nurse ES, Cook MJ, Karoly PJ. Seizure forecasting: Bifurcations in the long and winding road. Epilepsia 2023; 64 Suppl 4:S78-S98. [PMID: 35604546 PMCID: PMC9681938 DOI: 10.1111/epi.17311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turn informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical, and medical developments, discusses methodology in detail, and sets a number of goals for future studies.
Collapse
Affiliation(s)
- Maxime O Baud
- Sleep-Wake-Epilepsy Center, Center for Experimental Neurology, NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
- Wyss Center for Bio- and Neuro-Engineering, Geneva, Switzerland
| | - Timothée Proix
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicholas M Gregg
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin H Brinkmann
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ewan S Nurse
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Cook
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Philippa J Karoly
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Lainscsek C, Salami P, Carvalho VR, Mendes EMAM, Fan M, Cash SS, Sejnowski TJ. Network-motif delay differential analysis of brain activity during seizures. CHAOS (WOODBURY, N.Y.) 2023; 33:123136. [PMID: 38156987 PMCID: PMC10757649 DOI: 10.1063/5.0165904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Delay Differential Analysis (DDA) is a nonlinear method for analyzing time series based on principles from nonlinear dynamical systems. DDA is extended here to incorporate network aspects to improve the dynamical characterization of complex systems. To demonstrate its effectiveness, DDA with network capabilities was first applied to the well-known Rössler system under different parameter regimes and noise conditions. Network-motif DDA, based on cortical regions, was then applied to invasive intracranial electroencephalographic data from drug-resistant epilepsy patients undergoing presurgical monitoring. The directional network motifs between brain areas that emerge from this analysis change dramatically before, during, and after seizures. Neural systems provide a rich source of complex data, arising from varying internal states generated by network interactions.
Collapse
Affiliation(s)
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | - Eduardo M. A. M. Mendes
- Laboratório de Modelagem, Análise e Controle de Sistemas Não Lineares, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Miaolin Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
8
|
Liu S, Li F, Wan F. Distance to Criticality Undergoes Critical Transition Before Epileptic Seizure Attacks. Brain Res Bull 2023:110684. [PMID: 37353038 DOI: 10.1016/j.brainresbull.2023.110684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network's distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the "criticality of the criticality" (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures.
Collapse
Affiliation(s)
- Shun Liu
- The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau; The Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau; The Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau
| | - Fali Li
- The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, the Center for Information in Bio-Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Wan
- The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau; The Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau; The Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau.
| |
Collapse
|
9
|
Unsupervised EEG preictal interval identification in patients with drug-resistant epilepsy. Sci Rep 2023; 13:784. [PMID: 36646727 PMCID: PMC9842648 DOI: 10.1038/s41598-022-23902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 01/18/2023] Open
Abstract
Typical seizure prediction models aim at discriminating interictal brain activity from pre-seizure electrographic patterns. Given the lack of a preictal clinical definition, a fixed interval is widely used to develop these models. Recent studies reporting preictal interval selection among a range of fixed intervals show inter- and intra-patient preictal interval variability, possibly reflecting the heterogeneity of the seizure generation process. Obtaining accurate labels of the preictal interval can be used to train supervised prediction models and, hence, avoid setting a fixed preictal interval for all seizures within the same patient. Unsupervised learning methods hold great promise for exploring preictal alterations on a seizure-specific scale. Multivariate and univariate linear and nonlinear features were extracted from scalp electroencephalography (EEG) signals collected from 41 patients with drug-resistant epilepsy undergoing presurgical monitoring. Nonlinear dimensionality reduction was performed for each group of features and each of the 226 seizures. We applied different clustering methods in searching for preictal clusters located until 2 h before the seizure onset. We identified preictal patterns in 90% of patients and 51% of the visually inspected seizures. The preictal clusters manifested a seizure-specific profile with varying duration (22.9 ± 21.0 min) and starting time before seizure onset (47.6 ± 27.3 min). Searching for preictal patterns on the EEG trace using unsupervised methods showed that it is possible to identify seizure-specific preictal signatures for some patients and some seizures within the same patient.
Collapse
|
10
|
Yang Y, Truong ND, Eshraghian JK, Nikpour A, Kavehei O. Weak self-supervised learning for seizure forecasting: a feasibility study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220374. [PMID: 35950196 PMCID: PMC9346358 DOI: 10.1098/rsos.220374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 05/27/2023]
Abstract
This paper proposes an artificial intelligence system that continuously improves over time at event prediction using initially unlabelled data by using self-supervised learning. Time-series data are inherently autocorrelated. By using a detection model to generate weak labels on the fly, which are concurrently used as targets to train a prediction model on a time-shifted input data stream, this autocorrelation can effectively be harnessed to reduce the burden of manual labelling. This is critical in medical patient monitoring, as it enables the development of personalized forecasting models without demanding the annotation of long sequences of physiological signal recordings. We perform a feasibility study on seizure prediction, which is identified as an ideal test case, as pre-ictal brainwaves are patient-specific, and tailoring models to individual patients is known to improve forecasting performance significantly. Our self-supervised approach is used to train individualized forecasting models for 10 patients, showing an average relative improvement in sensitivity by 14.30% and a reduction in false alarms by 19.61% in early seizure forecasting. This proof-of-concept on the feasibility of using a continuous stream of time-series neurophysiological data paves the way towards a low-power neuromorphic neuromodulation system.
Collapse
Affiliation(s)
- Yikai Yang
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Nhan Duy Truong
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Jason K. Eshraghian
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Armin Nikpour
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales 2006, Australia
- Comprehensive Epilepsy Service and Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Omid Kavehei
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| |
Collapse
|
11
|
Ehrens D, Cervenka MC, Bergey GK, Jouny CC. Dynamic training of a novelty classifier algorithm for real-time detection of early seizure onset. Clin Neurophysiol 2022; 135:85-95. [PMID: 35065325 PMCID: PMC8857071 DOI: 10.1016/j.clinph.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/19/2021] [Accepted: 12/26/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To develop an adaptive framework for seizure detection in real-time that is practical to use in the Epilepsy Monitoring Unit (EMU) as a warning signal, and whose output helps characterize epileptiform activity. METHODS Our algorithm was tested on intracranial EEG from epilepsy patients admitted to the EMU for presurgical evaluation. Our framework uses a one-class Support Vector Machine (SVM) that is being trained dynamically according to past activity in all available channels to classify the novelty of the current activity. In this study we compared multiple configurations using a one-class SVM to assess if there is significance over specific neural features or electrode locations. RESULTS Our results show that the algorithm reaches a sensitivity of 87% for early-onset seizure detection and of 97.7% as a generic seizure detection. CONCLUSIONS Our algorithm is capable of running in real-time and achieving a high performance for early seizure-onset detection with a low false positive rate and robustness in detection of different type of seizure-onset patterns. SIGNIFICANCE This algorithm offers a solution to warning systems in the EMU as well as a tool for seizure characterization during post-hoc analysis of intracranial EEG data for surgical resection of the epileptogenic network.
Collapse
Affiliation(s)
- Daniel Ehrens
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mackenzie C. Cervenka
- Department of Neurology, Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | - Gregory K. Bergey
- Department of Neurology, Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | - Christophe C. Jouny
- Department of Neurology, Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Anandaraj A, Alphonse P. Tree based Ensemble for Enhanced Prediction (TEEP) of epileptic seizures. INTELL DATA ANAL 2022. [DOI: 10.3233/ida-205534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accurate and timely prediction of seizures can improve the quality of life of epileptic patients to a huge extent. This work presents a seizure prediction model that performs data extraction and feature engineering to enable effective demarcation of preictal signals from interictal signals. The proposed Tree based Ensemble for Enhanced Prediction (TEEP) model is composed of three major phases; the feature extraction phase, feature selection phase and the prediction phase. The data is preprocessed, and features are extracted based on the nature of the data. This enables the prediction algorithm to perform time-based predictions. Further, statistical features are also extracted, followed by the process of feature aggregation. The resultant data is passed to the feature selection module to identify the attributes that exhibit highest correlation with the prediction variable. Incorporation of these two modules enhances the generalization capability of the TEEP model. The resultant features are passed to the boosted ensemble model for training and prediction. The TEEP model is analyzed using the Epileptic Seizure Recognition Data from University Hospital of Bonn and the NIH Seizure Prediction data from Melbourne University, Australia. Results from both the datasets indicate effective performances. Comparisons with the existing state-of-the-art models in literature exhibits the enhanced prediction levels of the TEEP model.
Collapse
Affiliation(s)
- A. Anandaraj
- Department of Computer Science and Engineering, Sri Eshwar College of Engineering, Coimbatore, India
| | - P.J.A. Alphonse
- Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India
| |
Collapse
|
13
|
Földi T, Lőrincz ML, Berényi A. Temporally Targeted Interactions With Pathologic Oscillations as Therapeutical Targets in Epilepsy and Beyond. Front Neural Circuits 2021; 15:784085. [PMID: 34955760 PMCID: PMC8693222 DOI: 10.3389/fncir.2021.784085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Self-organized neuronal oscillations rely on precisely orchestrated ensemble activity in reverberating neuronal networks. Chronic, non-malignant disorders of the brain are often coupled to pathological neuronal activity patterns. In addition to the characteristic behavioral symptoms, these disturbances are giving rise to both transient and persistent changes of various brain rhythms. Increasing evidence support the causal role of these "oscillopathies" in the phenotypic emergence of the disease symptoms, identifying neuronal network oscillations as potential therapeutic targets. While the kinetics of pharmacological therapy is not suitable to compensate the disease related fine-scale disturbances of network oscillations, external biophysical modalities (e.g., electrical stimulation) can alter spike timing in a temporally precise manner. These perturbations can warp rhythmic oscillatory patterns via resonance or entrainment. Properly timed phasic stimuli can even switch between the stable states of networks acting as multistable oscillators, substantially changing the emergent oscillatory patterns. Novel transcranial electric stimulation (TES) approaches offer more reliable neuronal control by allowing higher intensities with tolerable side-effect profiles. This precise temporal steerability combined with the non- or minimally invasive nature of these novel TES interventions make them promising therapeutic candidates for functional disorders of the brain. Here we review the key experimental findings and theoretical background concerning various pathological aspects of neuronal network activity leading to the generation of epileptic seizures. The conceptual and practical state of the art of temporally targeted brain stimulation is discussed focusing on the prevention and early termination of epileptic seizures.
Collapse
Affiliation(s)
- Tamás Földi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary.,Child and Adolescent Psychiatry, Department of the Child Health Center, University of Szeged, Szeged, Hungary
| | - Magor L Lőrincz
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary.,Neuroscience Division, Cardiff University, Cardiff, United Kingdom
| | - Antal Berényi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary.,Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
14
|
Bhattacharya A, Baweja T, Karri SPK. Epileptic Seizure Prediction Using Deep Transformer Model. Int J Neural Syst 2021; 32:2150058. [PMID: 34720065 DOI: 10.1142/s0129065721500581] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The electroencephalogram (EEG) is the most promising and efficient technique to study epilepsy and record all the electrical activity going in our brain. Automated screening of epilepsy through data-driven algorithms reduces the manual workload of doctors to diagnose epilepsy. New algorithms are biased either towards signal processing or deep learning, which holds subjective advantages and disadvantages. The proposed pipeline is an end-to-end automated seizure prediction framework with a Fourier transform feature extraction and deep learning-based transformer model, a blend of signal processing and deep learning - this imbibes the potential features to automatically identify the attentive regions in EEG signals for effective screening. The proposed pipeline has demonstrated superior performance on the benchmark dataset with average sensitivity and false-positive rate per hour (FPR/h) as 98.46%, 94.83% and 0.12439, 0, respectively. The proposed work shows great results on the benchmark datasets and a big potential for clinics as a support system with medical experts monitoring the patients.
Collapse
Affiliation(s)
- Abhijeet Bhattacharya
- Electrical and Electronics Engineering, Bharati Vidyapeeth's College of Engineering, A-4 Block, Baba Ramdev Marg, Shiva Enclave, Paschim Vihar, New Delhi, 110063, India
| | - Tanmay Baweja
- Electrical and Electronics Engineering, Bharati Vidyapeeth's College of Engineering, A-4 Block, Baba Ramdev Marg, Shiva Enclave, Paschim Vihar, New Delhi, 110063, India
| | - S P K Karri
- Department of Electrical Engineering, National Institute of Technology, Andhra Pradesh, Tadepalligudem - 534101, India
| |
Collapse
|
15
|
Xiong W, Nurse ES, Lambert E, Cook MJ, Kameneva T. Seizure Forecasting Using Long-Term Electroencephalography and Electrocardiogram Data. Int J Neural Syst 2021; 31:2150039. [PMID: 34334122 DOI: 10.1142/s0129065721500398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electroencephalography (EEG) has been used to forecast seizures with varying success. There is an increasing interest to use electrocardiogram (ECG) to help with seizure forecasting. The neural and cardiovascular systems may exhibit critical slowing, which is measured by an increase in variance and autocorrelation of the system, when change from a normal state to an ictal state. To forecast seizures, the variance and autocorrelation of long-term continuous EEG and ECG data from 16 patients were used for analysis. The average period of recordings was 161.9 h, with an average of 9 electrographic seizures in an individual patient. The relationship between seizure onset times and phases of variance and autocorrelation in EEG and ECG data was investigated. The results of forecasting models using critical slowing features, seizure circadian features, and combined critical slowing and circadian features were compared using the receiver-operating characteristic curve. The results demonstrated that the best forecaster was patient-specific and the average area under the curve (AUC) of the best forecaster across patients was 0.68. In 50% of patients, circadian forecasters had the best performance. Critical slowing forecaster performed best in 19% of patients. Combined forecaster achieved the best performance in 31% of patients. The results of this study may help to advance the field of seizure forecasting and lead to the improved quality of life of people who suffer from epilepsy.
Collapse
Affiliation(s)
- Wenjuan Xiong
- School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia
| | | | - Elisabeth Lambert
- School of Health Sciences Swinburne, University of Technology, Melbourne, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia
| | - Mark J Cook
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Tatiana Kameneva
- School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Scott JM, Gliske SV, Kuhlmann L, Stacey WC. Viability of Preictal High-Frequency Oscillation Rates as a Biomarker for Seizure Prediction. Front Hum Neurosci 2021; 14:612899. [PMID: 33584225 PMCID: PMC7876341 DOI: 10.3389/fnhum.2020.612899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Motivation: There is an ongoing search for definitive and reliable biomarkers to forecast or predict imminent seizure onset, but to date most research has been limited to EEG with sampling rates <1,000 Hz. High-frequency oscillations (HFOs) have gained acceptance as an indicator of epileptic tissue, but few have investigated the temporal properties of HFOs or their potential role as a predictor in seizure prediction. Here we evaluate time-varying trends in preictal HFO rates as a potential biomarker of seizure prediction. Methods: HFOs were identified for all interictal and preictal periods with a validated automated detector in 27 patients who underwent intracranial EEG monitoring. We used LASSO logistic regression with several features of the HFO rate to distinguish preictal from interictal periods in each individual. We then tested these models with held-out data and evaluated their performance with the area-under-the-curve (AUC) of their receiver-operating curve (ROC). Finally, we assessed the significance of these results using non-parametric statistical tests. Results: There was variability in the ability of HFOs to discern preictal from interictal states across our cohort. We identified a subset of 10 patients in whom the presence of the preictal state could be successfully predicted better than chance. For some of these individuals, average AUC in the held-out data reached higher than 0.80, which suggests that HFO rates can significantly differentiate preictal and interictal periods for certain patients. Significance: These findings show that temporal trends in HFO rate can predict the preictal state better than random chance in some individuals. Such promising results indicate that future prediction efforts would benefit from the inclusion of high-frequency information in their predictive models and technological architecture.
Collapse
Affiliation(s)
- Jared M. Scott
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Stephen V. Gliske
- Department of Neurology, University of Michigan Hospitals, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - William C. Stacey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan Hospitals, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Carvalho VR, Moraes MFD, Cash SS, Mendes EMAM. Active probing to highlight approaching transitions to ictal states in coupled neural mass models. PLoS Comput Biol 2021; 17:e1008377. [PMID: 33493165 PMCID: PMC7861539 DOI: 10.1371/journal.pcbi.1008377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/04/2021] [Accepted: 12/02/2020] [Indexed: 01/07/2023] Open
Abstract
The extraction of electrophysiological features that reliably forecast the occurrence of seizures is one of the most challenging goals in epilepsy research. Among possible approaches to tackle this problem is the use of active probing paradigms in which responses to stimuli are used to detect underlying system changes leading up to seizures. This work evaluates the theoretical and mechanistic underpinnings of this strategy using two coupled populations of the well-studied Wendling neural mass model. Different model settings are evaluated, shifting parameters (excitability, slow inhibition, or inter-population coupling gains) from normal towards ictal states while probing stimuli are applied every 2 seconds to the input of either one or both populations. The correlation between the extracted features and the ictogenic parameter shifting indicates if the impending transition to the ictal state may be identified in advance. Results show that not only can the response to the probing stimuli forecast seizures but this is true regardless of the altered ictogenic parameter. That is, similar feature changes are highlighted by probing stimuli responses in advance of the seizure including: increased response variance and lag-1 autocorrelation, decreased skewness, and increased mutual information between the outputs of both model subsets. These changes were mostly restricted to the stimulated population, showing a local effect of this perturbational approach. The transition latencies from normal activity to sustained discharges of spikes were not affected, suggesting that stimuli had no pro-ictal effects. However, stimuli were found to elicit interictal-like spikes just before the transition to the ictal state. Furthermore, the observed feature changes highlighted by probing the neuronal populations may reflect the phenomenon of critical slowing down, where increased recovery times from perturbations may signal the loss of a systems' resilience and are common hallmarks of an impending critical transition. These results provide more evidence that active probing approaches highlight information about underlying system changes involved in ictogenesis and may be able to play a role in assisting seizure forecasting methods which can be incorporated into early-warning systems that ultimately enable closing the loop for targeted seizure-controlling interventions.
Collapse
Affiliation(s)
- Vinícius Rezende Carvalho
- Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia e Pesquisa em Magneto-Ressonância, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eduardo Mazoni Andrade Marçal Mendes
- Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia e Pesquisa em Magneto-Ressonância, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Payne DE, Dell KL, Karoly PJ, Kremen V, Gerla V, Kuhlmann L, Worrell GA, Cook MJ, Grayden DB, Freestone DR. Identifying seizure risk factors: A comparison of sleep, weather, and temporal features using a Bayesian forecast. Epilepsia 2020; 62:371-382. [PMID: 33377501 DOI: 10.1111/epi.16785] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Most seizure forecasting algorithms have relied on features specific to electroencephalographic recordings. Environmental and physiological factors, such as weather and sleep, have long been suspected to affect brain activity and seizure occurrence but have not been fully explored as prior information for seizure forecasts in a patient-specific analysis. The study aimed to quantify whether sleep, weather, and temporal factors (time of day, day of week, and lunar phase) can provide predictive prior probabilities that may be used to improve seizure forecasts. METHODS This study performed post hoc analysis on data from eight patients with a total of 12.2 years of continuous intracranial electroencephalographic recordings (average = 1.5 years, range = 1.0-2.1 years), originally collected in a prospective trial. Patients also had sleep scoring and location-specific weather data. Histograms of future seizure likelihood were generated for each feature. The predictive utility of individual features was measured using a Bayesian approach to combine different features into an overall forecast of seizure likelihood. Performance of different feature combinations was compared using the area under the receiver operating curve. Performance evaluation was pseudoprospective. RESULTS For the eight patients studied, seizures could be predicted above chance accuracy using sleep (five patients), weather (two patients), and temporal features (six patients). Forecasts using combined features performed significantly better than chance in six patients. For four of these patients, combined forecasts outperformed any individual feature. SIGNIFICANCE Environmental and physiological data, including sleep, weather, and temporal features, provide significant predictive information on upcoming seizures. Although forecasts did not perform as well as algorithms that use invasive intracranial electroencephalography, the results were significantly above chance. Complementary signal features derived from an individual's historic seizure records may provide useful prior information to augment traditional seizure detection or forecasting algorithms. Importantly, many predictive features used in this study can be measured noninvasively.
Collapse
Affiliation(s)
- Daniel E Payne
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katrina L Dell
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phillipa J Karoly
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Vaclav Gerla
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Levin Kuhlmann
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia
| | | | - Mark J Cook
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dean R Freestone
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Næss S, Halnes G, Hagen E, Hagler DJ, Dale AM, Einevoll GT, Ness TV. Biophysically detailed forward modeling of the neural origin of EEG and MEG signals. Neuroimage 2020; 225:117467. [PMID: 33075556 DOI: 10.1016/j.neuroimage.2020.117467] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
Electroencephalography (EEG) and magnetoencephalography (MEG) are among the most important techniques for non-invasively studying cognition and disease in the human brain. These signals are known to originate from cortical neural activity, typically described in terms of current dipoles. While the link between cortical current dipoles and EEG/MEG signals is relatively well understood, surprisingly little is known about the link between different kinds of neural activity and the current dipoles themselves. Detailed biophysical modeling has played an important role in exploring the neural origin of intracranial electric signals, like extracellular spikes and local field potentials. However, this approach has not yet been taken full advantage of in the context of exploring the neural origin of the cortical current dipoles that are causing EEG/MEG signals. Here, we present a method for reducing arbitrary simulated neural activity to single current dipoles. We find that the method is applicable for calculating extracranial signals, but less suited for calculating intracranial electrocorticography (ECoG) signals. We demonstrate that this approach can serve as a powerful tool for investigating the neural origin of EEG/MEG signals. This is done through example studies of the single-neuron EEG contribution, the putative EEG contribution from calcium spikes, and from calculating EEG signals from large-scale neural network simulations. We also demonstrate how the simulated current dipoles can be used directly in combination with detailed head models, allowing for simulated EEG signals with an unprecedented level of biophysical details. In conclusion, this paper presents a framework for biophysically detailed modeling of EEG and MEG signals, which can be used to better our understanding of non-inasively measured neural activity in humans.
Collapse
Affiliation(s)
- Solveig Næss
- Department of Informatics, University of Oslo, Oslo 0316, Norway
| | - Geir Halnes
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Espen Hagen
- Department of Physics, University of Oslo, Oslo 0316, Norway
| | - Donald J Hagler
- Department of Radiology, University of California, La Jolla, CA 92093, USA
| | - Anders M Dale
- Department of Radiology, University of California, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, La Jolla, CA 92093, USA
| | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway; Department of Physics, University of Oslo, Oslo 0316, Norway.
| | - Torbjørn V Ness
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway.
| |
Collapse
|
20
|
Maturana MI, Meisel C, Dell K, Karoly PJ, D'Souza W, Grayden DB, Burkitt AN, Jiruska P, Kudlacek J, Hlinka J, Cook MJ, Kuhlmann L, Freestone DR. Critical slowing down as a biomarker for seizure susceptibility. Nat Commun 2020; 11:2172. [PMID: 32358560 PMCID: PMC7195436 DOI: 10.1038/s41467-020-15908-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 03/30/2020] [Indexed: 02/04/2023] Open
Abstract
The human brain has the capacity to rapidly change state, and in epilepsy these state changes can be catastrophic, resulting in loss of consciousness, injury and even death. Theoretical interpretations considering the brain as a dynamical system suggest that prior to a seizure, recorded brain signals may exhibit critical slowing down, a warning signal preceding many critical transitions in dynamical systems. Using long-term intracranial electroencephalography (iEEG) recordings from fourteen patients with focal epilepsy, we monitored key signatures of critical slowing down prior to seizures. The metrics used to detect critical slowing down fluctuated over temporally long scales (hours to days), longer than would be detectable in standard clinical evaluation settings. Seizure risk was associated with a combination of these signals together with epileptiform discharges. These results provide strong validation of theoretical models and demonstrate that critical slowing down is a reliable indicator that could be used in seizure forecasting algorithms. Critical slowing (associated with increased variance and autocorrelation) can precede critical state transitions. Here, the authors show critical slowing can be used as a marker in seizure forecasting algorithms.
Collapse
Affiliation(s)
- Matias I Maturana
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia. .,Seer Medical, Melbourne, Australia.
| | - Christian Meisel
- Department of Neurology, University Clinic Carl Gustav Carus, Dresden, Germany.,Boston Children's Hospital, Boston, MA, USA
| | - Katrina Dell
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Philippa J Karoly
- Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Wendyl D'Souza
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Anthony N Burkitt
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kudlacek
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jaroslav Hlinka
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic.,National Institute of Mental Health, Klecany, Czech Republic
| | - Mark J Cook
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Levin Kuhlmann
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Faculty of Information Technology, Monash University, Clayton, Victoria, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | | |
Collapse
|
21
|
Reuben C, Karoly P, Freestone DR, Temko A, Barachant A, Li F, Titericz G, Lang BW, Lavery D, Roman K, Broadhead D, Jones G, Tang Q, Ivanenko I, Panichev O, Proix T, Náhlík M, Grunberg DB, Grayden DB, Cook MJ, Kuhlmann L. Ensembling crowdsourced seizure prediction algorithms using long-term human intracranial EEG. Epilepsia 2019; 61:e7-e12. [PMID: 31883345 DOI: 10.1111/epi.16418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/28/2022]
Abstract
Seizure prediction is feasible, but greater accuracy is needed to make seizure prediction clinically viable across a large group of patients. Recent work crowdsourced state-of-the-art prediction algorithms in a worldwide competition, yielding improvements in seizure prediction performance for patients whose seizures were previously found hard to anticipate. The aim of the current analysis was to explore potential performance improvements using an ensemble of the top competition algorithms. The results suggest that minor increments in performance may be possible; however, the outcomes of statistical testing limit the confidence in these increments. Our results suggest that for the specific algorithms, evaluation framework, and data considered here, incremental improvements are achievable but there may be upper bounds on machine learning-based seizure prediction performance for some patients whose seizures are challenging to predict. Other more tailored approaches that, for example, take into account a deeper understanding of preictal mechanisms, patient-specific sleep-wake rhythms, or novel measurement approaches, may still offer further gains for these types of patients.
Collapse
Affiliation(s)
- Chip Reuben
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia
| | - Philippa Karoly
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia.,NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Dean R Freestone
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia
| | - Andriy Temko
- Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | | - Qingnan Tang
- Department of Physics, National University of Singapore, Singapore, Singapore
| | | | | | - Timothée Proix
- Department of Neuroscience, Brown University, Providence, RI, USA.,Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, USA
| | | | | | - David B Grayden
- NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Mark J Cook
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia
| | - Levin Kuhlmann
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia.,Faculty of Information Technology, Monash University, Clayton, Australia
| |
Collapse
|
22
|
Seizure prediction and intervention. Neuropharmacology 2019; 172:107898. [PMID: 31839204 DOI: 10.1016/j.neuropharm.2019.107898] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/29/2022]
Abstract
Epilepsy treatment is challenging due to a lack of essential diagnostic tools, including methods for reliable seizure detection in the ambulatory setting, to assess seizure risk over time and to monitor treatment efficacy. This lack of objective diagnostics constitutes a significant barrier to better treatments, raises methodological concerns about the antiseizure medication evaluation process and, to patients, is a main issue contributing to the disease burden. Recent years have seen rapid progress towards better diagnostics that meet these needs of epilepsy patients and clinicians. Availability of comprehensive data and the rise of more powerful computational analysis methods have driven progress in this area. Here, we provide an overview on data- and theory-driven approaches aimed at identifying methods to reliably detect and forecast seizures as well as to monitor brain excitability and treatment efficacy in epilepsy. We provide a particular account on neural criticality, the hypothesis that cortical networks may be poised in a critical state at the boundary between different types of dynamics, and discuss its role in informing diagnostics to track cortex excitability and seizure risk in recent experiments. With the further expansion of digitalization in medicine, tele-medicine and long-term, ambulatory monitoring, these computationally based methods may gain more relevance in epilepsy in the future. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
|
23
|
Chiang S, Goldenholz DM, Moss R, Rao VR, Haneef Z, Theodore WH, Kleen JK, Gavvala J, Vannucci M, Stern JM. Prospective validation study of an epilepsy seizure risk system for outpatient evaluation. Epilepsia 2019; 61:29-38. [PMID: 31792970 DOI: 10.1111/epi.16397] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We conducted clinical testing of an automated Bayesian machine learning algorithm (Epilepsy Seizure Assessment Tool [EpiSAT]) for outpatient seizure risk assessment using seizure counting data, and validated performance against specialized epilepsy clinician experts. METHODS We conducted a prospective longitudinal study of EpiSAT performance against 24 specialized clinician experts at three tertiary referral epilepsy centers in the United States. Accuracy, interrater reliability, and intra-rater reliability of EpiSAT for correctly identifying changes in seizure risk (improvements, worsening, or no change) were evaluated using 120 seizures from four synthetic seizure diaries (seizure risk known) and 120 seizures from four real seizure diaries (seizure risk unknown). The proportion of observed agreement between EpiSAT and clinicians was evaluated to assess compatibility of EpiSAT with clinical decision patterns by epilepsy experts. RESULTS EpiSAT exhibited substantial observed agreement (75.4%) with clinicians for assessing seizure risk. The mean accuracy of epilepsy providers for correctly assessing seizure risk was 74.7%. EpiSAT accurately identified seizure risk in 87.5% of seizure diary entries, corresponding to a significant improvement of 17.4% (P = .002). Clinicians exhibited low-to-moderate interrater reliability for seizure risk assessment (Krippendorff's α = 0.46) with good intrarater reliability across a 4- to 12-week evaluation period (Scott's π = 0.89). SIGNIFICANCE These results validate the ability of EpiSAT to yield objective clinical recommendations on seizure risk which follow decision patterns similar to those from specialized epilepsy providers, but with improved accuracy and reproducibility. This algorithm may serve as a useful clinical decision support system for quantitative analysis of clinical seizure frequency in clinical epilepsy practice.
Collapse
Affiliation(s)
- Sharon Chiang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Daniel M Goldenholz
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, Texas.,Neurology Care Line, VA Medical Center, Houston, Texas
| | - William H Theodore
- Clinical Epilepsy Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Jonathan K Kleen
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Jay Gavvala
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | | | - John M Stern
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
24
|
Real-time epileptic seizure prediction based on online monitoring of pre-ictal features. Med Biol Eng Comput 2019; 57:2461-2469. [PMID: 31478133 DOI: 10.1007/s11517-019-02039-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Reliable prediction of epileptic seizures is of prime importance as it can drastically change the quality of life for patients. This study aims to propose a real-time low computational approach for the prediction of epileptic seizures and to present an efficient hardware implementation of this approach for portable prediction systems. Three levels of feature extraction are performed to characterize the pre-ictal activities of the EEG signal. In the first-level, the line length algorithm is applied to the pre-ictal region. The features obtained in the first-level are mathematically integrated to extract the second-level features and then the line lengths of the second-level features are calculated to obtain our third-level feature. The third-level information is compared with predefined threshold levels to make a decision on whether the extracted characteristics are relevant to a seizure occurrence or not. The validity of this algorithm was tested by EEG recordings in the CHB-MIT database (97 seizures, 834.224 h) for 19 epileptic patients. The results showed that the average sensitivity was 90.62%, the specificity was 88.34%, the accuracy was 88.76% with the average false prediction rate as low as 0.0046 h-1, and the average prediction time was 23.3 min. The low computational complexity is the superiority of the proposed approach, which provides a technologically simple but accurate way of predicting epileptic seizures and enables hardware implantable devices. Graphical abstract Proposed seizure prediction algorithm and its features.
Collapse
|
25
|
Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Seizure prediction - ready for a new era. Nat Rev Neurol 2019; 14:618-630. [PMID: 30131521 DOI: 10.1038/s41582-018-0055-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epilepsy is a common disorder characterized by recurrent seizures. An overwhelming majority of people with epilepsy regard the unpredictability of seizures as a major issue. More than 30 years of international effort have been devoted to the prediction of seizures, aiming to remove the burden of unpredictability and to couple novel, time-specific treatment to seizure prediction technology. A highly influential review published in 2007 concluded that insufficient evidence indicated that seizures could be predicted. Since then, several advances have been made, including successful prospective seizure prediction using intracranial EEG in a small number of people in a trial of a real-time seizure prediction device. In this Review, we examine advances in the field, including EEG databases, seizure prediction competitions, the prospective trial mentioned and advances in our understanding of the mechanisms of seizures. We argue that these advances, together with statistical evaluations, set the stage for a resurgence in efforts towards the development of seizure prediction methodologies. We propose new avenues of investigation involving a synergy between mechanisms, models, data, devices and algorithms and refine the existing guidelines for the development of seizure prediction technology to instigate development of a solution that removes the burden of the unpredictability of seizures.
Collapse
Affiliation(s)
- Levin Kuhlmann
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Victoria, Australia.,Department of Medicine - St. Vincent's, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn, Bonn, Germany. .,Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany.
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Björn Schelter
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
| | - Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|
26
|
Patient and caregiver preferences for the potential benefits and risks of a seizure forecasting device: A best-worst scaling. Epilepsy Behav 2019; 96:183-191. [PMID: 31150998 DOI: 10.1016/j.yebeh.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Epilepsy is the 4th most common neurological disorder and is characterized by recurrent, unpredictable seizures. The ability to forecast seizures is a significant unmet need and would have a transformative effect on the lives of people living with epilepsy. In an effort to address this need, the Epilepsy Foundation has committed effort and resources to promote the development of seizure forecasting devices (SFD). OBJECTIVE To promote user-centered design of future SFD, we sought to quantify patient and caregiver preferences for the potential benefits and risks of SFD. METHODS A community-centered approach was used to develop a survey incorporating a novel best-worst scaling (BWS) to assess preferences for SFD. A main-effect orthogonal array was used to design and generate 18 "prototypes" that systematically varied across six attributes: seizure forecasting probability, seizure forecasting range, inaccuracy of forecasting, amount of time required to use the device, how the device is worn, and cost. The dependent variable was the attributes that respondents selected the best and worst in each profile, and a choice model was estimated using conditional logistic regression, which was also stratified and compared across patients and caregivers. Respondents also indicated that they would accept each of the prototype SFDs if it were real. These acceptance data and net monetary benefits (relative to the least preferred SFD) were explored. RESULTS There were 633 eligible respondents; 493 (78%) completed at least one task. Responses indicated that 346 (68%) had epilepsy, and 147 (29%) were primary caregivers or family members of someone with epilepsy. The data show that short forecasting range is the most favored among experimental attributes, followed by mid forecasting range and notification of high chance of seizure. Having the device implanted is the least favorable attribute. Stated preferences differed between patients and caregivers (p < 0.001) for range of forecasting and inaccuracy of device. Caregivers preferred any range of forecasting, regardless of length, more than patients. Patients cared less about inaccuracy of the device compared to caregivers. The groups also differ in impact of fear of having seizures (versus actually having seizures) (p = 0.034) and on device acceptance. The acceptance of devices ranged from 42.3% to 95%, with caregivers being more likely to use a device (p < 0.05) for the majority of device profiles. Acceptance of devices varied with net monetary benefit of the best device being $717.44 more per month relative to the least preferred device. CONCLUSION Our finding extends previous calls for seizure forecasting devices by demonstrating the value that they might provide to patients and caregivers affected by epilepsy and the feature that might be most and least desirable. In addition to guiding device development, the data can help inform regulatory decisions makers.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The estimation of seizure frequency is a cornerstone of clinical management of epilepsy and the evaluation of new therapies. Current estimation approaches are significantly limited by several factors. Comparing patient diaries and objective estimates (through both inpatient video-EEG monitoring of and long-term ambulatory EEG studies) reveal that patients document seizures inaccurately. So far, few practical alternative methods of estimation have been available. RECENT FINDINGS We review the systems of counting currently utilized and their limitations, as well as the limitations imposed by problems defining clinical events. Alternative methodologies that permit the volatility of seizure rates to be accommodated, and possible alternative measures of brain excitability will be outlined. Recent developments in technologies around data capture, such as wearable and implantable devices, as well as significant advances in the ability to analyse the large data-sets supplied by these systems have provided a wealth of information. SUMMARY There are now unprecedented opportunities to utilize and apply these insights in routine clinical management and assessment of therapies. The rapid adoption of long-term, wearable monitoring systems will permit major advances in our understanding of the natural history of epilepsy, and lead to more effective therapies and improved patient safety.
Collapse
|
28
|
França LGS, Miranda JGV, Leite M, Sharma NK, Walker MC, Lemieux L, Wang Y. Fractal and Multifractal Properties of Electrographic Recordings of Human Brain Activity: Toward Its Use as a Signal Feature for Machine Learning in Clinical Applications. Front Physiol 2018; 9:1767. [PMID: 30618789 PMCID: PMC6295567 DOI: 10.3389/fphys.2018.01767] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/22/2018] [Indexed: 01/08/2023] Open
Abstract
The quantification of brain dynamics is essential to its understanding. However, the brain is a system operating on multiple time scales, and characterization of dynamics across time scales remains a challenge. One framework to study such dynamics is that of fractal geometry; and currently there exist several methods for the study of brain dynamics using fractal geometry. We aim to highlight some of the practical challenges of applying fractal geometry to brain dynamics—and as a putative feature for machine learning applications, and propose solutions to enable its wider use in neuroscience. Using intracranially recorded electroencephalogram (EEG) and simulated data, we compared monofractal and multifractal methods with regards to their sensitivity to signal variance. We found that both monofractal and multifractal properties correlate closely with signal variance, thus not being a useful feature of the signal. However, after applying an epoch-wise standardization procedure to the signal, we found that multifractal measures could offer non-redundant information compared to signal variance, power (in different frequency bands) and other established EEG signal measures. We also compared different multifractal estimation methods to each other in terms of reliability, and we found that the Chhabra-Jensen algorithm performed best. Finally, we investigated the impact of sampling frequency and epoch length on the estimation of multifractal properties. Using epileptic seizures as an example event in the EEG, we show that there may be an optimal time scale (i.e., combination of sampling frequency and epoch length) for detecting temporal changes in multifractal properties around seizures. The practical issues we highlighted and our suggested solutions should help in developing robust methods for the application of fractal geometry in EEG signals. Our analyses and observations also aid the theoretical understanding of the multifractal properties of the brain and might provide grounds for new discoveries in the study of brain signals. These could be crucial for the understanding of neurological function and for the developments of new treatments.
Collapse
Affiliation(s)
- Lucas G Souza França
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | - Marco Leite
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Niraj K Sharma
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yujiang Wang
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
29
|
Deep brain stimulation probing performance is enhanced by pairing stimulus with epileptic seizure. Epilepsy Behav 2018; 88:380-387. [PMID: 30352775 DOI: 10.1016/j.yebeh.2018.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
The unpredictability of spontaneous and recurrent seizures significantly impairs the quality of life of patients with epilepsy. Probing neural network excitability with deep brain electrical stimulation (DBS) has shown promising results predicting pathological shifts in brain states. This work presents a proof-of-principal that active electroencephalographic (EEG) probing, as a seizure predictive tool, is enhanced by pairing DBS and the electrographic seizure itself. The ictogenic model used consisted of inducing seizures by continuous intravenous infusion of pentylenetetrazol (PTZ - 2.5 mg/ml/min) while a probing DBS was delivered to the thalamus (TH) or amygdaloid complex to detect changes prior to seizure onset. Cortical electrophysiological recordings were performed before, during, and after PTZ infusion. Thalamic DBS probing, but not amygdaloid, was able to predict seizure onset without any observable proconvulsant effects. However, previously pairing amygdaloid DBS and epileptic polyspike discharges (day-1) elicited distinct preictal cortically recorded evoked response (CRER) (day-2) when compared with control groups that received the same amount of electrical pulses at different moments of the ictogenic progress at day-1. In conclusion, our results have demonstrated that the pairing strategy potentiated the detection of an altered brain state prior to the seizure onset. The EEG probing enhancement method opens many possibilities for both diagnosis and treatment of epilepsy.
Collapse
|
30
|
Abstract
The current paradigm for treatment of epilepsy begins with trials of antiepileptic drugs, followed by evaluation for resective brain surgery in drug-resistant patients. If surgery is not possible or fails to control seizures, some patients benefit from implanted neurostimulation devices. In addition to their therapeutic benefit, some of these devices have diagnostic capability enabling recordings of brain activity with unprecedented chronicity. Two recent studies using different devices for chronic EEG (i.e., over months to years) yielded convergent findings of daily and multiday cycles of brain activity that help explain seizure timing. Knowledge of these patient-specific cycles can be leveraged to gauge and forecast seizure risk, empowering patients to adopt risk-stratified treatment strategies and behavioral modifications. We review evidence that epilepsy is a cyclical disorder, and we argue that implanted monitoring devices should be offered earlier in the treatment paradigm. Chronic EEG would allow pharmacologic treatments tailored to days of high seizure risk-here termed chronotherapy-and would help characterize long timescale seizure dynamics to improve subsequent surgical planning. Coupled with neuromodulation, the proposed approach could improve quality of life for patients and decrease the number ultimately requiring resective surgery. We outline challenges for chronic monitoring and seizure forecasting that demand close collaboration among engineers, neurosurgeons, and neurologists.
Collapse
Affiliation(s)
- Maxime O Baud
- From the Sleep-Wake-Epilepsy Center and Center for Experimental Neurology, Department of Neurology (M.O.B.), Inselspital, Bern University Hospital, University of Bern; Wyss Center for Bio- and Neuro-engineering (M.O.B.), Geneva, Switzerland; and Department of Neurology and Weill Institute for Neurosciences (V.R.R.), University of California, San Francisco.
| | - Vikram R Rao
- From the Sleep-Wake-Epilepsy Center and Center for Experimental Neurology, Department of Neurology (M.O.B.), Inselspital, Bern University Hospital, University of Bern; Wyss Center for Bio- and Neuro-engineering (M.O.B.), Geneva, Switzerland; and Department of Neurology and Weill Institute for Neurosciences (V.R.R.), University of California, San Francisco
| |
Collapse
|
31
|
Karoly PJ, Kuhlmann L, Soudry D, Grayden DB, Cook MJ, Freestone DR. Seizure pathways: A model-based investigation. PLoS Comput Biol 2018; 14:e1006403. [PMID: 30307937 PMCID: PMC6199000 DOI: 10.1371/journal.pcbi.1006403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 10/23/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.
Collapse
Affiliation(s)
- Philippa J Karoly
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Levin Kuhlmann
- Brain Dynamics Lab, Swinburne University of Technology, Hawthorn, Australia
- Centre for Neural Engineering, The University of Melbourne, Parkville, Australia
| | - Daniel Soudry
- Department of Electrical Engineering, Technion, Haifa, Israel
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
- Centre for Neural Engineering, The University of Melbourne, Parkville, Australia
| | - Mark J Cook
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Dean R Freestone
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
- Seer Medical Pty, Melbourne, Australia
| |
Collapse
|
32
|
Truong ND, Nguyen AD, Kuhlmann L, Bonyadi MR, Yang J, Ippolito S, Kavehei O. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw 2018; 105:104-111. [DOI: 10.1016/j.neunet.2018.04.018] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 11/24/2022]
|
33
|
Kuhlmann L, Karoly P, Freestone DR, Brinkmann BH, Temko A, Barachant A, Li F, Titericz G, Lang BW, Lavery D, Roman K, Broadhead D, Dobson S, Jones G, Tang Q, Ivanenko I, Panichev O, Proix T, Náhlík M, Grunberg DB, Reuben C, Worrell G, Litt B, Liley DTJ, Grayden DB, Cook MJ. Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG. Brain 2018; 141:2619-2630. [PMID: 30101347 PMCID: PMC6136083 DOI: 10.1093/brain/awy210] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the 'Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge' conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.10.1093/brain/awy210_video1awy210media15817489051001.
Collapse
Affiliation(s)
- Levin Kuhlmann
- Department of Medicine – St. Vincent’s, The University of Melbourne, Parkville VIC, Australia
- NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC, Australia
- Brain Dynamics Lab, Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn VIC, Australia
| | - Philippa Karoly
- Department of Medicine – St. Vincent’s, The University of Melbourne, Parkville VIC, Australia
- NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC, Australia
| | - Dean R Freestone
- Department of Medicine – St. Vincent’s, The University of Melbourne, Parkville VIC, Australia
| | - Benjamin H Brinkmann
- Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Andriy Temko
- Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | | | | | | | - Brian W Lang
- Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA
| | - Daniel Lavery
- Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA
| | - Kelly Roman
- Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA
| | - Derek Broadhead
- Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA
| | - Scott Dobson
- Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA
| | - Gareth Jones
- UCL Ear Institute, 332 Gray’s Inn Road, London, UK
| | - Qingnan Tang
- Department of Physics, National University of Singapore, Singapore
| | | | | | - Timothée Proix
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Center for Neurorestoration and Neurotechnology, U.S. Department of Veterans Affairs, Providence, Rhode Island, USA
| | | | - Daniel B Grunberg
- Solverworld, Suite 140, 1337 Mass. Ave, Arlington, Massachusetts, USA
| | | | - Gregory Worrell
- Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Brian Litt
- University of Pennsylvania, Penn Center for Neuroengineering and Therapeutics, Philadelphia, PA, USA
| | - David T J Liley
- Department of Medicine – St. Vincent’s, The University of Melbourne, Parkville VIC, Australia
- Brain Dynamics Lab, Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn VIC, Australia
| | - David B Grayden
- Department of Medicine – St. Vincent’s, The University of Melbourne, Parkville VIC, Australia
- NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC, Australia
| | - Mark J Cook
- Department of Medicine – St. Vincent’s, The University of Melbourne, Parkville VIC, Australia
| |
Collapse
|
34
|
Khan H, Marcuse L, Fields M, Swann K, Yener B. Focal Onset Seizure Prediction Using Convolutional Networks. IEEE Trans Biomed Eng 2018; 65:2109-2118. [DOI: 10.1109/tbme.2017.2785401] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Baumgartner C, Koren JP, Rothmayer M. Automatic Computer-Based Detection of Epileptic Seizures. Front Neurol 2018; 9:639. [PMID: 30140254 PMCID: PMC6095028 DOI: 10.3389/fneur.2018.00639] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/17/2018] [Indexed: 11/28/2022] Open
Abstract
Automatic computer-based seizure detection and warning devices are important for objective seizure documentation, for SUDEP prevention, to avoid seizure related injuries and social embarrassments as a consequence of seizures, and to develop on demand epilepsy therapies. Automatic seizure detection systems can be based on direct analysis of epileptiform discharges on scalp-EEG or intracranial EEG, on the detection of motor manifestations of epileptic seizures using surface electromyography (sEMG), accelerometry (ACM), video detection systems and mattress sensors and finally on the assessment of changes of physiologic parameters accompanying epileptic seizures measured by electrocardiography (ECG), respiratory monitors, pulse oximetry, surface temperature sensors, and electrodermal activity. Here we review automatic seizure detection based on scalp-EEG, ECG, and sEMG. Different seizure types affect preferentially different measurement parameters. While EEG changes accompany all types of seizures, sEMG and ACM are suitable mainly for detection of seizures with major motor manifestations. Therefore, seizure detection can be optimized by multimodal systems combining several measurement parameters. While most systems provide sensitivities over 70%, specificity expressed as false alarm rates still needs to be improved. Patients' acceptance and comfort of a specific device are of critical importance for its long-term application in a meaningful clinical way.
Collapse
Affiliation(s)
- Christoph Baumgartner
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Johannes P Koren
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Michaela Rothmayer
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Seizure prediction has made important advances over the last decade, with the recent demonstration that prospective seizure prediction is possible, though there remain significant obstacles to broader application. In this review, we will describe insights gained from long-term trials, with the aim of identifying research goals for the next decade. RECENT FINDINGS Unexpected results from these studies, including strong and highly individual relationships between spikes and seizures, diurnal patterns of seizure activity, and the coexistence of different seizure populations within individual patients exhibiting distinctive dynamics, have caused us to re-evaluate many prior assumptions in seizure prediction studies and suggest alternative strategies that could be employed in the search for algorithms providing greater clinical utility. Advances in analytical approaches, particularly deep-learning techniques, harbour great promise and in combination with less-invasive systems with sufficiently power-efficient computational capacity will bring broader clinical application within reach. SUMMARY We conclude the review with an exercise in wishful thinking, which asks what the ideal seizure prediction dataset would look like and how these data should be manipulated to maximize benefits for patients. The motivation for structuring the review in this way is to create a forward-looking, optimistic critique of the existing methodologies.
Collapse
|
37
|
Abstract
Epilepsy affects all age groups and is one of the most common and most disabling neurological disorders. The accurate diagnosis of seizures is essential as some patients will be misdiagnosed with epilepsy, whereas others will receive an incorrect diagnosis. Indeed, errors in diagnosis are common, and many patients fail to receive the correct treatment, which often has severe consequences. Although many patients have seizure control using a single medication, others require multiple medications, resective surgery, neuromodulation devices or dietary therapies. In addition, one-third of patients will continue to have uncontrolled seizures. Epilepsy can substantially impair quality of life owing to seizures, comorbid mood and psychiatric disorders, cognitive deficits and adverse effects of medications. In addition, seizures can be fatal owing to direct effects on autonomic and arousal functions or owing to indirect effects such as drowning and other accidents. Deciphering the pathophysiology of epilepsy has advanced the understanding of the cellular and molecular events initiated by pathogenetic insults that transform normal circuits into epileptic circuits (epileptogenesis) and the mechanisms that generate seizures (ictogenesis). The discovery of >500 genes associated with epilepsy has led to new animal models, more precise diagnoses and, in some cases, targeted therapies.
Collapse
Affiliation(s)
- Orrin Devinsky
- Departments of Neurology, Neuroscience, Neurosurgery and Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Annamaria Vezzani
- Laboratory of Experimental Neurology, Department of Neuroscience, IRCCS 'Mario Negri' Institute for Pharmacological Research, Milan, Italy
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathalie Jette
- Department of Neurology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, and Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Payne DE, Karoly PJ, Freestone DR, Boston R, D'Souza W, Nurse E, Kuhlmann L, Cook MJ, Grayden DB. Postictal suppression and seizure durations: A patient‐specific, long‐term
iEEG
analysis. Epilepsia 2018; 59:1027-1036. [DOI: 10.1111/epi.14065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Daniel E. Payne
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Philippa J. Karoly
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Dean R. Freestone
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Ray Boston
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Wendyl D'Souza
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Ewan Nurse
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Levin Kuhlmann
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
- Brain Dynamics Unit Centre for Human Psychopharmacology Swinburne University of Technology Hawthorn Vic. Australia
| | - Mark J. Cook
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - David B. Grayden
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| |
Collapse
|
39
|
Vassileva A, van Blooijs D, Leijten F, Huiskamp G. Neocortical electrical stimulation for epilepsy: Closed-loop versus open-loop. Epilepsy Res 2018; 141:95-101. [DOI: 10.1016/j.eplepsyres.2018.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 11/15/2017] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
|
40
|
Kiral-Kornek I, Roy S, Nurse E, Mashford B, Karoly P, Carroll T, Payne D, Saha S, Baldassano S, O'Brien T, Grayden D, Cook M, Freestone D, Harrer S. Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System. EBioMedicine 2018; 27:103-111. [PMID: 29262989 PMCID: PMC5828366 DOI: 10.1016/j.ebiom.2017.11.032] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Seizure prediction can increase independence and allow preventative treatment for patients with epilepsy. We present a proof-of-concept for a seizure prediction system that is accurate, fully automated, patient-specific, and tunable to an individual's needs. METHODS Intracranial electroencephalography (iEEG) data of ten patients obtained from a seizure advisory system were analyzed as part of a pseudoprospective seizure prediction study. First, a deep learning classifier was trained to distinguish between preictal and interictal signals. Second, classifier performance was tested on held-out iEEG data from all patients and benchmarked against the performance of a random predictor. Third, the prediction system was tuned so sensitivity or time in warning could be prioritized by the patient. Finally, a demonstration of the feasibility of deployment of the prediction system onto an ultra-low power neuromorphic chip for autonomous operation on a wearable device is provided. RESULTS The prediction system achieved mean sensitivity of 69% and mean time in warning of 27%, significantly surpassing an equivalent random predictor for all patients by 42%. CONCLUSION This study demonstrates that deep learning in combination with neuromorphic hardware can provide the basis for a wearable, real-time, always-on, patient-specific seizure warning system with low power consumption and reliable long-term performance.
Collapse
Affiliation(s)
| | - Subhrajit Roy
- IBM Research - Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia
| | - Ewan Nurse
- IBM Research - Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia; The University of Melbourne, 3010 Parkville, VIC, Australia
| | - Benjamin Mashford
- IBM Research - Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia
| | - Philippa Karoly
- IBM Research - Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia; The University of Melbourne, 3010 Parkville, VIC, Australia
| | - Thomas Carroll
- IBM Research - Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia; The University of Melbourne, 3010 Parkville, VIC, Australia
| | - Daniel Payne
- IBM Research - Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia; The University of Melbourne, 3010 Parkville, VIC, Australia
| | - Susmita Saha
- IBM Research - Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia
| | | | | | - David Grayden
- Department of Biomedical Engineering, The University of Melbourne, 3010 Parkville, VIC, Australia
| | - Mark Cook
- The University of Melbourne, 3010 Parkville, VIC, Australia
| | - Dean Freestone
- The University of Melbourne, 3010 Parkville, VIC, Australia.
| | - Stefan Harrer
- IBM Research - Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia.
| |
Collapse
|
41
|
Karoly PJ, Ung H, Grayden DB, Kuhlmann L, Leyde K, Cook MJ, Freestone DR. The circadian profile of epilepsy improves seizure forecasting. Brain 2017; 140:2169-2182. [PMID: 28899023 DOI: 10.1093/brain/awx173] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/20/2017] [Indexed: 01/20/2023] Open
Abstract
It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and 2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circadian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information (combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algorithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be implemented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application. The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for increased quality of life and improved safety for patients with epilepsy.
Collapse
Affiliation(s)
- Philippa J Karoly
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy VIC 3065, Australia.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,NeuroEngineering Research Laboratory, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Hoameng Ung
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - David B Grayden
- NeuroEngineering Research Laboratory, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Levin Kuhlmann
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy VIC 3065, Australia.,Brain Dynamics Lab, Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorne VIC 3122, Australia
| | - Kent Leyde
- Cascade Neuroscience, Seattle, WA 98109, USA
| | - Mark J Cook
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy VIC 3065, Australia.,Graeme Clark Institute for Biomedical Engineering, The University of Melbourne
| | - Dean R Freestone
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy VIC 3065, Australia
| |
Collapse
|
42
|
Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings. Epilepsy Res 2017; 135:29-37. [DOI: 10.1016/j.eplepsyres.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 06/04/2017] [Indexed: 11/17/2022]
|
43
|
Rosenfeld JV, Wong YT. Neurobionics and the brain-computer interface: current applications and future horizons. Med J Aust 2017; 206:363-368. [PMID: 28446119 DOI: 10.5694/mja16.01011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.
Collapse
Affiliation(s)
| | - Yan Tat Wong
- Electrical and Computer Systems Engineering, University of Melbourne, Melbourne, VIC
| |
Collapse
|
44
|
Sinha N, Dauwels J, Kaiser M, Cash SS, Westover MB, Wang Y, Taylor PN. Reply: Computer models to inform epilepsy surgery strategies: prediction of postoperative outcome. Brain 2017; 140:e31. [PMID: 28334902 PMCID: PMC10448005 DOI: 10.1093/brain/awx068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nishant Sinha
- ICOS, School of Computing Science, Newcastle University, UK
- Institute of Neuroscience, Newcastle University, UK
| | - Justin Dauwels
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Marcus Kaiser
- ICOS, School of Computing Science, Newcastle University, UK
- Institute of Neuroscience, Newcastle University, UK
| | - Sydney S. Cash
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Yujiang Wang
- ICOS, School of Computing Science, Newcastle University, UK
| | - Peter N. Taylor
- ICOS, School of Computing Science, Newcastle University, UK
- Institute of Neuroscience, Newcastle University, UK
- Institute of Neurology, University College London, UK
| |
Collapse
|
45
|
Where Does EEG Come From and What Does It Mean? Trends Neurosci 2017; 40:208-218. [DOI: 10.1016/j.tins.2017.02.004] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/12/2017] [Accepted: 02/16/2017] [Indexed: 01/21/2023]
|
46
|
Roberts JA, Friston KJ, Breakspear M. Clinical Applications of Stochastic Dynamic Models of the Brain, Part II: A Review. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017. [DOI: 10.1016/j.bpsc.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Freestone DR, Layton KJ, Kuhlmann L, Cook MJ. Statistical Performance Analysis of Data-Driven Neural Models. Int J Neural Syst 2016; 27:1650045. [DOI: 10.1142/s0129065716500453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Data-driven model-based analysis of electrophysiological data is an emerging technique for understanding the mechanisms of seizures. Model-based analysis enables tracking of hidden brain states that are represented by the dynamics of neural mass models. Neural mass models describe the mean firing rates and mean membrane potentials of populations of neurons. Various neural mass models exist with different levels of complexity and realism. An ideal data-driven model-based analysis framework will incorporate the most realistic model possible, enabling accurate imaging of the physiological variables. However, models must be sufficiently parsimonious to enable tracking of important variables using data. This paper provides tools to inform the realism versus parsimony trade-off, the Bayesian Cramer-Rao (lower) Bound (BCRB). We demonstrate how the BCRB can be used to assess the feasibility of using various popular neural mass models to track epilepsy-related dynamics via stochastic filtering methods. A series of simulations show how optimal state estimates relate to measurement noise, model error and initial state uncertainty. We also demonstrate that state estimation accuracy will vary between seizure-like and normal rhythms. The performance of the extended Kalman filter (EKF) is assessed against the BCRB. This work lays a foundation for assessing feasibility of model-based analysis. We discuss how the framework can be used to design experiments to better understand epilepsy.
Collapse
Affiliation(s)
- Dean R. Freestone
- Department of Medicine St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Department of Statistics, Columbia University, New York, New York, 10027, United States
| | - Kelvin J. Layton
- Institute for Telecommunications Research, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Levin Kuhlmann
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mark J. Cook
- Department of Medicine St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, Victoria, 3065, Australia
| |
Collapse
|
48
|
O'Sullivan-Greene E, Kuhlmann L, Nurse ES, Freestone DR, Grayden DB, Cook M, Burkitt A, Mareels I. Probing to Observe Neural Dynamics Investigated with Networked Kuramoto Oscillators. Int J Neural Syst 2016; 27:1650038. [PMID: 27596927 DOI: 10.1142/s0129065716500386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The expansion of frontiers in neural engineering is dependent on the ability to track, detect and predict dynamics in neural tissue. Recent innovations to elucidate information from electrical recordings of brain dynamics, such as epileptic seizure prediction, have involved switching to an active probing paradigm using electrically evoked recordings rather than traditional passive measurements. This paper positions the advantage of probing in terms of information extraction, by using a coupled oscillator Kuramoto model to represent brain dynamics. While active probing performs better at observing underlying system synchrony in Kuramoto networks, especially in non-Gaussian measurement environments, the benefits diminish with increasing relative size of electrode spatial resolution compared to synchrony area. This suggests probing will be useful for improved characterization of synchrony for suitably dense electrode recordings.
Collapse
Affiliation(s)
- Elma O'Sullivan-Greene
- * Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Levin Kuhlmann
- * Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.,† Brain & Psychological Sciences Research Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Ewan S Nurse
- * Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.,‡ Department of Medicine, The University of Melbourne, Parkville, VIC 3010, Australia.,§ St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Dean R Freestone
- * Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.,‡ Department of Medicine, The University of Melbourne, Parkville, VIC 3010, Australia.,§ St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - David B Grayden
- * Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- ‡ Department of Medicine, The University of Melbourne, Parkville, VIC 3010, Australia.,§ St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Anthony Burkitt
- * Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Iven Mareels
- * Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|