1
|
Vengadesan K, Phulia A, Kumar R. Update on Molecular Imaging in Epilepsy. Semin Nucl Med 2025:S0001-2998(25)00064-9. [PMID: 40514317 DOI: 10.1053/j.semnuclmed.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025]
Abstract
Epilepsy is one of the commonest neurological disorders worldwide. It is characterized by recurrent unprovoked seizures and has significant effects on one's daily life. Though almost two thirds of patients with epilepsy respond well with one or more antiepileptic drugs, about 30% patients suffer with drug resistant epilepsy (DRE). Patients with focal variant of DRE, often have a focal pathology in brain and benefit vastly by removing or disconnecting the foci of origin of epileptiform waves from other parts of the cerebral cortex. While clinical examination, MRI and EEG are the first line investigations done in such patients before surgery, many a times they yield normal or discordant or multiple lesions of which only 1 or 2 are epileptogenic. It is in such cases; molecular imaging such as SPECT and PET helps in accurately demarcating the EZ for planning epilepsy surgery. The functional integrity of the rest of the brain can also be assessed by PET and SPECT, which may also offer valuable insights into the potential pathophysiology of the neurocognitive and behavioral impairments commonly seen in these patients. Epilepsy continues to be a common indication for perfusion SPECT as it is the only imaging method that can visualize the ictal onset zone in vivo. Interictal FDG PET/CT is a single investigation that can provide most information about EZ whereas SPECT has to be done twice-ictal and interictal. The evolution of advanced image analysis techniques like SISCOM, SISCOS, PISCOM and newer receptor-based PET tracers has further refined the localization of the seizure onset zone.
Collapse
Affiliation(s)
- Kowshik Vengadesan
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Xie K, Royer J, Rodriguez‐Cruces R, Horwood L, Ngo A, Arafat T, Auer H, Sahlas E, Chen J, Zhou Y, Valk SL, Hong S, Frauscher B, Pana R, Bernasconi A, Bernasconi N, Concha L, Bernhardt BC. Temporal Lobe Epilepsy Perturbs the Brain-Wide Excitation-Inhibition Balance: Associations with Microcircuit Organization, Clinical Parameters, and Cognitive Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406835. [PMID: 39806576 PMCID: PMC11884548 DOI: 10.1002/advs.202406835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models. A broad decrease in the Hurst exponent is observed in pharmaco-resistant temporal lobe epilepsy (TLE), suggesting more excitable network dynamics. Connectome decoders point to temporolimbic and frontocentral cortices as plausible network epicenters of E/I imbalance. Furthermore, computational simulations reveal that enhancing cortical excitability in TLE reflects atypical increases in recurrent connection strength of local neuronal ensembles. Mixed cross-sectional and longitudinal analyses show stronger E/I ratio elevation in patients with longer disease duration, more frequent electroclinical seizures as well as interictal epileptic spikes, and worse cognitive functioning. Hurst exponent-informed classifiers discriminate patients from healthy controls with high accuracy (72.4% [57.5%-82.5%]). Replicated in an independent dataset, this work provides in vivo evidence of a macroscale shift in E/I balance in TLE patients and points to progressive functional imbalances that relate to cognitive decline.
Collapse
Affiliation(s)
- Ke Xie
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Jessica Royer
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Raul Rodriguez‐Cruces
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Linda Horwood
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Alexander Ngo
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Thaera Arafat
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Hans Auer
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Ella Sahlas
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Judy Chen
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Yigu Zhou
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Sofie L. Valk
- Otto Hahn Research Group for Cognitive NeurogeneticsMax Planck Institute for Human Cognitive and Brain Sciences04103LeipzigGermany
- Institute of Neurosciences and Medicine (INM‐7)Research Centre Jülich52428JülichGermany
- Institute of Systems NeuroscienceHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Seok‐Jun Hong
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSungkyunkwan UniversitySuwon34126South Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419South Korea
- Center for the Developing BrainChild Mind InstituteNew York CityNY10022USA
| | - Birgit Frauscher
- Department of Neurology and Department of Biomedical EngineeringDuke UniversityDurhamNC27704USA
| | - Raluca Pana
- Montreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Andrea Bernasconi
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Neda Bernasconi
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Luis Concha
- Institute of NeurobiologyUniversidad Nacional Autónoma de MexicoQueretaro76230Mexico
| | - Boris C. Bernhardt
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| |
Collapse
|
3
|
Neumann KD, Broshek DK, Newman BT, Druzgal TJ, Kundu BK, Resch JE. Concussion: Beyond the Cascade. Cells 2023; 12:2128. [PMID: 37681861 PMCID: PMC10487087 DOI: 10.3390/cells12172128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Sport concussion affects millions of athletes each year at all levels of sport. Increasing evidence demonstrates clinical and physiological recovery are becoming more divergent definitions, as evidenced by several studies examining blood-based biomarkers of inflammation and imaging studies of the central nervous system (CNS). Recent studies have shown elevated microglial activation in the CNS in active and retired American football players, as well as in active collegiate athletes who were diagnosed with a concussion and returned to sport. These data are supportive of discordance in clinical symptomology and the inflammatory response in the CNS upon symptom resolution. In this review, we will summarize recent advances in the understanding of the inflammatory response associated with sport concussion and broader mild traumatic brain injury, as well as provide an outlook for important research questions to better align clinical and physiological recovery.
Collapse
Affiliation(s)
- Kiel D. Neumann
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Donna K. Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22903, USA;
| | - Benjamin T. Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - T. Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Bijoy K. Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Jacob E. Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Neumann KD, Seshadri V, Thompson XD, Broshek DK, Druzgal J, Massey JC, Newman B, Reyes J, Simpson SR, McCauley KS, Patrie J, Stone JR, Kundu BK, Resch JE. Microglial activation persists beyond clinical recovery following sport concussion in collegiate athletes. Front Neurol 2023; 14:1127708. [PMID: 37034078 PMCID: PMC10080132 DOI: 10.3389/fneur.2023.1127708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction In concussion, clinical and physiological recovery are increasingly recognized as diverging definitions. This study investigated whether central microglial activation persisted in participants with concussion after receiving an unrestricted return-to-play (uRTP) designation using [18F]DPA-714 PET, an in vivo marker of microglia activation. Methods Eight (5 M, 3 F) current athletes with concussion (Group 1) and 10 (5 M, 5 F) healthy collegiate students (Group 2) were enrolled. Group 1 completed a pre-injury (Visit1) screen, follow-up Visit2 within 24 h of a concussion diagnosis, and Visit3 at the time of uRTP. Healthy participants only completed assessments at Visit2 and Visit3. At Visit2, all participants completed a multidimensional battery of tests followed by a blood draw to determine genotype and study inclusion. At Visit3, participants completed a clinical battery of tests, brain MRI, and brain PET; no imaging tests were performed outside of Visit3. Results For Group 1, significant differences were observed between Visits 1 and 2 (p < 0.05) in ImPACT, SCAT5 and SOT performance, but not between Visit1 and Visit3 for standard clinical measures (all p > 0.05), reflecting clinical recovery. Despite achieving clinical recovery, PET imaging at Visit3 revealed consistently higher [18F]DPA-714 tracer distribution volume (VT) of Group 1 compared to Group 2 in 10 brain regions (p < 0.001) analyzed from 164 regions of the whole brain, most notably within the limbic system, dorsal striatum, and medial temporal lobe. No notable differences were observed between clinical measures and VT between Group 1 and Group 2 at Visit3. Discussion Our study is the first to demonstrate persisting microglial activation in active collegiate athletes who were diagnosed with a sport concussion and cleared for uRTP based on a clinical recovery.
Collapse
Affiliation(s)
- Kiel D Neumann
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Vikram Seshadri
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Xavier D Thompson
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| | - Donna K Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - James C Massey
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Benjamin Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Jose Reyes
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Spenser R Simpson
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katelyenn S McCauley
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - James Patrie
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - James R Stone
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Bijoy K Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jacob E Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Structural connectivity of the ANT region based on human ex-vivo and HCP data. Relevance for DBS in ANT for epilepsy. Neuroimage 2022; 262:119551. [DOI: 10.1016/j.neuroimage.2022.119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
|
6
|
Gu L, Yu Q, Shen Y, Wang Y, Xu Q, Zhang H. The role of monoaminergic neurons in modulating respiration during sleep and the connection with SUDEP. Biomed Pharmacother 2022; 150:112983. [PMID: 35453009 DOI: 10.1016/j.biopha.2022.112983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among epilepsy patients, occurring even more frequently in cases with anti-epileptic drug resistance. Despite some advancements in characterizing SUDEP, the underlying mechanism remains incompletely understood. This review summarizes the latest advances in our understanding of the pathogenic mechanisms of SUDEP, in order to identify possible targets for the development of new strategies to prevent SUDEP. Based on our previous research along with the current literature, we focus on the role of sleep-disordered breathing (SDB) and its related neural mechanisms to consider the possible roles of monoaminergic neurons in the modulation of respiration during sleep and the occurrence of SUDEP. Overall, this review suggests that targeting the monoaminergic neurons is a promising approach to preventing SUDEP. The proposed roles of SDB and related monoaminergic neural mechanisms in SUDEP provide new insights for explaining the pathogenesis of SUDEP.
Collapse
Affiliation(s)
- LeYuan Gu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qian Yu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - HongHai Zhang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310006, China.
| |
Collapse
|
7
|
Niu N, Xing H, Wu M, Ma Y, Liu Y, Ba J, Zhu S, Li F, Huo L. Performance of PET imaging for the localization of epileptogenic zone in patients with epilepsy: a meta-analysis. Eur Radiol 2021; 31:6353-6366. [PMID: 33523306 DOI: 10.1007/s00330-020-07645-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVES The aim of this meta-analysis was to estimate the clinical use value of 11C-FMZ and 18F-FDG in PET for the localization of epileptogenic zone and to provide evidence for practitioners' clinical decision-making. METHODS We searched PubMed and Embase in a time frame from inception to May 31, 2020. Studies utilizing FMZ or FDG-PET or FDG-PET/MRI used in patients with epilepsy, with EEG or surgical outcomes as the gold standard and corresponding outcomes such as concordance rates of PET or PET/MRI scan compared with reference standard, absolute numbers of participants with true-positive (TP), false-positive (FP), true-negative (TN), and false-negative (FN) results in FDG or FMZ PET. Pooled concordance rates, overall sensitivity, and specificity of 11C-FMZ-PET and 18F-FDG-PET were calculated. RESULTS In total, 44 studies met the inclusion criteria. The pooled concordance rates of FDG-PET, FMZ-PET, and FDG-PET/MRI coregistration compared with reference standard were 0.67 (95% CI: 0.60-0.73), 0.75 (95% CI: 0.57-0.93), and 0.93 (95% CI: 0.89-0.97), respectively. The concordance rate of 18F-FDG-PET in patients with temporal lobe epilepsy (TLE) was 0.79 (0.63; 0.92). The overall sensitivity and specificity of 18F-FDG-PET were 0.66 (95% CI: 0.58-0.73) and 0.71 (95% CI: 0.63-0.78), respectively. 11C-FMZ-PET displayed an overall sensitivity of 0.62 (95% CI: 0.49-0.73) and specificity of 0.73 (95% CI: 0.59-0.84). CONCLUSIONS Both 11C-FMZ PET and 18F-FDG PET are the choice of modalities for the localization of epileptogenic zone, especially when coregistered with MRI. KEY POINTS • 11C-FMZ-PET may be more helpful than 18F-FDG-PET in the localization of epilepsy foci. • Coregistration of FDG-PET and MRI is recommended in the localization of epileptogenic zone.
Collapse
Affiliation(s)
- Na Niu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Haiqun Xing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Meiqi Wu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Yanru Ma
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Yimin Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Jiantao Ba
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Shikun Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China.
| |
Collapse
|
8
|
Alarmins and c-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells 2020; 9:cells9112350. [PMID: 33114371 PMCID: PMC7693759 DOI: 10.3390/cells9112350] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is involved in the progression or secondary injury of multiple brain conditions, including stroke and neurodegenerative diseases. Alarmins, also known as damage-associated molecular patterns, are released in the presence of neuroinflammation and in the acute phase of ischemia. Defensins, cathelicidin, high-mobility group box protein 1, S100 proteins, heat shock proteins, nucleic acids, histones, nucleosomes, and monosodium urate microcrystals are thought to be alarmins. They are released from damaged or dying cells and activate the innate immune system by interacting with pattern recognition receptors. Being principal sterile inflammation triggering agents, alarmins are considered biomarkers and therapeutic targets. They are recognized by host cells and prime the innate immune system toward cell death and distress. In stroke, alarmins act as mediators initiating the inflammatory response after the release from the cellular components of the infarct core and penumbra. Increased c-Jun N-terminal kinase (JNK) phosphorylation may be involved in the mechanism of stress-induced release of alarmins. Putative crosstalk between the alarmin-associated pathways and JNK signaling seems to be inherently interwoven. This review outlines the role of alarmins/JNK-signaling in cerebral neurovascular inflammation and summarizes the complex response of cells to alarmins. Emerging anti-JNK and anti-alarmin drug treatment strategies are discussed.
Collapse
|
9
|
Sammer MBK, Sher AC, States LJ, Trout AT, Seghers VJ. Current trends in pediatric nuclear medicine: a Society for Pediatric Radiology membership survey. Pediatr Radiol 2020; 50:1139-1147. [PMID: 32399687 DOI: 10.1007/s00247-020-04670-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/04/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pediatric nuclear medicine is evolving, and its practice patterns are uncertain. Knowledge of the current trends in pediatric nuclear medicine might be helpful to direct local decisions, including expectations for patient care, needs for capital acquisitions, and staffing recruitment strategies. OBJECTIVE To provide data regarding the current practice of pediatric nuclear medicine via a Society for Pediatric Radiology (SPR) membership survey. MATERIALS AND METHODS The SPR emailed our 25-question survey to all 1,847 SPR members in August 2018 and we accepted responses until April 2019. Questions focused on nuclear medicine staffing, positron emission tomography (PET) utilization, and radiotherapy availability. Respondents could indicate their affiliated hospital, which we used for data cataloguing only. Analysis of survey responses was blinded to reported institution. We analyzed response data using contingency tables. Independence testing between categorical variables based on proportions of physicians with additional nuclear medicine board certification was performed on a subset of questions regarding PET and therapy practices. RESULTS Sixty-seven people from at least 29 hospitals responded to the survey, including all 10 of the 2018-2019 U.S. News & World Report best children's hospitals. The majority (48/67, 71.6%) of respondents indicated that pediatric nuclear medicine examinations were interpreted in the pediatric radiology department by pediatric radiologists and that most physicians interpreting the exams (43/67, 64.2%) did not have subspecialty certification in nuclear medicine or nuclear radiology. Most facilities offered PET/CT (57/67, 85.1%); few offered PET/MRI (12/67, 17.9%). Most facilities offered radiotherapies (57/67, 85.1%) but at most of these facilities (30/57, 52.6%), fewer than half the physicians who cover nuclear medicine were approved to administer therapies. In the subset analyses based on proportion of physicians with additional nuclear medicine board certification, there were statistically significant differences between the groups in availability of PET/MRI, lutetium-177 dotatate therapy programs, and percentages of physicians approved to administer therapies. CONCLUSION Pediatric nuclear medicine is largely practiced by pediatric radiologists without subspecialty certification. Staffing, PET practices and therapies vary among practices, in part associated with the number of radiologists with nuclear medicine board certification.
Collapse
Affiliation(s)
- Marla B K Sammer
- Edward B. Singleton Department of Pediatric Radiology,, Texas Children's Hospital, 6107 Fannin St., Suite 470, Houston, TX, 77030, USA. .,Department of Radiology, Baylor College of Medicine,, Houston, TX, USA.
| | - Andrew C Sher
- Edward B. Singleton Department of Pediatric Radiology,, Texas Children's Hospital, 6107 Fannin St., Suite 470, Houston, TX, 77030, USA.,Department of Radiology, Baylor College of Medicine,, Houston, TX, USA
| | - Lisa J States
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Victor J Seghers
- Edward B. Singleton Department of Pediatric Radiology,, Texas Children's Hospital, 6107 Fannin St., Suite 470, Houston, TX, 77030, USA.,Department of Radiology, Baylor College of Medicine,, Houston, TX, USA
| |
Collapse
|
10
|
Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Steven DA, Suller-Marti A, Lam Shin Cheung V, Khan AR, Romsa J, Prato FS, Burneo JG, Thiessen JD, Anazodo UC. 18F-FDG PET-guided diffusion tractography reveals white matter abnormalities around the epileptic focus in medically refractory epilepsy: implications for epilepsy surgical evaluation. Eur J Hybrid Imaging 2020; 4:10. [PMID: 34191151 PMCID: PMC8218143 DOI: 10.1186/s41824-020-00079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Hybrid PET/MRI can non-invasively improve localization and delineation of the epileptic focus (EF) prior to surgical resection in medically refractory epilepsy (MRE), especially when MRI is negative or equivocal. In this study, we developed a PET-guided diffusion tractography (PET/DTI) approach combining 18F-fluorodeoxyglucose PET (FDG-PET) and diffusion MRI to investigate white matter (WM) integrity in MRI-negative MRE patients and its potential impact on epilepsy surgical planning. METHODS FDG-PET and diffusion MRI of 14 MRI-negative or equivocal MRE patients were used to retrospectively pilot the PET/DTI approach. We used asymmetry index (AI) mapping of FDG-PET to detect the EF as brain areas showing the largest decrease in FDG uptake between hemispheres. Seed-based WM fiber tracking was performed on DTI images with a seed location in WM 3 mm from the EF. Fiber tractography was repeated in the contralateral brain region (opposite to EF), which served as a control for this study. WM fibers were quantified by calculating the fiber count, mean fractional anisotropy (FA), mean fiber length, and mean cross-section of each fiber bundle. WM integrity was assessed through fiber visualization and by normalizing ipsilateral fiber measurements to contralateral fiber measurements. The added value of PET/DTI in clinical decision-making was evaluated by a senior neurologist. RESULTS In over 60% of the patient cohort, AI mapping findings were concordant with clinical reports on seizure-onset localization and lateralization. Mean FA, fiber count, and mean fiber length were decreased in 14/14 (100%), 13/14 (93%), and 12/14 (86%) patients, respectively. PET/DTI improved diagnostic confidence in 10/14 (71%) patients and indicated that surgical candidacy be reassessed in 3/6 (50%) patients who had not undergone surgery. CONCLUSIONS We demonstrate here the utility of AI mapping in detecting the EF based on brain regions showing decreased FDG-PET activity and, when coupled with DTI, could be a powerful tool for detecting EF and assessing WM integrity in MRI-negative epilepsy. PET/DTI could be used to further enhance clinical decision-making in epilepsy surgery.
Collapse
Affiliation(s)
- Stefan E Poirier
- Lawson Imaging, Lawson Health Research Institute, 268 Grosvenor St., London, Ontario, N6A 4 V2, Canada. .,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Benjamin Y M Kwan
- Department of Diagnostic Radiology, Queen's University, Kingston, Ontario, Canada
| | - Michael T Jurkiewicz
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lina Samargandy
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David A Steven
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ana Suller-Marti
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Jonathan Romsa
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Frank S Prato
- Lawson Imaging, Lawson Health Research Institute, 268 Grosvenor St., London, Ontario, N6A 4 V2, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jorge G Burneo
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jonathan D Thiessen
- Lawson Imaging, Lawson Health Research Institute, 268 Grosvenor St., London, Ontario, N6A 4 V2, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Udunna C Anazodo
- Lawson Imaging, Lawson Health Research Institute, 268 Grosvenor St., London, Ontario, N6A 4 V2, Canada. .,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
11
|
Feraco P, Donner D, Picori L, Rozzanigo U. Unusual diagnostic findings in temporal lobe epilepsy: A combined MRI and 18F-dopa case study. Eur J Radiol Open 2020; 7:100241. [PMID: 32695848 PMCID: PMC7365897 DOI: 10.1016/j.ejro.2020.100241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/06/2020] [Indexed: 12/27/2022] Open
Abstract
Onset Temporal Lobe Epilepsy may mimic a low-grade tumor at conventional MRI. Arterial Spin Labeling likely detect the epileptogenic focus even beyond 24 h after seizures. The knowledge of electroencephalographic findings is necessary when interpreting brain areas of tracer uptake. 18F-DOPA uptake may represent increased dopamine transport induced by seizures. 18F-DOPA tracer uptake is not always related to malignancy.
Temporal lobe epilepsy is the most common focal epilepsy in adults and often causes pharmacoresistant seizures. Magnetic resonance imaging (MRI) and PET studies have widely demonstrated a number of morphological and molecular abnormalities in epilepsy. However, considering the dopaminergic system, only a bilateral 18F-DOPA uptake reduction within the basal ganglia has been described. We report the unusual finding of increased 18F-DOPA uptake in a patient with focal recurrent seizures and "deja vu" experiences in the setting of cortical swelling detected at MRI exam. The final diagnosis was in in keeping with hippocampal sclerosis, confirmed during follow-up MR exams. In this case 18F-DOPA uptake may represent increased dopamine transport induced by seizures. Nuclear medicine physicians and radiologists should be aware of clinical and electroencephalographic findings when interpreting brain areas of tracer uptake, which are not always related to malignancy.
Collapse
Affiliation(s)
- Paola Feraco
- Neuroradiology Unit, S. Chiara Hospital, Trento, Italy.,University of Bologna, Department of Experimental, Diagnostic and Speciality Medicine (DIMES), Italy
| | - Davide Donner
- Nuclear Medicine Unit, S. Chiara Hospital, Trento, Italy
| | - Lorena Picori
- Nuclear Medicine Unit, S. Chiara Hospital, Trento, Italy
| | | |
Collapse
|
12
|
Partridge B, Rossmeisl JH. Companion animal models of neurological disease. J Neurosci Methods 2020; 331:108484. [PMID: 31733285 PMCID: PMC6942211 DOI: 10.1016/j.jneumeth.2019.108484] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Clinical translation of novel therapeutics that improve the survival and quality of life of patients with neurological disease remains a challenge, with many investigational drug and device candidates failing in advanced stage clinical trials. Naturally occurring inherited and acquired neurological diseases, such as epilepsy, inborn errors of metabolism, brain tumors, spinal cord injury, and stroke occur frequently in companion animals, and many of these share epidemiologic, pathophysiologic and clinical features with their human counterparts. As companion animals have a relatively abbreviated lifespan and genetic background, are immunocompetent, share their environment with human caregivers, and can be clinically managed using techniques and tools similar to those used in humans, they have tremendous potential for increasing the predictive value of preclinical drug and device studies. Here, we review comparative features of spontaneous neurological diseases in companion animals with an emphasis on neuroimaging methods and features, illustrate their historical use in translational studies, and discuss inherent limitations associated with each disease model. Integration of companion animals with naturally occurring disease into preclinical studies can complement and expand the knowledge gained from studies in other animal models, accelerate or improve the manner in which research is translated to the human clinic, and ultimately generate discoveries that will benefit the health of humans and animals.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA.
| |
Collapse
|
13
|
Du C, Wang J, Liu X, Li H, Geng D, Yu L, Chen Y, Zhang J. Construction of Pepstatin A-Conjugated ultrasmall SPIONs for targeted positive MR imaging of epilepsy-overexpressed P-glycoprotein. Biomaterials 2019; 230:119581. [PMID: 31718885 DOI: 10.1016/j.biomaterials.2019.119581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
Surgical resection of the epileptogenic region is typically regarded to be practical and efficient for complete elimination of intractable seizures, which cannot be simply controlled by anti-epileptic drugs alone. To achieve a precision removal of the epileptogenic region and even a surgical cure, molecular imaging of epilepsy markers is highly essential for non-invasive accurate detection of the epileptogenic region. In this work, a peptide-targeted nanoprobe, based on ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs), PA-USPIONs, was elaborately constructed to enable highly selective delivery and sensitive T1-weighted positive magnetic resonance (MR) imaging of the epileptogenic region. Especially, Pepstatin A (PA), a small peptide which can specifically target to P-glycoprotein (P-gp) overexpressed at the epileptogenic region in a kainic acid (KA)-induced mice model of seizures, was conjugated onto the surface of PEGylated USPIONs. It has been demonstrated that the as-constructed PA-USPIONs nanoprobes have favorable T1 contrast enhancement and high r1 relaxivity compared with the clinically used T1-MR contrast agent (Gd-DTPA) by systematic in vitro and vivo assessments. Importantly, the toxicity evaluation, especially to brains, was assessed by the histological as well as hematological examinations, demonstrating that the fabricated PA-USPIONs nanoprobes are featured with excellent biocompatibility, guaranteeing the further potential clinical application. This first report on the development of USPIONs as T1-weighted MR contrast agents for active targeting of the epileptogenic region holds the high potential for precise resection of the according lesion in order to achieve therapeutic, often curative purposes.
Collapse
Affiliation(s)
- Chengjuan Du
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jianhong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Xianping Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Huiming Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Luodan Yu
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yu Chen
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
14
|
The predictive value of hypometabolism in focal epilepsy: a prospective study in surgical candidates. Eur J Nucl Med Mol Imaging 2019; 46:1806-1816. [PMID: 31144060 DOI: 10.1007/s00259-019-04356-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE FDG PET is an established tool in presurgical epilepsy evaluation, but it is most often used selectively in patients with discordant MRI and EEG results. Interpretation is complicated by the presence of remote or multiple areas of hypometabolism, which leads to doubt as to the true location of the seizure onset zone (SOZ) and might have implications for predicting the surgical outcome. In the current study, we determined the sensitivity and specificity of PET localization prospectively in a consecutive unselected cohort of patients with focal epilepsy undergoing in-depth presurgical evaluation. METHODS A total of 130 patients who underwent PET imaging between 2006 and 2015 matched our inclusion criteria, and of these, 86 were operated on (72% with a favourable surgical outcome, Engel class I). Areas of focal hypometabolism were identified using statistical parametric mapping and concordance with MRI, EEG and intracranial EEG was evaluated. In the surgically treated patients, postsurgical outcome was used as the gold standard for correctness of localization (minimum follow-up 12 months). RESULTS PET sensitivity and specificity were both 95% in 86 patients with temporal lobe epilepsy (TLE) and 80% and 95%, respectively, in 44 patients with extratemporal epilepsy (ETLE). Significant extratemporal hypometabolism was observed in 17 TLE patients (20%). Temporal hypometabolism was observed in eight ETLE patients (18%). Among the 86 surgically treated patients, 26 (30%) had hypometabolism extending beyond the SOZ. The presence of unilobar hypometabolism, included in the resection, was predictive of complete seizure control (p = 0.007), with an odds ratio of 5.4. CONCLUSION Additional hypometabolic areas were found in one of five of this group of nonselected patients with focal epilepsy, including patients with "simple" lesional epilepsy, and this finding should prompt further in-depth evaluation of the correlation between EEG findings, semiology and PET. Hypometabolism confined to the epileptogenic zone as defined by EEG and MRI is associated with a favourable postoperative outcome in both TLE and ETLE patients.
Collapse
|
15
|
Neuroimaging Biomarkers of Experimental Epileptogenesis and Refractory Epilepsy. Int J Mol Sci 2019; 20:ijms20010220. [PMID: 30626103 PMCID: PMC6337422 DOI: 10.3390/ijms20010220] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022] Open
Abstract
This article provides an overview of neuroimaging biomarkers in experimental epileptogenesis and refractory epilepsy. Neuroimaging represents a gold standard and clinically translatable technique to identify neuropathological changes in epileptogenesis and longitudinally monitor its progression after a precipitating injury. Neuroimaging studies, along with molecular studies from animal models, have greatly improved our understanding of the neuropathology of epilepsy, such as the hallmark hippocampus sclerosis. Animal models are effective for differentiating the different stages of epileptogenesis. Neuroimaging in experimental epilepsy provides unique information about anatomic, functional, and metabolic alterations linked to epileptogenesis. Recently, several in vivo biomarkers for epileptogenesis have been investigated for characterizing neuronal loss, inflammation, blood-brain barrier alterations, changes in neurotransmitter density, neurovascular coupling, cerebral blood flow and volume, network connectivity, and metabolic activity in the brain. Magnetic resonance imaging (MRI) is a sensitive method for detecting structural and functional changes in the brain, especially to identify region-specific neuronal damage patterns in epilepsy. Positron emission tomography (PET) and single-photon emission computerized tomography are helpful to elucidate key functional alterations, especially in areas of brain metabolism and molecular patterns, and can help monitor pathology of epileptic disorders. Multimodal procedures such as PET-MRI integrated systems are desired for refractory epilepsy. Validated biomarkers are warranted for early identification of people at risk for epilepsy and monitoring of the progression of medical interventions.
Collapse
|
16
|
Bankstahl M, Bankstahl JP. Recent Advances in Radiotracer Imaging Hold Potential for Future Refined Evaluation of Epilepsy in Veterinary Neurology. Front Vet Sci 2017; 4:218. [PMID: 29326952 PMCID: PMC5733338 DOI: 10.3389/fvets.2017.00218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
Non-invasive nuclear imaging by positron emission tomography and single photon emission computed tomography has significantly contributed to epileptic focus localization in human neurology for several decades now. Offering functional insight into brain alterations, it is also of particular relevance for epilepsy research. Access to these techniques for veterinary medicine is becoming more and more relevant and has already resulted in first studies in canine patients. In view of the substantial proportion of drug-refractory epileptic dogs and cats, image-guided epileptic focus localization will be a prerequisite for selection of patients for surgical focus resection. Moreover, radiotracer imaging holds potential for a better understanding of the pathophysiology of underlying epilepsy syndromes as well as to forecast disease risk after epileptogenic brain insults. Importantly, recent advances in epilepsy research demonstrate the suitability and value of several novel radiotracers for non-invasive assessment of neuroinflammation, blood–brain barrier alterations, and neurotransmitter systems. It is desirable that veterinary epilepsy patients will also benefit from these promising developments in the medium term. This paper reviews the current use of radiotracer imaging in the veterinary epilepsy patient and suggests possible future directions for the technique.
Collapse
Affiliation(s)
- Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Center of Systems Neuroscience Hannover, Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Minjarez B, Camarena H, Haramati J, Rodríguez-Yañez Y, Mena-Munguía S, Buriticá J, García-Leal O. Behavioral changes in models of chemoconvulsant-induced epilepsy: A review. Neurosci Biobehav Rev 2017; 83:373-380. [DOI: 10.1016/j.neubiorev.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 11/25/2022]
|
18
|
van Dijkman SC, Voskuyl RA, de Lange EC. Biomarkers in epilepsy-A modelling perspective. Eur J Pharm Sci 2017; 109S:S47-S52. [PMID: 28528284 DOI: 10.1016/j.ejps.2017.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Biomarkers can be categorised from type 0 (genotype or phenotype), through 6 (clinical scales), each level representing a part of the processes involved in the biological system and drug treatment. This classification facilitates the identification and connection of information required to fully (mathematically) model a disease and its treatment using integrated information from biomarkers. Two recent reviews thoroughly discussed the current status and development of biomarkers for epilepsy, but a path towards the integration of such biomarkers for the personalisation of anti-epileptic drug treatment is lacking. Here we aim to 1) briefly categorise the available epilepsy biomarkers and identify gaps, and 2) provide a modelling perspective on approaches to fill such gaps. There is mainly a lack of biomarker types 2 (target occupancy) and 3 (target activation). Current literature typically focuses on qualitative biomarkers for diagnosis and prediction of treatment response or failure, leaving a need for biomarkers that help to quantitatively understand the overall system to explain and predict differences in disease and treatment outcome. Due to the complexity of epilepsy, filling the biomarker gaps will require collaboration and expertise from the fields of systems biology and systems pharmacology.
Collapse
Affiliation(s)
- Sven C van Dijkman
- Division of Pharmacology, Leiden Academic Centre for Drug Research, The Netherlands.
| | - Rob A Voskuyl
- Division of Pharmacology, Leiden Academic Centre for Drug Research, The Netherlands
| | - Elizabeth C de Lange
- Division of Pharmacology, Leiden Academic Centre for Drug Research, The Netherlands
| |
Collapse
|
19
|
Han H, Mann A, Ekstein D, Eyal S. Breaking Bad: the Structure and Function of the Blood-Brain Barrier in Epilepsy. AAPS JOURNAL 2017; 19:973-988. [DOI: 10.1208/s12248-017-0096-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/28/2017] [Indexed: 12/27/2022]
|
20
|
Verrotti A, Piccorossi A, Lasorella S, Tambucci R. Pharmacotherapy in pediatric epilepsy: rational drug and dose selection. Expert Opin Drug Metab Toxicol 2016; 12:1393-1396. [DOI: 10.1080/17425255.2016.1246536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alberto Verrotti
- Department of Pediatrics, University of L’Aquila, San Salvatore Hospital, L’Aquila, Italy
| | - Alessandra Piccorossi
- Department of Pediatrics, University of L’Aquila, San Salvatore Hospital, L’Aquila, Italy
| | - Stefania Lasorella
- Department of Pediatrics, University of L’Aquila, San Salvatore Hospital, L’Aquila, Italy
| | - Renato Tambucci
- Department of Pediatrics, University of L’Aquila, San Salvatore Hospital, L’Aquila, Italy
| |
Collapse
|
21
|
Mann A, Han H, Eyal S. Imaging transporters: Transforming diagnostic and therapeutic development. Clin Pharmacol Ther 2016; 100:479-488. [PMID: 27327047 DOI: 10.1002/cpt.416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 01/22/2023]
Abstract
Molecular imaging allows noninvasive assessment of drug distribution across pharmacological barriers. Thus, it plays an increasingly important role in efforts to understand the interactions of molecules with membrane transporters during drug development and in clinical pharmacology. We describe established and emerging imaging modalities utilized for studying transporter expression and function. We further present examples of how molecular imaging could provide insights into the contribution of transporters to drug disposition and effects.
Collapse
Affiliation(s)
- A Mann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - H Han
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - S Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel. .,The David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel.
| |
Collapse
|