1
|
Kistol D, Tsygankova P, Bostanova F, Orlova M, Zakharova E. New Case of Spinocerebellar Ataxia, Autosomal Recessive 4, Due to VPS13D Variants. Int J Mol Sci 2024; 25:5127. [PMID: 38791166 PMCID: PMC11121673 DOI: 10.3390/ijms25105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Movement disorders such as bradykinesia, tremor, dystonia, chorea, and myoclonus most often arise in several neurodegenerative diseases with basal ganglia and white matter involvement. While the pathophysiology of these disorders remains incompletely understood, dysfunction of the basal ganglia and related brain regions is often implicated. The VPS13D gene, part of the VPS13 family, has emerged as a crucial player in neurological pathology, implicated in diverse phenotypes ranging from movement disorders to Leigh syndrome. We present a clinical case of VPS13D-associated disease with two variants in the VPS13D gene in an adult female. This case contributes to our evolving understanding of VPS13D-related diseases and underscores the importance of genetic screening in diagnosing and managing such conditions.
Collapse
Affiliation(s)
- Denis Kistol
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | | | | | | | | |
Collapse
|
2
|
Hemiballism and chorea with acute/subacute onset: a retrospective series. Acta Neurol Belg 2023; 123:591-597. [PMID: 36749467 PMCID: PMC9902828 DOI: 10.1007/s13760-023-02206-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Chorea is a hyperkinetic movement disorder with sudden, irregular, random, dance-like involuntary movements, and ballism is usually one-sided, high-amplitude movements at the proximal of the extremities. In the etiology of acute chorea/hemiballismus, it is necessary to distinguish drugs first and then focus on metabolic causes. The most important etiological causes that may provoke acute/subacute onset chorea/hemiballismus are hypo-hyperglycemia and electrolyte disorders. In this study, we aim to present 19 patients who were admitted to our clinic with movement disorder with acute/subacute onset and diagnosed with chorea/hemiballismus. METHODS The study was completed with 19 patients. Routine biochemistry, HbA1c level, hemogram, sedimentation, CRP, hepatitis panels, detailed infective parameters, HIV, vitamin B12 level, folate levels, and thyroid function tests were studied. All patients underwent neuro-imaging. RESULTS 16(84.2%) were female and 3(15.8%) were male. The lowest age of the patients was 48 years, the highest age was 89 years, and the mean age was 72.21 years. Thirteen (68.42%) patients had a diagnosis of diabetes mellitus in their history. The blood glucose levels of these patients at the time of admission: the lowest was 99 mg/dl and the highest was 1200 mg/dl. HbA1c values of 11(84.61%) of the 13 patients were also found elevated. Thirteen (68.4%) patients had hemiballismus, 4(21.1%) patients had bilateral choreoathetosis in the four extremities, and 2(10.2%) patients had ballism limited to one upper extremity. CONCLUSIONS Chorea/hemiballismus is a movement disorder that is rare and can occur due to a wide range of etiologies. The most common metabolic cause is NKHHS.
Collapse
|
3
|
Méneret A, Garcin B, Frismand S, Lannuzel A, Mariani LL, Roze E. Treatable Hyperkinetic Movement Disorders Not to Be Missed. Front Neurol 2021; 12:659805. [PMID: 34925200 PMCID: PMC8671871 DOI: 10.3389/fneur.2021.659805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperkinetic movement disorders are characterized by the presence of abnormal involuntary movements, comprising most notably dystonia, chorea, myoclonus, and tremor. Possible causes are numerous, including autoimmune disorders, infections of the central nervous system, metabolic disturbances, genetic diseases, drug-related causes and functional disorders, making the diagnostic process difficult for clinicians. Some diagnoses may be delayed without serious consequences, but diagnosis delays may prove detrimental in treatable disorders, ranging from functional disabilities, as in dopa-responsive dystonia, to death, as in Whipple's disease. In this review, we focus on treatable disorders that may present with prominent hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Aurélie Méneret
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Béatrice Garcin
- Service de Neurologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Solène Frismand
- Département de Neurologie, Hôpital universitaire de Nancy, Nancy, France
| | - Annie Lannuzel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Département de Neurologie, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-à-Pitre, France
- Faculté de Médecine, Université Des Antilles, Pointe-à-Pitre, France
- Centre D'investigation Clinique Antilles Guyane, Pointe-à-Pitre, France
| | - Louise-Laure Mariani
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Emmanuel Roze
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| |
Collapse
|
4
|
Bologna M, Truong D, Jankovic J. The etiopathogenetic and pathophysiological spectrum of parkinsonism. J Neurol Sci 2021; 433:120012. [PMID: 34642022 DOI: 10.1016/j.jns.2021.120012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/05/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Parkinsonism is a syndrome characterized by bradykinesia, rigidity, and tremor. Parkinsonism is a common manifestation of Parkinson's disease and other neurodegenerative diseases referred to as atypical parkinsonism. However, a growing body of clinical and scientific evidence indicates that parkinsonism may be part of the phenomenological spectrum of various neurological conditions to a greater degree than expected by chance. These include neurodegenerative conditions not traditionally classified as movement disorders, e.g., dementia and motor neuron diseases. In addition, parkinsonism may characterize a wide range of central nervous system diseases, e.g., autoimmune diseases, infectious diseases, cerebrospinal fluid disorders (e.g., normal pressure hydrocephalus), cerebrovascular diseases, and other conditions. Several pathophysiological mechanisms have been identified in Parkinson's disease and atypical parkinsonism. Conversely, it is not entirely clear to what extent the same mechanisms and key brain areas are also involved in parkinsonism due to a broader etiopathogenetic spectrum. We aimed to provide a comprehensive and up-to-date overview of the various etiopathogenetic and pathophysiological mechanisms of parkinsonism in a wide spectrum of neurological conditions, with a particular focus on the role of the basal ganglia involvement. The paper also highlights potential implications in the diagnostic approach and therapeutic management of patients. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Daniel Truong
- Truong Neuroscience Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA; Department of Neurosciences, UC Riverside, Riverside, CA, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Karuppan MKM, Devadoss D, Nair M, Chand HS, Lakshmana MK. SARS-CoV-2 Infection in the Central and Peripheral Nervous System-Associated Morbidities and Their Potential Mechanism. Mol Neurobiol 2021; 58:2465-2480. [PMID: 33439437 PMCID: PMC7805264 DOI: 10.1007/s12035-020-02245-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
The recent outbreak of SARS-CoV-2 infections that causes coronavirus-induced disease of 2019 (COVID-19) is the defining and unprecedented global health crisis of our time in both the scale and magnitude. Although the respiratory tract is the primary target of SARS-CoV-2, accumulating evidence suggests that the virus may also invade both the central nervous system (CNS) and the peripheral nervous system (PNS) leading to numerous neurological issues including some serious complications such as seizures, encephalitis, and loss of consciousness. Here, we present a comprehensive review of the currently known role of SARS-CoV-2 and identify all the neurological problems reported among the COVID-19 case reports throughout the world. The virus might gain entry into the CNS either through the trans-synaptic route via the olfactory neurons or through the damaged endothelium in the brain microvasculature using the ACE2 receptor potentiated by neuropilin-1 (NRP-1). The most critical of all symptoms appear to be the spontaneous loss of breathing in some COVID-19 patients. This might be indicative of a dysfunction within the cardiopulmonary regulatory centers in the brainstem. These pioneering studies, thus, lay a strong foundation for more in-depth basic and clinical research required to confirm the role of SARS-CoV-2 infection in neurodegeneration of critical brain regulatory centers.
Collapse
Affiliation(s)
- Mohan Kumar Muthu Karuppan
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Madepalli K Lakshmana
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
6
|
Biotechnological Application of Animal Toxins as Potential Treatments for Diabetes and Obesity. CURRENT TROPICAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40475-021-00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Schneider V, Ferrari-Henquinet M, Diallo AO, Chelly J, Anheim M, Tranchant C. Paroxysmal dyskinesia: When a PRRT2 variant hides a curable cause. Rev Neurol (Paris) 2021; 177:707-708. [PMID: 33455829 DOI: 10.1016/j.neurol.2020.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Affiliation(s)
- V Schneider
- Service de neurologie, CHU de Dijon, 14, rue Paul-Gaffarel, 21000 Dijon, France.
| | | | - A O Diallo
- Service de médecine interne, CHU de Strasbourg - hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg, France.
| | - J Chelly
- Laboratoire de diagnostic génétique, CHU de Strasbourg - hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France.
| | - M Anheim
- Service de neurologie, hôpitaux universitaires de Strasbourg, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/université de Strasbourg, fédération de médecine translationnelle de Strasbourg (FMTS), université de Strasbourg, Strasbourg, France.
| | - C Tranchant
- Service de neurologie, hôpitaux universitaires de Strasbourg, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/université de Strasbourg, fédération de médecine translationnelle de Strasbourg (FMTS), université de Strasbourg, Strasbourg, France.
| |
Collapse
|