1
|
Stehr AM, Fischer J, Mirza-Schreiber N, Bernardi K, Porrmann J, Harrer P, Kaiser F, Jamra RA, Winkelmann J, Jech R, Koy A, Oexle K, Zech M. Variable expressivity of KMT2B variants at codon 2565 in patients with dystonia and developmental disorders. Parkinsonism Relat Disord 2025; 133:107319. [PMID: 39933316 DOI: 10.1016/j.parkreldis.2025.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Variable expressivity is an emerging characteristic of KMT2B-related dystonia. However, it remains poorly understood whether variants reoccurring at specific sites of lysine-specific methlytransferase-2B (KMT2B) can drive intra- and interfamilial clinical heterogeneity. Our goal was to ascertain independent families with variants affecting residue Arg2565 of KMT2B. METHODS Whole-exome/genome sequencing, multi-site recruitment, genotype-phenotype correlations, and DNA methylation episignature analysis were performed. RESULTS We report four individuals from two families harboring the variant c.7693C > G, p.Arg2565Gly. In an additional patient, a de-novo c.7693C > T, p.Arg2565Cys variant was identified. The observed phenotypic spectrum ranged from childhood-onset dystonia (N = 2) over unspecific intellectual disability syndromes (N = 2) to undiagnosed behavioral symptoms in adulthood (N = 1). Samples bearing p.Arg2565Gly had a KMT2B-typical episignature, although the effect on methylation was less pronounced than in carriers of loss-of-function KMT2B variants. CONCLUSIONS We established the existence of a KMT2B missense-mutation hotspot associated with varying degrees of disease severity and expression, providing information for patient counseling and elucidation of pathomechanisms.
Collapse
Affiliation(s)
- Antonia M Stehr
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Katerina Bernardi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Joseph Porrmann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany
| | - Philip Harrer
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Frank Kaiser
- Institute of Human Genetics, Universitätsklinikum Essen, Essen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; DZPG, Deutsches Zentrum für Psychische Gesundheit, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Konrad Oexle
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany.
| |
Collapse
|
2
|
Indelicato E, Zech M, Eberl A, Boesch S. Insights on the Shared Genetic Landscape of Neurodevelopmental and Movement Disorders. Curr Neurol Neurosci Rep 2025; 25:24. [PMID: 40095113 PMCID: PMC11914236 DOI: 10.1007/s11910-025-01414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW Large-scale studies using hypothesis-free exome sequencing have revealed the strong heritability of neurodevelopmental disorders (NDDs) and their molecular overlap with later-onset, progressive, movement disorders phenotypes. In this review, we focus on the shared genetic landscape of NDDs and movement disorders. RECENT FINDINGS Cumulative research has shown that up to 30% of cases labelled as "cerebral palsy" have a monogenic etiology. Causal pathogenic variants are particularly enriched in genes previously associated with adult-onset progressive movement disorders, such as spastic paraplegias, dystonias, and cerebellar ataxias. Biological pathways that have emerged as common culprits are transcriptional regulation, neuritogenesis, and synaptic function. Defects in the same genes can cause neurological dysfunction both during early development and later in life. We highlight the implications of the increasing number of NDD gene etiologies for genetic testing in movement disorders. Finally, we discuss gaps and opportunities in the translation of this knowledge to the bedside.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Anna Eberl
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| |
Collapse
|
3
|
Kahwagi GJ, Hubsch C, Burglen L, Brandel JP, Sangla S, Desjardins C. Bi-pallidal deep brain stimulation as an effective therapy in atypical two-stage evolution adult-onset KMT2B-related dystonia. Clin Park Relat Disord 2025; 12:100314. [PMID: 40124979 PMCID: PMC11930154 DOI: 10.1016/j.prdoa.2025.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
We report an adult-onset KMT2B-related dystonia with a two-stage evolution: focal cervical onset followed by rapid generalization. Whole genome sequencing identified a likely pathogenic KMT2B variant. Bi-pallidal deep brain stimulation led to an 83% motor improvement, highlighting its therapeutic potential in late-onset atypical two-stage evolution KMT2B-dystonia.
Collapse
Affiliation(s)
- Georges-Junior Kahwagi
- Department of Neurology, Movement Disorders Unit, Hospital Foundation Adolphe de Rothschild, Paris, France
| | - Cécile Hubsch
- Department of Neurology, Movement Disorders Unit, Hospital Foundation Adolphe de Rothschild, Paris, France
| | - Lydie Burglen
- Cerebellar Malformations and Congenital Diseases Reference Center and Neurogenetics Lab, Department of Genetics, Armand Trousseau Hospital, AP-HP. Sorbonne Université, Paris, France
| | - Jean-Philippe Brandel
- Department of Neurology, Movement Disorders Unit, Hospital Foundation Adolphe de Rothschild, Paris, France
| | - Sophie Sangla
- Department of Neurology, Movement Disorders Unit, Hospital Foundation Adolphe de Rothschild, Paris, France
| | - Clément Desjardins
- Department of Neurology, Movement Disorders Unit, Hospital Foundation Adolphe de Rothschild, Paris, France
| |
Collapse
|
4
|
Makharia A, Garg D, Agarwal A, Radhakrishnan DM, Pandit AK, Srivastava AK. From writer's cramp to blepharoclonus: An atypical journey with a novel KMT2B variant. Parkinsonism Relat Disord 2024; 126:107076. [PMID: 39068760 DOI: 10.1016/j.parkreldis.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Archita Makharia
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Ayush Agarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Awadh Kishor Pandit
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
5
|
Wu R, Chen WT, Dou WK, Zhou HM, Shi M. Whole-exome sequencing in a cohort of Chinese patients with isolated cervical dystonia. Heliyon 2024; 10:e31885. [PMID: 38845987 PMCID: PMC11153233 DOI: 10.1016/j.heliyon.2024.e31885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Dystonia is a kind of movement disorder but its pathophysiological mechanisms are still largely unknown. Recent evidence reveals that genetical defects may play important roles in the pathogenesis of dystonia. Objectives and Methods -To explore possible causative genes in Chinese dystonia patients, DNA samples from 42 sporadic patients with isolated cervical dystonia were subjected to whole-exome sequencing. Rare deleterious variants associated with dystonia phenotype were screened out and then classified according to the American College of Medical Genetics and Genomics (ACMG) criteria. Phenolyzer was used for analyzing the most probable candidates correlated with dystonia phenotype, and SWISS-MODEL server was for predicting the 3D structures of variant proteins. Results Among 42 patients (17 male and 25 female) recruited, a total of 36 potentially deleterious variants of dystonia-associated genes were found in 30 patients (30/42, 71.4 %). Four disease-causing variants including a pathogenic variant in PLA2G6 (c.797G > C) and three likely pathogenic variants in DCTN1 (c.73C > T), SPR (c.1A > C) and TH (c.56C > G) were found in four patients separately. Other 32 variants were classified as uncertain significance in 26 patients. Phenolyzer prioritized genes TH, PLA2G6 and DCTN1 as the most probable candidates correlated with dystonia phenotype. Although 3D prediction of DCTN1 and PLA2G6 variant proteins detected no obvious structural alterations, the mutation in DCTN1 (c.73C > T:p.Arg25Trp) was closely adjacent to its key functional domain. Conclusion Our whole-exome sequencing results identified a novel variant in DCTN1 in sporadic Chinese patients with isolated cervical dystonia, which however, needs our further study on its exact role in dystonia pathogenesis.
Collapse
Affiliation(s)
- Rui Wu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
- Department of Neurology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi Province, China
| | - Wen-Tian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wei-Kang Dou
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Hui-Min Zhou
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| |
Collapse
|
6
|
Bouhamdani N, McConkey H, Leblanc A, Sadikovic B, Amor MB. Diagnostic utility of DNA methylation episignature analysis for early diagnosis of KMT2B-related disorders: case report. Front Genet 2024; 15:1346044. [PMID: 38425714 PMCID: PMC10902455 DOI: 10.3389/fgene.2024.1346044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The lysine methyltransferase 2B (KMT2B) gene product is important for epigenetic modifications associated with active gene transcription in normal development and in maintaining proper neural function. Pathogenic variants in KMT2B have been associated with childhood-onset Dystonia-28 and Intellectual developmental disorder, autosomal dominant 68 (MRD 68) for cases of neurodevelopmental impairment without dystonia (DYT28; OMIM 617284 and MRD68; OMIM 619934, respectively). Since its first description in 2016, approximately one hundred KMT2B genetic variants have been reported with heterogeneous phenotypes, including atypical patterns of dystonia evolution and non-dystonic neurodevelopmental phenotypes. KMT2B-related disorders share many overlapping phenotypic characteristics with other neurodevelopmental disorders and delayed dystonia, that can appear later in childhood, often delaying clinical diagnosis. Furthermore, conventional genetic testing may not always provide actionable information (e.g., gene panel selection based on early clinical presentation or variants of uncertain significance), which prevents patients and families from obtaining early access to treatments and support. Herein, we describe the early diagnosis of KMT2B-related neurodevelopmental disorder by DNA methylation episignature testing in a 4-year-old patient without features of dystonia at diagnosis, which is reported to develop in more than 80% of KMT2B-related disorder cases. The proband, a 4-year-old female of Jewish-Israeli descent, presented with speech delay, microcephaly, poor weight gain, attention-deficit and hyperactivity disorder, dysmorphism, intellectual disabilities and joint hyperlaxity, but presented no signs of dystonia at initial evaluation. Episignature screening in this pre-symptomatic patient enabled accurate genetic diagnosis and timely and actionable intervention earlier in the natural history of Childhood-onset Dystonia-28.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Amélie Leblanc
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Mouna Ben Amor
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
7
|
Agarwal A, Garg D, Rajan R, Garg A, Srivastava AK. THAP1 Associated Dystonia: An NBIA Mimic. Mov Disord Clin Pract 2023; 10:1815-1817. [PMID: 38094642 PMCID: PMC10715336 DOI: 10.1002/mdc3.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2024] Open
Affiliation(s)
- Ayush Agarwal
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Divyani Garg
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Roopa Rajan
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Ajay Garg
- Department of Neuroradiology and Interventional NeuroimagingAll India Institute of Medical SciencesNew DelhiIndia
| | | |
Collapse
|
8
|
Sugeno N, Hasegawa T, Haginoya K, Kubota T, Ikeda K, Nakamura T, Ishiyama S, Sato K, Yoshida S, Koshimizu E, Uematsu M, Miyatake S, Matsumoto N, Aoki M. Detection of Modified Histones from Oral Mucosa of a Patient with DYT- KMT2B Dystonia. Mol Syndromol 2023; 14:461-468. [PMID: 38108041 PMCID: PMC10722472 DOI: 10.1159/000530625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction DYT-KMT2B is a rare childhood-onset, hereditary movement disorder typically characterized by lower-limb dystonia and subsequently spreads into the craniocervical and laryngeal muscles. Recently, KMT2B-encoding lysine (K)-specific histone methyltransferase 2B was identified as the causative gene for DYT-KMT2B, also known as DYT28. In addition to the fact that many physicians do not have sufficient experience or knowledge of hereditary dystonia, the clinical features of DYT-KMT2B overlap with those of other hereditary dystonia, and limited clinical biomarkers make the diagnosis difficult. Methods Histone proteins were purified from the oral mucosa of patients with de novo KMT2B mutation causing premature stop codon, and then trimethylated fourth lysine residue of histone H3 (H3K4me3) which was catalyzed by KMT2B was analyzed by immunoblotting with specific antibody. We further analyzed the significance of H3K4me3 in patients with DYT-KMT2B using publicly available datasets. Results H3K4me3 histone mark was markedly lower in the patient than in the control group. Additionally, a reanalysis of publicly available datasets concerning DNA methylation also demonstrated that KMT2B remained inactive in DYT-KMT2B. Discussion Although only one case was studied due to the rarity of the disease, the reduction of H3K4me3 in the patient's biological sample supports the dysfunction of KMT2B in DYT-KMT2B. Together with informatics approaches, our results suggest that KMT2B haploinsufficiency contributes to the DYT-KMT2B pathogenic process.
Collapse
Affiliation(s)
- Naoto Sugeno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Haginoya
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Department of Pediatric Neurology, Miyagi Children’s Hospital, Sendai, Japan
| | - Takafumi Kubota
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Ishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Sato
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Ha TT, Burgess R, Newman M, Moey C, Mandelstam SA, Gardner AE, Ivancevic AM, Pham D, Kumar R, Smith N, Patel C, Malone S, Ryan MM, Calvert S, van Eyk CL, Lardelli M, Berkovic SF, Leventer RJ, Richards LJ, Scheffer IE, Gecz J, Corbett MA. Aicardi Syndrome Is a Genetically Heterogeneous Disorder. Genes (Basel) 2023; 14:1565. [PMID: 37628618 PMCID: PMC10454071 DOI: 10.3390/genes14081565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.
Collapse
Affiliation(s)
- Thuong T. Ha
- School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Rosemary Burgess
- Epilepsy Research Centre, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia (S.F.B.); (I.E.S.)
| | - Morgan Newman
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA 5005, Australia (M.L.)
| | - Ching Moey
- The Queensland Brain Institute, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| | - Simone A. Mandelstam
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Imaging, The Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Alison E. Gardner
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| | - Atma M. Ivancevic
- Department of Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Duyen Pham
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| | - Raman Kumar
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| | - Nicholas Smith
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
- Department of Neurology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4029, Australia
| | - Stephen Malone
- Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
| | - Monique M. Ryan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Sophie Calvert
- Department of Neurosciences, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia;
| | - Clare L. van Eyk
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| | - Michael Lardelli
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA 5005, Australia (M.L.)
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia (S.F.B.); (I.E.S.)
| | - Richard J. Leventer
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Linda J. Richards
- The Queensland Brain Institute, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
- Department of Neuroscience, School of Medicine, Washington University, St Louis, MO 63110, USA
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia (S.F.B.); (I.E.S.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Jozef Gecz
- School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mark A. Corbett
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| |
Collapse
|
10
|
Di Fonzo A, Jinnah HA, Zech M. Dystonia genes and their biological pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:61-103. [PMID: 37482402 DOI: 10.1016/bs.irn.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Akter H, Rahman MM, Sarker S, Basiruzzaman M, Islam MM, Rahaman MA, Rahaman MA, Eshaque TB, Dity NJ, Sarker S, Amin MR, Hossain MM, Lopa M, Jahan N, Hossain S, Islam A, Mondol A, Faruk MO, Saha N, Kundu GK, Kanta SI, Kazal RK, Fatema K, Rahman MA, Hasan M, Hossain Mollah MA, Hosen MI, Karuvantevida N, Begum G, Zehra B, Nassir N, Nabi AHMN, Uddin KMF, Uddin M. Construction of copy number variation landscape and characterization of associated genes in a Bangladeshi cohort of neurodevelopmental disorders. Front Genet 2023; 14:955631. [PMID: 36959829 PMCID: PMC10028086 DOI: 10.3389/fgene.2023.955631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Copy number variations (CNVs) play a critical role in the pathogenesis of neurodevelopmental disorders (NDD) among children. In this study, we aim to identify clinically relevant CNVs, genes and their phenotypic characteristics in an ethnically underrepresented homogenous population of Bangladesh. Methods: We have conducted chromosomal microarray analysis (CMA) for 212 NDD patients with male to female ratio of 2.2:1.0 to identify rare CNVs. To identify candidate genes within the rare CNVs, gene constraint metrics [i.e., "Critical-Exon Genes (CEGs)"] were applied to the population data. Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) was followed in a subset of 95 NDD patients to assess the severity of autism and all statistical tests were performed using the R package. Results: Of all the samples assayed, 12.26% (26/212) and 57.08% (121/212) patients carried pathogenic and variant of uncertain significance (VOUS) CNVs, respectively. While 2.83% (6/212) patients' pathogenic CNVs were found to be located in the subtelomeric regions. Further burden test identified females are significant carriers of pathogenic CNVs compared to males (OR = 4.2; p = 0.0007). We have observed an increased number of Loss of heterozygosity (LOH) within cases with 23.85% (26/109) consanguineous parents. Our analyses on imprinting genes show, 36 LOH variants disrupting 69 unique imprinted genes and classified these variants as VOUS. ADOS-2 subset shows severe social communication deficit (p = 0.014) and overall ASD symptoms severity (p = 0.026) among the patients carrying duplication CNV compared to the CNV negative group. Candidate gene analysis identified 153 unique CEGs in pathogenic CNVs and 31 in VOUS. Of the unique genes, 18 genes were found to be in smaller (<1 MB) focal CNVs in our NDD cohort and we identified PSMC3 gene as a strong candidate gene for Autism Spectrum Disorder (ASD). Moreover, we hypothesized that KMT2B gene duplication might be associated with intellectual disability. Conclusion: Our results show the utility of CMA for precise genetic diagnosis and its integration into the diagnosis, therapy and management of NDD patients.
Collapse
Affiliation(s)
- Hosneara Akter
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Mizanur Rahman
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shaoli Sarker
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Mohammed Basiruzzaman
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Mazharul Islam
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Atikur Rahaman
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | | | | | - Nushrat Jahan Dity
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shouvik Sarker
- Institute of Plant Genetics, Department of Plant Biotechnology, Leibniz University Hannover, Hanover, Germany
| | - Md. Robed Amin
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Mohammad Monir Hossain
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Maksuda Lopa
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Nargis Jahan
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shafaat Hossain
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Amirul Islam
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Cellular Intelligence Lab, GenomeArc Inc, Toronto, ON, Canada
| | | | - Md Omar Faruk
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Narayan Saha
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Gopen kumar Kundu
- Department of Child Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shayla Imam Kanta
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Rezaul Karim Kazal
- Department of Obstetrics and Gynaecology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Kanij Fatema
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, Wilkes University, Pennsylvania, PA, United States
| | - Maruf Hasan
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | | | - Md. Ismail Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ghausia Begum
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - K. M. Furkan Uddin
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Cellular Intelligence (Ci) Lab, GenomeArc Inc, Toronto, ON, Canada
| |
Collapse
|
12
|
Chudy D, Raguž M, Vuletić V, Rački V, Papić E, Nenadić Baranašić N, Barišić N. GPi DBS treatment outcome in children with monogenic dystonia: a case series and review of the literature. Front Neurol 2023; 14:1151900. [PMID: 37168666 PMCID: PMC10166204 DOI: 10.3389/fneur.2023.1151900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Dystonia is the third most common pediatric movement disorder and is often difficult to treat. Deep brain stimulation (DBS) of the internal pallidum (GPi) has been demonstrated as a safe and effective treatment for genetic dystonia in adolescents and adults. The results of DBS in children are limited to individual cases or case series, although it has been proven to be an effective procedure in carefully selected pediatric cohorts. The aim of our study was to present the treatment outcome for 7- to 9-year-old pediatric patients with disabling monogenic isolated generalized DYT-THAP1 and DYT-KMT2B dystonia after bilateral GPi-DBS. Patients and results We present three boys aged <10 years; two siblings with disabling generalized DYT-THAP1 dystonia and a boy with monogenic-complex DYT-KMT2B. Dystonia onset occurred between the ages of 3 and 6. Significantly disabled children were mostly dependent on their parents. Pharmacotherapy was inefficient and patients underwent bilateral GPi-DBS. Clinical signs of dystonia improved significantly in the first month after the implantation and continued to maintain improved motor functions, which were found to have improved further at follow-up. These patients were ambulant without support and included in everyday activities. All patients had significantly lower Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) values, indicating >25% improvement over the first 15 months. However, there was a decline in speech and upper limb function, manifesting with bradylalia, bradykinesia, and dysphonia, which decreased after treatment with trihexyphenidyl. Conclusion Although reports of patients with monogenic dystonia, particularly DYT-THAP1, treated with DBS are still scarce, DBS should be considered as an efficient treatment approach in children with pharmacoresistent dystonia, especially with generalized monogenic dystonia and to prevent severe and disabling symptoms that reduce the quality of life, including emotional and social aspects. Patients require an individual approach and parents should be properly informed about expectations and possible outcomes, including relapses and impairments, in addition to DBS responsiveness and related improvements. Furthermore, early genetic diagnosis and the provision of appropriate treatments, including DBS, are mandatory for preventing severe neurologic impairments.
Collapse
Affiliation(s)
- Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
- *Correspondence: Marina Raguž
| | - Vladimira Vuletić
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eliša Papić
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Nataša Nenadić Baranašić
- Department of Pediatrics, University Hospital Centre, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nina Barišić
- Department of Pediatrics, University Hospital Centre, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Tereshko Y, Belgrado E, Lettieri C, Passon N, Damante G, Gigli GL, Valente M. Dystonic tremor and blepharospasm in a patient with deletion of 18q. Clin Neurol Neurosurg 2022; 224:107549. [PMID: 36502650 DOI: 10.1016/j.clineuro.2022.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
18q- Syndrome is a rare chromosomic syndrome where neurological involvement is scarcely described. Movement disorders are rare and only one case with dystonia was described. In our paper, we describe the second report of a patient with 18q- Syndrome, blepharospasm, and dystonic tremor of his right hand and hyperthyroidism instead of hypothyroidism.
Collapse
Affiliation(s)
- Yan Tereshko
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Enrico Belgrado
- Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Christian Lettieri
- Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Nadia Passon
- Institut of Medical Genetics, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Giuseppe Damante
- Institut of Medical Genetics, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
14
|
Hara K, Ouchi H, Hamanaka K, Miyatake S, Matsumoto N. [A case of generalized dystonia DYT28 with a novel de novo mutation in the KMT2B gene]. Rinsho Shinkeigaku 2022; 62:856-859. [PMID: 36288966 DOI: 10.5692/clinicalneurol.cn-001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The patient exhibited plantarflexion during walking at the age of five. He then developed writer's cramp at the age of six, dysphonia at 15 years, and action-induced dystonia with left knee elevation and trunk swinging when walking at 16 years, which subsequently spread to the right leg at 19 years. Levodopa therapy was ineffective for dystonia. Brain MRI showed no abnormalities. He was diagnosed with DYT28 after detecting a novel heterozygous mutation (c.433C>T, p.Arg145*) in the KMT2B gene using whole-exome sequencing at age 39. Furthermore, the patient's parents exhibited normal alleles, confirming the de novo status of KMT2B gene mutation. We should consider DYT28 in addition to DYT1 and DYT5 in patients who developed leg dystonia in childhood.
Collapse
Affiliation(s)
- Kenju Hara
- Department of Neurology, Akita Red Cross Hospital
| | - Haruka Ouchi
- Department of Neurology, Akita Red Cross Hospital
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
- Clinical Genetics Department, Yokohama City University Hospital
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| |
Collapse
|
15
|
Monfrini E, Ciolfi A, Cavallieri F, Ferilli M, Soliveri P, Pedace L, Erro R, Del Sorbo F, Valzania F, Fioravanti V, Cossu G, Pellegrini M, Salviati L, Invernizzi F, Oppo V, Murgia D, Giometto B, Picillo M, Garavaglia B, Morgante F, Tartaglia M, Carecchio M, Di Fonzo A. Adult-onset KMT2B-related dystonia. Brain Commun 2022; 4:fcac276. [PMID: 36483457 PMCID: PMC9724767 DOI: 10.1093/braincomms/fcac276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
KMT2B-related dystonia (DYT-KMT2B, also known as DYT28) is an autosomal dominant neurological disorder characterized by varying combinations of generalized dystonia, psychomotor developmental delay, mild-to-moderate intellectual disability and short stature. Disease onset occurs typically before 10 years of age. We report the clinical and genetic findings of a series of subjects affected by adult-onset dystonia, hearing loss or intellectual disability carrying rare heterozygous KMT2B variants. Twelve cases from five unrelated families carrying four rare KMT2B missense variants predicted to impact protein function are described. Seven affected subjects presented with adult-onset focal or segmental dystonia, three developed isolated progressive hearing loss, and one displayed intellectual disability and short stature. Genome-wide DNA methylation profiling allowed to discriminate these adult-onset dystonia cases from controls and early-onset DYT-KMT2B patients. These findings document the relevance of KMT2B variants as a potential genetic determinant of adult-onset dystonia and prompt to further characterize KMT2B carriers investigating non-dystonic features.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan 20122, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42124, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Reggio Emilia 42124, Italy
| | - Marco Ferilli
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Paola Soliveri
- Parkinson Institute, ASST G. Pini-CTO, Milan 20126, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan 20125, Italy
| | - Lucia Pedace
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00165, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, Neuroscience Section, University of Salerno, Baronissi, SA 84081, Italy
| | - Francesca Del Sorbo
- Parkinson Institute, ASST G. Pini-CTO, Milan 20126, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan 20125, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42124, Italy
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42124, Italy
| | - Giovanni Cossu
- Department of Neuroscience, Brotzu Hospital, Cagliari 09047, Italy
| | - Maria Pellegrini
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento 38122, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padova 35131, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano 20126, Italy
| | - Valentina Oppo
- Department of Neuroscience, Brotzu Hospital, Cagliari 09047, Italy
| | - Daniela Murgia
- Department of Neuroscience, Brotzu Hospital, Cagliari 09047, Italy
| | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento 38122, Italy
| | - Marina Picillo
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, Neuroscience Section, University of Salerno, Baronissi, SA 84081, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano 20126, Italy
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW170RE, United Kingdom
- Department of Experimental and Clinical Medicine, University of Messina, Messina 98122, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | | | - Alessio Di Fonzo
- Correspondence to: Alessio Di Fonzo, MD PhD Via Francesco Sforza 35, 20122, Milan, Italy E-mail:
| |
Collapse
|
16
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
17
|
Buzo EL, De la Casa-Fages B, Sánchez MG, Sánchez JP, Carballal CF, Vidorreta JG, Sierra OM, Chicote AC, Grandas F. Pallidal deep brain stimulation response in two siblings with atypical adult-onset dystonia related to a KMT2B variant. J Neurol Sci 2022; 438:120295. [DOI: 10.1016/j.jns.2022.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/05/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
|
18
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D Wilson
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth G Porter
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Rajan R, Garg K, Saini A, Radhakrishnan DM, Carecchio M, Bk B, Singh M, Srivastava AK. GPi-DBS for KMT2B-Associated Dystonia: Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2022; 9:31-37. [PMID: 35005062 DOI: 10.1002/mdc3.13374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 12/26/2022] Open
Abstract
Background Early evidence suggests good response to pallidal deep brain stimulation (DBS) in DYT-KMT2B. Objectives We aimed to conduct a systematic review and meta-analysis to assess outcomes and identify predictors of good outcome following GPi-DBS in DYT-KMT2B. Methods We searched MEDLINE, Cochrane and MDS-abstracts databases using the MeSH terms "KMT2B and DYT28". We included studies that reported objective outcomes following GPi-DBS in DYT-KMT2B. The BFMDRS-M (Burke-Fahn-Marsden Dystonia Rating Scale- Movement) total scores pre- and post-surgery were used to quantify outcomes. We calculated pooled effects using a random effects meta-analysis and used meta-regression to identify potential effect modifiers. Multiple linear regression using individual patient data was used to identify predictors of good outcome (>50% improvement from baseline on BFMDRS-M). Results Initial searches screened 132 abstracts of which 34 full-text articles were identified to be of potential interest. Ten studies reporting 42 individual patients, met the inclusion/exclusion criteria and were included in the final review. The mean age at onset was 6.4 ± 5.7 years and 40% were male. The median follow-up was 12 months (range: 1-264 months). GPi-DBS resulted in median BFMDRS-M improvement of 42.7% (range: -103.5% to 95.9%) postoperatively. Pooled proportion of patients experiencing clinical improvement >50% on BFMDRS-M was 41% (95% CI: 27%-57%). Male gender [β: 22.6, 95% CI: 8.0-37.3, P = 0.004), and higher pre-operative BFMDRS-M score [β: 0.62, 95% CI: 0.36-0.87, P < 0.001) were independently associated with better outcome. Conclusion KMT2B-associated dystonia responds effectively to pallidal stimulation. The outcome is better in males and those with more severe dystonia at baseline.
Collapse
Affiliation(s)
- Roopa Rajan
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Kanwaljeet Garg
- Department of Neurosurgery All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Arti Saini
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Divya M Radhakrishnan
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Miryam Carecchio
- Movement Disorders Unit, Department of Neuroscience University of Padua Padua Italy
| | - Binukumar Bk
- CSIR-Institute of Genomics and Integrative Biology New Delhi India
| | - Manmohan Singh
- Department of Neurosurgery All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Achal K Srivastava
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| |
Collapse
|
20
|
Thomsen M, Lohmann K. Importance of Methylation Pattern: Episignatures as a Novel Instrument in Diagnostics. Mov Disord 2021; 37:38. [PMID: 34817105 DOI: 10.1002/mds.28877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Aksoy A, Yayıcı Köken Ö, Ceylan AC, Toptaş Dedeoğlu Ö. KMT2B-Related Dystonia: Challenges in Diagnosis and Treatment. Mol Syndromol 2021; 13:159-164. [DOI: 10.1159/000518974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, we report the first known Turkish case of a novel nonsense mutation c.2453dupT (p.M818fs*28) in the <i>KMT2B</i> (NM_014727.2) gene diagnosed in a male patient with <i>KMT2B</i>-related dystonia (DYT-<i>KMT2B</i>, DYT-28, Dystonia*-28), which is a complex, childhood-onset, progressive, hereditary dystonia. The patient, who is followed up from 9 to 13 years of age, had dysmorphic features, developmental delay, short stature, and microcephaly, in addition to focal dystonia and hemichorea (in the right and left lower extremities). Generalized dystonia involving bulbar and cervical muscles, in addition to dystonic cramps, myoclonus, and hemiballismus, were also observed during the course of the follow-up. While he was able to perform basic functions like eating, climbing stairs, walking, and writing with the aid of levodopa and trihexyphenidyl treatment, his clinical status gradually deteriorated secondary to progressive generalized dystonia in the 4-year follow-up. Deep brain stimulation has been shown to be effective in several patients which could be the next preferred treatment for the patient.
Collapse
|
22
|
Ciolfi A, Foroutan A, Capuano A, Pedace L, Travaglini L, Pizzi S, Andreani M, Miele E, Invernizzi F, Reale C, Panteghini C, Iascone M, Niceta M, Gavrilova RH, Schultz-Rogers L, Agolini E, Bedeschi MF, Prontera P, Garibaldi M, Galosi S, Leuzzi V, Soliveri P, Olson RJ, Zorzi GS, Garavaglia BM, Tartaglia M, Sadikovic B. Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile. Clin Epigenetics 2021; 13:157. [PMID: 34380541 PMCID: PMC8359374 DOI: 10.1186/s13148-021-01145-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Dystonia is a clinically and genetically heterogeneous movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Heterozygous variants in lysine methyltransferase 2B (KMT2B), encoding a histone H3 methyltransferase, have been associated with a childhood-onset, progressive and complex form of dystonia (dystonia 28, DYT28). Since 2016, more than one hundred rare KMT2B variants have been reported, including frameshift, nonsense, splice site, missense and other in-frame changes, many having an uncertain clinical impact. Results We characterize the genome-wide peripheral blood DNA methylation profiles of a cohort of 18 patients with pathogenic and unclassified KMT2B variants. We resolve the “episignature” associated with KMT2B haploinsufficiency, proving that this approach is robust in diagnosing clinically unsolved cases, properly classifying them with respect to other partially overlapping dystonic phenotypes, other rare neurodevelopmental disorders and healthy controls. Notably, defective KMT2B function in DYT28 causes a non-random DNA hypermethylation across the genome, selectively involving promoters and other regulatory regions positively controlling gene expression. Conclusions We demonstrate a distinctive DNA hypermethylation pattern associated with DYT28, provide an epigenetic signature for this disorder enabling accurate diagnosis and reclassification of ambiguous genetic findings and suggest potential therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01145-y.
Collapse
Affiliation(s)
- Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Alessandro Capuano
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lorena Travaglini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marco Andreani
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Maria Iascone
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | | | - Emanuele Agolini
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Paolo Prontera
- Maternal-Infantile Department, University Hospital of Perugia, Perugia, Italy
| | - Matteo Garibaldi
- Department of Neuroscience, NESMOS, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Child Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Child Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Paola Soliveri
- Department of Neurology, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Giovanna S Zorzi
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Barbara M Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada. .,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada. .,Molecular Diagnostics Division, London Health Sciences Centre, London, Canada.
| |
Collapse
|
23
|
Soo AKS, Ferrini A, Kurian MA. Precision medicine for genetic childhood movement disorders. Dev Med Child Neurol 2021; 63:925-933. [PMID: 33763868 DOI: 10.1111/dmcn.14869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Increasingly effective targeted precision medicine is either already available or in development for a number of genetic childhood movement disorders. Patient-centred, personalized approaches include the repurposing of existing treatments for specific conditions and the development of novel therapies that target the underlying genetic defect or disease mechanism. In tandem with these scientific advances, close collaboration between clinicians, researchers, affected families, and stakeholders in the wider community will be key to successfully delivering such precision therapies to children with movement disorders. What this paper adds Precision medicine for genetic childhood movement disorders is developing rapidly. Accurate diagnosis, disease-specific outcome measures, and collaborative multidisciplinary work will accelerate the progress of such strategies.
Collapse
Affiliation(s)
- Audrey K S Soo
- Developmental Neurosciences, UCL Great Ormond Street Hospital, Zayed Centre for Research into Rare Disease in Children, London, UK.,Department of Paediatric Neurology, Great Ormond Street Hospital, London, UK
| | - Arianna Ferrini
- Developmental Neurosciences, UCL Great Ormond Street Hospital, Zayed Centre for Research into Rare Disease in Children, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street Hospital, Zayed Centre for Research into Rare Disease in Children, London, UK.,Department of Paediatric Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
24
|
Larsh T, Wu SW, Vadivelu S, Grant GA, O'Malley JA. Deep Brain Stimulation for Pediatric Dystonia. Semin Pediatr Neurol 2021; 38:100896. [PMID: 34183138 DOI: 10.1016/j.spen.2021.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Dystonia is one of the most common pediatric movement disorders and can have a profound impact on the lives of children and their caregivers. Response to pharmacologic treatment is often unsatisfactory. Deep brain stimulation (DBS) has emerged as a promising treatment option for children with medically refractory dystonia. In this review we highlight the relevant literature related to DBS for pediatric dystonia, with emphasis on the background, indications, prognostic factors, challenges, and future directions of pediatric DBS.
Collapse
Affiliation(s)
- Travis Larsh
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Sudhakar Vadivelu
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Gerald A Grant
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A O'Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA.
| |
Collapse
|
25
|
Abel M, Pfister R, Hussein I, Alsalloum F, Onyinzo C, Kappl S, Zech M, Demmel W, Staudt M, Kudernatsch M, Berweck S. Deep Brain Stimulation in KMT2B-Related Dystonia: Case Report and Review of the Literature With Special Emphasis on Dysarthria and Speech. Front Neurol 2021; 12:662910. [PMID: 34054706 PMCID: PMC8160374 DOI: 10.3389/fneur.2021.662910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: KMT2B-related dystonia is a progressive childhood-onset movement disorder, evolving from lower-limb focal dystonia into generalized dystonia. With increasing age, children frequently show prominent laryngeal or facial dystonia manifesting in dysarthria. Bilateral deep brain stimulation of the globus pallidus internus (GPi-DBS) is reported to be an efficient therapeutic option. Especially improvement of dystonia and regaining of independent mobility is commonly described, but detailed information about the impact of GPi-DBS on dysarthria and speech is scarce. Methods: We report the 16-months outcome after bilateral GPi-DBS in an 8-year-old child with KMT2B-related dystonia caused by a de-novo c.3043C>T (p.Arg1015*) non-sense variant with special emphasis on dysarthria and speech. We compare the outcome of our patient with 59 patients identified through a PubMed literature search. Results: A remarkable improvement of voice, articulation, respiration and prosodic characteristics was seen 16 months after GPi-DBS. The patients' speech intelligibility improved. His speech became much more comprehensible not only for his parents, but also for others. Furthermore, his vocabulary and the possibility to express his feelings and wants expanded considerably. Conclusion: A positive outcome of GPi-DBS on speech and dysarthria is rarely described in the literature. This might be due to disease progression, non-effectiveness of DBS or due to inadvertent spreading of the electrical current to the corticobulbar tract causing stimulation induced dysarthria. This highlights the importance of optimal lead placement, the possibility of horizontal steering of the electrical field by applying directional stimulation with segmented leads as well as the use of the lowest possible effective stimulation intensity.
Collapse
Affiliation(s)
- Maria Abel
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Robert Pfister
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Iman Hussein
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Fahd Alsalloum
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Christina Onyinzo
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Simon Kappl
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Michael Zech
- Helmholtz Centre Munich, Institute of Neurogenomics, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Walter Demmel
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Martin Staudt
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Manfred Kudernatsch
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany.,Research Institute Rehabilitation, Transition, Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Steffen Berweck
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany.,Dr. Von Hauner Children's Hospital, Ludwig-Maximilians- University Munich, Munich, Germany
| |
Collapse
|
26
|
Chen W, Fan H, Lu G. The Efficacy and Predictors of Using GPi-DBS to Treat Early-Onset Dystonia: An Individual Patient Analysis. Neural Plast 2021; 2021:9924639. [PMID: 34040641 PMCID: PMC8121596 DOI: 10.1155/2021/9924639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To compare the efficacy in patients with different genotypes, identify the potential predictive factors, and summarize the complications of globus pallidus deep brain stimulation (GPi-DBS) treating early-onset dystonia. METHODS Three electronic databases (PubMed, Embase, and Cochrane databases) were searched with no publication data restriction. The primary outcomes were the improvements in Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) score. Pearson's correlation coefficients and a metaregression analysis were used to identify the potential predictive factors. This article was registered in Prospero (CRD42020188527). RESULTS Fifty-four studies (231 patients) were included. Patients showed significant improvement rate in BFMDRS-M (60.6%, p < 0.001) and BFMDRS-D (57.5%, p < 0.001) scores after treatment with GPi-DBS. BFMDRS-M score improved greater in the DYT-1-positive (p = 0.001) and DYT-11-positive (p = 0.008) patients compared to DYT-6-positive patients. BFMDRS-D score improved greater in the DYT-11 (+) compared to DYT-6 (+) patients (p = 0.010). The relative change of BFMDRS-M (p = 0.002) and BFMDRS-D (p = 0.010) scores was negatively correlated with preoperative BFMDRS-M score. In the metaregression analysis, the best predictive model showed that preoperative BFMDRS-M, disease duration (p = 0.047), and the age at symptom onset (p = 0.027) were important. CONCLUSION Patients with early-onset dystonia have a significant effect after GPi-DBS treatment, and DYT-1 (+) and DYT-11 (+) patients are better candidates for GPi-DBS. Lower preoperative score, later age of onset, and an earlier age at surgery probably predict better clinical outcomes.
Collapse
Affiliation(s)
- Wenxiu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Houyou Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
27
|
Feuerstein JS, Taylor M, Kwak JJ, Berman BD. Parkinsonism and Positive Dopamine Transporter Imaging in a Patient with a Novel KMT2B Variant. Mov Disord Clin Pract 2021; 8:279-281. [PMID: 33816656 DOI: 10.1002/mdc3.13140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jeanne S Feuerstein
- Department of Neurology University of Colorado School of Medicine Aurora Colorado USA.,Department of Neurology Rocky Mountain Regional VA Medical Center Aurora Colorado USA
| | - Matthew Taylor
- Department of Medicine Adult Medical Genetics Program, University of Colorado School of Medicine Aurora Colorado USA
| | - Jennifer J Kwak
- Department of Radiology Nuclear Medicine Division, University of Colorado School of Medicine Aurora Colorado USA
| | - Brian D Berman
- Department of Neurology University of Colorado School of Medicine Aurora Colorado USA.,Department of Neurology Virginia Commonwealth University Richmond Virginia USA
| |
Collapse
|
28
|
Zorzi G, Danti FR, Reale C, Panteghini C, Invernizzi F, Moroni I, Garavaglia B, Nardocci N, Chiapparini L. THAP1 Dystonia with Globus Pallidus T2 Hypointensity: A Report of Two Cases. Mov Disord 2021; 36:1463-1464. [PMID: 33665847 DOI: 10.1002/mds.28555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/19/2023] Open
Affiliation(s)
- Giovanna Zorzi
- Department of Pediatric Neuroscience, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Federica R Danti
- Department of Pediatric Neuroscience, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Luisa Chiapparini
- Unit of Neuroradiology, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| |
Collapse
|
29
|
Keller Sarmiento IJ, Mencacci NE. Genetic Dystonias: Update on Classification and New Genetic Discoveries. Curr Neurol Neurosci Rep 2021; 21:8. [PMID: 33564903 DOI: 10.1007/s11910-021-01095-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the growing knowledge of biology underlying monogenic dystonias may influence and challenge current classification systems. RECENT FINDINGS Pathogenic variants in genes without previously confirmed roles in human disease have been identified in subjects affected by isolated or combined dystonia (KMT2B, VPS16, HPCA, KCTD17, DNAJC12, SLC18A2) and complex dystonia (SQSTM1, IRF2BPL, YY1, VPS41). Importantly, the classical distinction between isolated and combined dystonias has become harder to sustain since many genes have been shown to determine multiple dystonic presentations (e.g., ANO3, GNAL, ADCY5, and ATP1A3). In addition, a growing number of genes initially linked to other neurological phenotypes, such as developmental delay, epilepsy, or ataxia, are now recognized to cause prominent dystonia, occasionally in an isolated fashion (e.g., GNAO1, GNB1, SCN8A, RHOBTB2, and COQ8A). Finally, emerging analyses suggest biological convergence of genes linked to different dystonic phenotypes. While our knowledge on the genetic basis of monogenic dystonias has tremendously grown, their clinical boundaries are becoming increasingly blurry. The current phenotype-based classification may not reflect the molecular structure of the disease, urging the need for new systems based on shared biological pathways among dystonia-linked genes.
Collapse
Affiliation(s)
| | - Niccolò Emanuele Mencacci
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
30
|
Contemporary functional neuroanatomy and pathophysiology of dystonia. J Neural Transm (Vienna) 2021; 128:499-508. [PMID: 33486625 PMCID: PMC8099808 DOI: 10.1007/s00702-021-02299-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022]
Abstract
Dystonia is a disabling movement disorder characterized by abnormal postures or patterned and repetitive movements due to co-contraction of muscles in proximity to muscles desired for a certain movement. Important and well-established pathophysiological concepts are the impairment of sensorimotor integration, a loss of inhibitory control on several levels of the central nervous system and changes in synaptic plasticity. These mechanisms collectively contribute to an impairment of the gating function of the basal ganglia which results in an insufficient suppression of noisy activity and an excessive activation of cortical areas. In addition to this traditional view, a plethora of animal, genetic, imaging and electrophysiological studies highlight the role of the (1) cerebellum, (2) the cerebello-thalamic connection and (3) the functional interplay between basal ganglia and the cerebellum in the pathophysiology of dystonia. Another emerging topic is the better understanding of the microarchitecture of the striatum and its implications for dystonia. The striosomes are of particular interest as they likely control the dopamine release via inhibitory striato-nigral projections. Striosomal dysfunction has been implicated in hyperkinetic movement disorders including dystonia. This review will provide a comprehensive overview about the current understanding of the functional neuroanatomy and pathophysiology of dystonia and aims to move the traditional view of a ‘basal ganglia disorder’ to a network perspective with a dynamic interplay between cortex, basal ganglia, thalamus, brainstem and cerebellum.
Collapse
|
31
|
Marogianni C, Georgouli D, Dadouli K, Ntellas P, Rikos D, Hadjigeorgiou GM, Spanaki C, Xiromerisiou G. Identification of a novel de novo KMT2B variant in a Greek dystonia patient via exome sequencing genotype-phenotype correlations of all published cases. Mol Biol Rep 2020; 48:371-379. [PMID: 33300088 DOI: 10.1007/s11033-020-06057-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 01/02/2023]
Abstract
Mutations in Lysine-Specific Histone Methyltransferase 2B gene (KMT2B) have been reported to be associated with isolated and complex early-onset generalized dystonia. We describe clinico-genetic features on a Greek patient with a novel de novo variant and demonstrate the phenotypic spectrum of KMT2B variants. We performed whole exome sequencing (WES), in a Greek patient with sporadic generalized dystonia. Additionally, we performed a systematic review of all published cases with KMT2B variants. The patient presented with isolated and mild generalized dystonia. We identified a novel splice site variant that was confirmed by Sanger sequencing and was not found in parents. This is the first reported KMT2B variant, in the Greek population. This case report further highlights the growing trend of identifying genetic diseases previously restricted to few cases in many different ethnic groups worldwide via exome sequencing. In the systematic review, we evaluated the mutation pathogenicity in all previously reported cases to investigate possible phenotype-genotype correlations. Greater mutation numbers in different populations will be important and mutation-specific functional studies will be essential to identify the pathogenicity of the various KMT2B variants.
Collapse
Affiliation(s)
- Chrysoula Marogianni
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Despoina Georgouli
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Katerina Dadouli
- Faculty of Medicine, Department of Hygiene and Epidemiology, University of Thessaly, Larissa, Greece
| | - Panagiotis Ntellas
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | - Dimitrios Rikos
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece.,Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Cleanthi Spanaki
- Department of Neurology, Medical School, University of Crete, Heraklion, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece.
| |
Collapse
|
32
|
Winslow N, Maldonado A, Zayas-Rodriguez L, Lamichhane D. Adult-Onset KMT2B-Related Dystonia Responsive to Deep Brain Stimulation. Mov Disord Clin Pract 2020; 7:992-993. [PMID: 33163573 DOI: 10.1002/mdc3.13093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Nolan Winslow
- Department of Neurosurgery Saint Francis Medical Center Peoria Illinois USA
| | - Andres Maldonado
- Department of Neurosurgery Saint Francis Medical Center Peoria Illinois USA
| | | | | |
Collapse
|
33
|
Li Y, Zhao L, Tian X, Peng C, Gong F, Chen Y. Crystal Structure of MLL2 Complex Guides the Identification of a Methylation Site on P53 Catalyzed by KMT2 Family Methyltransferases. Structure 2020; 28:1141-1148.e4. [DOI: 10.1016/j.str.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023]
|
34
|
Horisawa S, Azuma K, Akagawa H, Nonaka T, Kawamata T, Taira T. Radiofrequency ablation for DYT-28 dystonia: short term follow-up of three adult cases. Ann Clin Transl Neurol 2020; 7:2047-2051. [PMID: 32886413 PMCID: PMC7545596 DOI: 10.1002/acn3.51170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Mutations in the lysine methyltransferase 2B (KMT2B) gene have recently been reported to be associated with childhood‐onset generalized dystonia. There have been no studies investigating ablative treatments for the management of this disorder. Three patients underwent either a staged unilateral pallidotomy and contralateral pallidothalamic tractotomy (19‐year‐old man, 2‐year follow‐up), a unilateral pallidothalamic tractotomy (34‐year‐old man, 6‐month follow‐up) or a simultaneous unilateral pallidothalamic tractotomy and ventro‐oral thalamotomy (29‐year‐old man, 6‐month follow‐up). The average total patient score on the Burke‐Fahn‐Marsden Dystonia Rating Scale‐Movement Scale improved from 39.5 to 13.2 (66.6%) after the procedures. No significant complications were identified. Ablative treatments appear to be a promising alternative surgical option for generalized dystonia with KMT2B mutation.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenkou Azuma
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Taku Nonaka
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
35
|
Giri S, Ghosh A, Roy S, Sankhla CS, Das SK, Ray K, Ray J. Association of TOR1A and GCH1 Polymorphisms with Isolated Dystonia in India. J Mol Neurosci 2020; 71:325-337. [PMID: 32662044 DOI: 10.1007/s12031-020-01653-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
Isolated dystonia is a common movement disorder often caused by genetic mutations, although it is predominantly sporadic in nature. Common variants of dystonia-related genes were reported to be risk factors for idiopathic isolated dystonia. In this study, we aimed to analyse the roles of previously reported GTP cyclohydrolase (GCH1) and Torsin family 1 member A (TOR1A) polymorphisms in an Indian isolated dystonia case-control group. A total of 292 sporadic isolated dystonia patients and 316 control individuals were genotyped for single-nucleotide polymorphisms (SNPs) of GCH1 (rs3759664:G > A, rs12147422:A > G and rs10483639:C > G) and TOR1A (rs13300897:G > A, rs1801968:G > C, rs1182:G > T and rs3842225:G > Δ) using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and confirmed by direct Sanger sequencing. The statistical significance of allelic, genotypic and haplotypic associations of all of the SNPs were evaluated using the two-tailed Fisher exact test. The minor allele (A) of rs3759664 is significantly associated with isolated limb dystonia as a risk factor (p = 0.005). The minor allele (C) of rs1801968 is strongly associated with isolated dystonia (p < 0.0001) and most of its subtypes. The major allele of rs3842225 (G) may act as a significant risk factor for Writer's cramp (p = 0.03). Four different haplogroups comprising of either rs1182 or rs3842225 or in combination with rs1801968 and rs13300897 were found to be significantly associated with isolated dystonia. No other allelic, genotypic or haplotypic association was found to be significant with isolated dystonia cohort or its endophenotype stratified groups. Our study suggests that TOR1A common variants have a significant role in isolated dystonia pathogenesis in the Indian population, whereas SNPs in the GCH1 gene may have a limited role.
Collapse
Affiliation(s)
- Subhajit Giri
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Arunibha Ghosh
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Shubhrajit Roy
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | | | | | - Kunal Ray
- ATGC Diagnostics Private Limited, Kolkata, India
| | - Jharna Ray
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| |
Collapse
|
36
|
Li XY, Dai LF, Wan XH, Guo Y, Dai Y, Li SL, Fang F, Wang XH, Zhang WH, Liu TH, Xie ZH, Fang T, Wang L, Ding CH. Clinical phenotypes, genotypes and treatment in Chinese dystonia patients with KMT2B variants. Parkinsonism Relat Disord 2020; 77:76-82. [PMID: 32634684 DOI: 10.1016/j.parkreldis.2020.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND KMT2B-related dystonia is a recently discovered hereditary dystonia that mostly occurs in childhood. This dystonia usually progresses to generalized dystonia with cervical, cranial, pharynx and larynx involvement. Our study summarizes genotype-phenotype features and deep brain stimulation (DBS) efficacy observed with KMT2B-related dystonia patients in China. METHODS We identified 20 patients with KMT2B variations from dystonia samples with a gene panel and whole exome sequencing. Genetic, clinical and treatment analyses of these patients with KMT2B mutations were further conducted. RESULTS We summarized the genotype and phenotypic characteristics of KMT2B-related patients in China, including 16 sporadic patients and 3 pedigrees (including 4 patients). Thirty-five percent (7/20) of patients had been published previously. The age of onset was between 1 month and 24 years (average 6.90 ± 5.72 years). Sixty-five percent (13/20) of patients had onset from lower limbs. Upper limbs or larynx accounted for 15% (3/20) and 20% (4/20) of patients, respectively. In the same family, male patients tended to have more severe symptoms than female patients. Carriers of KMT2B variants may present with nonmotor symptoms without dystonia. Abnormal endocrine metabolism could also be seen in our patients, including advanced bone age that had never been reported previously. Nine of our patients underwent DBS surgery. The mean follow-up time was 4.9 (range 1.3-16) months after DBS, and perceptible improvement of clinical symptoms were observed. CONCLUSIONS The genotypic and phenotypic spectra of Chinese KMT2B-related dystonia patients were further expanded. DBS surgery might be the preferred option for severe KMT2B-related dystonia patients till now.
Collapse
Affiliation(s)
- Xin-Yao Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Li-Fang Dai
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xin-Hua Wan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Shang-Lin Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xiao-Hui Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Wei-Hua Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Ting-Hong Liu
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Zi-Hang Xie
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Tie Fang
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Lin Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China.
| | - Chang-Hong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| |
Collapse
|
37
|
Pandey S, Bhattad S, Panda AK, Mahadevan L. Late-onset KMT2B-related dystonia in an Indian patient with normal cognition, dystonic opisthotonus and lack of oromandibular and laryngeal involvement. Parkinsonism Relat Disord 2020; 74:33-35. [PMID: 32305686 DOI: 10.1016/j.parkreldis.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Sanjay Pandey
- Department of Neurology, Govind Ballabh Pant Postgraduate Institute of Medical Education and Research, New Delhi, 110002, India.
| | - Sonali Bhattad
- Department of Neurology, Govind Ballabh Pant Postgraduate Institute of Medical Education and Research, New Delhi, 110002, India
| | - Ashwin Kumar Panda
- Department of Neurology, Govind Ballabh Pant Postgraduate Institute of Medical Education and Research, New Delhi, 110002, India
| | | |
Collapse
|