1
|
Ding Y, Yang H, Gao J, Tang C, Peng YY, Ma XM, Li S, Wang HY, Lu XM, Wang YT. Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration. Mol Cell Biochem 2025; 480:3399-3411. [PMID: 39841406 DOI: 10.1007/s11010-025-05209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria. Mitochondrial transport proteins regulate the positioning and movement of mitochondria to maintain normal energy metabolism. Recent studies have shown a close relationship between mitochondrial transport proteins and synaptic plasticity, providing a new direction for the study of adaptive changes in the central nervous system and new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Iyer K, Tenchov R, Sasso JM, Ralhan K, Jotshi J, Polshakov D, Maind A, Zhou QA. Rare Diseases, Spotlighting Amyotrophic Lateral Sclerosis, Huntington's Disease, and Myasthenia Gravis: Insights from Landscape Analysis of Current Research. Biochemistry 2025; 64:1698-1719. [PMID: 40169538 PMCID: PMC12004453 DOI: 10.1021/acs.biochem.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
Rare diseases are a diverse group of disorders that, despite each individual condition's rarity, collectively affect a significant portion of the global population. Currently approximately 10,000 rare diseases exist globally, with 80% of these diseases being identified as having genetic origins. In this Review, we examine data from the CAS Content Collection to summarize scientific progress in the area of rare diseases. We examine the publication landscape in the area in an effort to provide insights into current advances and developments. We then discuss the evolution of key concepts in the field, genetic associations, as well as the major technologies and development pipelines of rare disease treatments. We focus our attention on three specific rare diseases: (i) amyotrophic lateral sclerosis, a terminal neurodegenerative disease affecting the central nervous system resulting in progressive loss of motor neurons that control voluntary muscles; (ii) Huntington's disease, another terminal neurodegenerative disease that causes progressive degeneration of nerve cells in the brain, with a wide impact on a person's functional abilities; and (iii) myasthenia gravis, a chronic autoimmune synaptopathy leading to skeletal muscle weakness. While the pathogenesis of these rare diseases is being elucidated, there is neither a cure nor preventative treatment available, only symptomatic treatment. The objective of the paper is to provide a broad overview of the evolving landscape of current knowledge on rare diseases and specifically on the biology and genetics of the three spotlighted diseases, to outline challenges and evaluate growth opportunities, an aim to further efforts in solving the remaining challenges.
Collapse
Affiliation(s)
- Kavita
A. Iyer
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Dmitrii Polshakov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Cárcamo-Fonfría A, Caballero-Muñoz MDM, Agúndez JAG. Oxidative Stress in Huntington's Disease. Biomolecules 2025; 15:527. [PMID: 40305278 PMCID: PMC12025275 DOI: 10.3390/biom15040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Although the pathogenesis of the neurodegenerative phenomena of Huntington's disease (HD) is not well known, in the last 30 years, numerous data have been published that suggest a possible role of oxidative stress. The majority of studies regarding this issue were performed in different experimental models of this disease (neurotoxic models such as intraperitoneal injection of 3-nitropropionic acid or intrastriatal injection of quinolinic acid, transgenic animal models for HD, and cell cultures) and, less frequently, in samples of brain tissue, plasma/serum, blood cells, and other tissues from patients with a genetic-molecular diagnosis of presymptomatic and symptomatic HD compared to healthy controls. In this narrative review, we have summarized the data from the main studies in which oxidative stress parameters have been measured both in patients with HD and in experimental models of the same disease, as well as the few studies on gene variants involved in oxidative stress in patients with HD. Most studies addressing this issue in experimental models of HD have shown an increase in markers or oxidative stress, a decrease in antioxidant substances, or both. However, the results of studies on patients with HD have not been conclusive as few studies have been published on the matter. However, a meta-analysis of blood studies on HD patients (including a pool of serum and blood cell studies) has shown an increase in lipid peroxidation markers, OH8dG concentrations, and GPx activity and a decrease in GSH levels. Future prospective and multicenter studies with a long-term follow-up period involving a large number of HD patients and healthy controls are needed to address this topic.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, 28500 Madrid, Spain; (H.A.-N.); (A.C.-F.); (M.d.M.C.-M.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, 28500 Madrid, Spain; (H.A.-N.); (A.C.-F.); (M.d.M.C.-M.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Alba Cárcamo-Fonfría
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, 28500 Madrid, Spain; (H.A.-N.); (A.C.-F.); (M.d.M.C.-M.)
| | - María del Mar Caballero-Muñoz
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, 28500 Madrid, Spain; (H.A.-N.); (A.C.-F.); (M.d.M.C.-M.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
4
|
Gao B, Jing Y, Li X, Cong S. Ubiquitin specific peptidase 11 knockdown slows Huntington's disease progression via regulating mitochondrial dysfunction and neuronal damage depending on PTEN-mediated AKT pathway. Mol Med 2025; 31:7. [PMID: 39780069 PMCID: PMC11715466 DOI: 10.1186/s10020-024-01061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear. METHODS To interfere with USP11 expression, adeno-associated viruses 2 containing USP11-specific shRNA were injected into the bilateral striatum of 12-week-old R6/1 and WT mice. In vitro, the inducible PC12 cell model of HD was used in which the expression of an N-terminal truncation of huntingtin, with either wild type (Q23) or expanded polyglutamine (Q74) can be induced by the doxycycline. USP11 was knocked down to study its role in HD. The protein expression patterns in Q74 cells were quantified by label-free proteomics to further explore the target protein of USP11. Detecting the association between USP11 and Phosphatase and Tensin Homolog (PTEN) through Co-IP. RESULTS Herein, USP11 was found to be upregulated in the striatum of R6/1 mice (an HD model with gradual development of symptoms) in an age-dependent manner. The spontaneous HD was alleviated by silencing USP11, as evidenced by improved locomotor activity and spatial memory, attenuated striatal atrophy in R6/1 mice, reduced accumulation of mutant huntingtin protein, and restored mitochondrial function in vitro and in vivo. The results of label-free proteomics revealed a significant change in the protein expression profile. Through functional enrichment, we focused on PTEN, known as a negative regulator of the AKT pathway. We demonstrated that USP11 downregulation promoted ubiquitination modification of PTEN and activated the AKT pathway, and PTEN overexpression reversed the effects of USP11 knockdown. CONCLUSIONS Collectively, USP11 knockdown protects R6/1 mouse neurons from oxidative stress by alleviating mitochondrial dysfunction, thereby preventing the HD progression. This is achieved by inhibiting PTEN expression, which in turn activates the AKT pathway. This study suggests that USP11-PTEN-AKT signaling pathway may be a new attractive therapeutic target for HD.
Collapse
Affiliation(s)
- Bai Gao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xi Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Guo F, Qin X, Mao J, Xu Y, Xie J. Potential Protective Effects of Pungent Flavor Components in Neurodegenerative Diseases. Molecules 2024; 29:5700. [PMID: 39683859 PMCID: PMC11643850 DOI: 10.3390/molecules29235700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) have become a major global health burden, but the detailed pathogeneses of neurodegenerative diseases are still unknown, and current treatments are mainly aimed at controlling symptoms; there are no curative treatments for neurodegenerative diseases or treatments for the progressive cognitive, behavioral, and functional impairments that they cause. Studies have shown that some plant extracts with pungent flavor components have a certain neuroprotective effect in neurodegenerative diseases, and their mechanisms mainly involve inhibiting neuronal apoptosis, promoting neuronal regeneration, reducing mitochondrial degeneration, and reducing the production of oxides such as reactive oxygen species in cells, which are of great significance for exploring the treatment of neurodegenerative diseases. In this review, we searched the PubMed database for relevant literature collected in the past 15 years. Finally, we summarized the protective effects of pungent flavor components such as capsaicin, piperine, curcumin, cannabinoids, allicin, and nicotine on the nervous system, focusing on the molecular mechanisms and signaling pathways that they activate. In addition, we also compiled and summarized the laboratory experiments, preclinical experiments, and effects of various pungent flavor components in neurodegenerative diseases. The goal is to further explore their potential as effective drugs for the treatment of neurodegenerative diseases and provide new ideas for further research on the specific protective mechanisms of these substances for the treatment of neurodegenerative diseases and the targets of drug action in the future.
Collapse
Affiliation(s)
- Fangxin Guo
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Xudi Qin
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Mao
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Xu
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jianping Xie
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Pai V, Singh BN, Singh AK. Insights into Advances and Applications of Biomaterials for Nerve Tissue Injuries and Neurodegenerative Disorders. Macromol Biosci 2024; 24:e2400150. [PMID: 39348168 DOI: 10.1002/mabi.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/12/2024] [Indexed: 10/01/2024]
Abstract
The incidence of nerve tissue injuries, such as peripheral nerve injury, spinal cord injury, traumatic brain injury, and various neurodegenerative diseases (NDs), is continuously increasing because of stress, physical and chemical trauma, and the aging population worldwide. Restoration of the damaged nervous system is challenging because of its structural and functional complexity and limited regenerative ability. Additionally, there is no cure available for NDs except for medications that provide symptomatic relief. Stem cells offer an alternative approach for promoting damage repair, but their efficacy is limited by a compromised survival rate and neurogenesis process. To address these challenges, neural tissue engineering has emerged as a promising strategy in which stem cells are seeded or encapsulated within a suitable biomaterial construct, increasing cell survival and neurogenesis. Numerous biomaterials are utilized to create different types of constructs for this purpose. Researchers are trying to develop ideal scaffolds that combine biomaterials, cells, and molecules that exactly mimic the biological and mechanical properties of the tissue to achieve functional recovery associated with neurological dysfunction. This review focuses on exploring the development and applications of different biomaterials for their potential use in the diagnosis, therapy, nerve tissue regeneration, and treatment of neurological disorders.
Collapse
Affiliation(s)
- Varsha Pai
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Bhisham Narayan Singh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
7
|
Du S, Liang Q, Shi J. Progress of ATM inhibitors: Opportunities and challenges. Eur J Med Chem 2024; 277:116781. [PMID: 39173286 DOI: 10.1016/j.ejmech.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Ataxia-telangiectasia mutated (ATM) was first discovered in patients with AT (ataxia telangiectasia), which is characteristic with cerebellar degeneration, immunodeficiency, being susceptible to malignant tumors and sensitive to radiation. ATM kinase could detect DNA double-strand breaks and play a vital role in the DNA damage response. Inhibiting the function of ATM could sensitize tumor cells to both ionizing radiation (IR) and chemotherapy, as well as improve the chemoresistance and radioresistance observed in some patients. As such, ATM is a novel and important target for the cancer therapy. We reviewed ATM inhibitors reported in the last two decades, focusing on their development process, structure-activity relationships, inhibitory efficacy, pharmacokinetics and pharmacodynamics characteristics in the preclinical and clinical studies. We summarized the clinical value of ATM inhibitors in tumors and some neurodegenerative diseases, as well as the main challenges to the development of the drugs, providing directions and references for the future development of ATM inhibitors.
Collapse
Affiliation(s)
- Shan Du
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Liang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
8
|
Choi W, Fattah M, Shang Y, Thompson MP, Carrow KP, Hu D, Liu Z, Avram MJ, Bailey K, Berger O, Qi X, Gianneschi NC. Proteomimetic polymer blocks mitochondrial damage, rescues Huntington's neurons, and slows onset of neuropathology in vivo. SCIENCE ADVANCES 2024; 10:eado8307. [PMID: 39485846 PMCID: PMC11529722 DOI: 10.1126/sciadv.ado8307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
Recently, it has been shown that blocking the binding of valosin-containing protein (VCP) to mutant huntingtin (mtHtt) can prevent neuronal mitochondrial autophagy in Huntington's disease (HD) models. Herein, we describe the development and efficacy of a protein-like polymer (PLP) for inhibiting this interaction in cellular and in vivo models of HD. PLPs exhibit bioactivity in HD mouse striatal cells by successfully inhibiting mitochondrial destruction. PLP is notably resilient to in vitro enzyme, serum, and liver microsome stability assays, which render analogous control oligopeptides ineffective. PLP demonstrates a 2000-fold increase in circulation half-life compared to peptides, exhibiting an elimination half-life of 152 hours. In vivo efficacy studies in HD transgenic mice (R6/2) confirm the superior bioactivity of PLP compared to free peptide through behavioral and neuropathological analyses. PLP functions by preventing pathologic VCP/mtHtt binding in HD animal models; exhibits enhanced efficacy over the parent, free peptide; and implicates the PLP as a platform with potential for translational central nervous system therapeutics.
Collapse
Affiliation(s)
- Wonmin Choi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Mara Fattah
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Kendal P. Carrow
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Zunren Liu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Michael J. Avram
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Keith Bailey
- Charles River Laboratories, Mattawan, MI 49071, USA
| | - Or Berger
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Departments of Materials Science & Engineering, Biomedical Engineering, and Pharmacology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Oyama S, Zhang H, Ferdous R, Tomochika Y, Chen B, Jiang S, Islam MS, Hasan MM, Zhai Q, Waliullah ASM, Ping Y, Yan J, Mimi MA, Zhang C, Aramaki S, Takanashi Y, Kahyo T, Hashizume Y, Kaneda D, Setou M. UBL3 Interacts with PolyQ-Expanded Huntingtin Fragments and Modifies Their Intracellular Sorting. Neurol Int 2024; 16:1175-1188. [PMID: 39449505 PMCID: PMC11503352 DOI: 10.3390/neurolint16060089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES UBL3 (Ubiquitin-like 3) is a protein that plays a crucial role in post-translational modifications, particularly in regulating protein transport within small extracellular vesicles. While previous research has predominantly focused on its interactions with α-synuclein, this study investigates UBL3's role in Huntington's disease (HD). HD is characterized by movement disorders and cognitive impairments, with its pathogenesis linked to toxic, polyglutamine (polyQ)-expanded mutant huntingtin fragments (mHTT). However, the mechanisms underlying the interaction between UBL3 and mHTT remain poorly understood. METHODS To elucidate this relationship, we performed hematoxylin and eosin (HE) staining and immunohistochemistry (IHC) on postmortem brain tissue from HD patients. Gaussia princeps-based split-luciferase complementation assay and co-immunoprecipitation were employed to confirm the interaction between UBL3 and mHTT. Additionally, we conducted a HiBiT lytic detection assay to assess the influence of UBL3 on the intracellular sorting of mHTT. Finally, immunocytochemical staining was utilized to validate the colocalization and distribution of these proteins. RESULTS Our findings revealed UBL3-positive inclusions in the cytoplasm and nuclei of neurons throughout the striatum of HD patients. We discovered that UBL3 colocalizes and interacts with mHTT and modulates its intracellular sorting. CONCLUSIONS These results suggest that UBL3 may play a significant role in the interaction and sorting of mHTT, contributing to the understanding of its potential implications in the pathophysiology of Huntington's disease.
Collapse
Affiliation(s)
- Soho Oyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
- Department of Neurosurgery, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Rafia Ferdous
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Yuna Tomochika
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Bin Chen
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Shuyun Jiang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Md. Shoriful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Md. Mahmudul Hasan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Qing Zhai
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - A. S. M. Waliullah
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Jing Yan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Mst. Afsana Mimi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Shuhei Aramaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
- Quantum Imaging Laboratory, Division of Research and Development in Photonics Technology, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura Hospital, Yamanaka-19-14 Noyoricho, Toyohashi 441-8124, Aichi, Japan;
| | - Daita Kaneda
- Quantum Imaging Laboratory, Division of Research and Development in Photonics Technology, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| |
Collapse
|
10
|
Shafie A, Ashour AA, Anwar S, Anjum F, Hassan MI. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington's disease. Arch Pharm Res 2024; 47:571-595. [PMID: 38764004 DOI: 10.1007/s12272-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Huntington's disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
11
|
Gu Y, Pope A, Smith C, Carmona C, Johnstone A, Shi L, Chen X, Santos S, Bacon-Brenes CC, Shoff T, Kleczko KM, Frydman J, Thompson LM, Mobley WC, Wu C. BDNF and TRiC-inspired reagent rescue cortical synaptic deficits in a mouse model of Huntington's disease. Neurobiol Dis 2024; 195:106502. [PMID: 38608784 PMCID: PMC11890210 DOI: 10.1016/j.nbd.2024.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.
Collapse
Affiliation(s)
- Yingli Gu
- Department of Neurology, The Fourth Hospital of Harbin Medical University, 150001, China; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Alexander Pope
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America
| | - Christopher Carmona
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Aaron Johnstone
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Linda Shi
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Xuqiao Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Sarai Santos
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Thomas Shoff
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Korbin M Kleczko
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Leslie M Thompson
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States of America; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States of America; Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697, United States of America
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
12
|
Ojalvo-Pacheco J, Yakhine-Diop SMS, Fuentes JM, Paredes-Barquero M, Niso-Santano M. Role of TFEB in Huntington's Disease. BIOLOGY 2024; 13:238. [PMID: 38666850 PMCID: PMC11048341 DOI: 10.3390/biology13040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expansion of the CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. This expansion leads to a polyglutamine (polyQ) tract at the N-terminal end of HTT, which reduces the solubility of the protein and promotes its accumulation. Inefficient clearance of mutant HTT (mHTT) by the proteasome or autophagy-lysosomal system leads to accumulation of oligomers and toxic protein aggregates in neurons, resulting in impaired proteolytic systems, transcriptional dysregulation, impaired axonal transport, mitochondrial dysfunction and cellular energy imbalance. Growing evidence suggests that the accumulation of mHTT aggregates and autophagic and/or lysosomal dysfunction are the major pathogenic mechanisms underlying HD. In this context, enhancing autophagy may be an effective therapeutic strategy to remove protein aggregates and improve cell function. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy, controls the expression of genes critical for autophagosome formation, lysosomal biogenesis, lysosomal function and autophagic flux. Consequently, the induction of TFEB activity to promote intracellular clearance may be a therapeutic strategy for HD. However, while some studies have shown that overexpression of TFEB facilitates the clearance of mHTT aggregates and ameliorates the disease phenotype, others indicate such overexpression may lead to mHTT co-aggregation and worsen disease progression. Further studies are necessary to confirm whether TFEB modulation could be an effective therapeutic strategy against mHTT-mediated toxicity in different disease models.
Collapse
Affiliation(s)
- Javier Ojalvo-Pacheco
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (J.O.-P.); (S.M.S.Y.-D.); (J.M.F.)
| | - Sokhna M. S. Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (J.O.-P.); (S.M.S.Y.-D.); (J.M.F.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (J.O.-P.); (S.M.S.Y.-D.); (J.M.F.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Marta Paredes-Barquero
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (J.O.-P.); (S.M.S.Y.-D.); (J.M.F.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| |
Collapse
|
13
|
Shafie A, Ashour AA, Anjum F, Shamsi A, Hassan MI. Elucidating the Impact of Deleterious Mutations on IGHG1 and Their Association with Huntington's Disease. J Pers Med 2024; 14:380. [PMID: 38673007 PMCID: PMC11050829 DOI: 10.3390/jpm14040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Huntington's disease (HD) is a chronic, inherited neurodegenerative condition marked by chorea, dementia, and changes in personality. The primary cause of HD is a mutation characterized by the expansion of a triplet repeat (CAG) within the huntingtin gene located on chromosome 4. Despite substantial progress in elucidating the molecular and cellular mechanisms of HD, an effective treatment for this disorder is not available so far. In recent years, researchers have been interested in studying cerebrospinal fluid (CSF) as a source of biomarkers that could aid in the diagnosis and therapeutic development of this disorder. Immunoglobulin heavy constant gamma 1 (IGHG1) is one of the CSF proteins found to increase significantly in HD. Considering this, it is reasonable to study the potential involvement of deleterious mutations in IGHG1 in the pathogenesis of this disorder. In this study, we explored the potential impact of deleterious mutations on IGHG1 and their subsequent association with HD. We evaluated 126 single-point amino acid substitutions for their impact on the structure and functionality of the IGHG1 protein while exploiting multiple computational resources such as SIFT, PolyPhen-2, FATHMM, SNPs&Go mCSM, DynaMut2, MAESTROweb, PremPS, MutPred2, and PhD-SNP. The sequence- and structure-based tools highlighted 10 amino acid substitutions that were deleterious and destabilizing. Subsequently, out of these 10 mutations, eight variants (Y32C, Y32D, P34S, V39E, C83R, C83Y, V85M, and H87Q) were identified as pathogenic by disease phenotype predictors. Finally, two pathogenic variants (Y32C and P34S) were found to reduce the solubility of the protein, suggesting their propensity to form protein aggregates. These variants also exhibited higher residual frustration within the protein structure. Considering these findings, the study hypothesized that the identified variants of IGHG1 may compromise its function and potentially contribute to HD pathogenesis.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
14
|
Cheng Y, Zhang S, Shang H. Latest advances on new promising molecular-based therapeutic approaches for Huntington's disease. J Transl Int Med 2024; 12:134-147. [PMID: 38779119 PMCID: PMC11107186 DOI: 10.2478/jtim-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease (HD) is a devastating, autosomal-dominant inherited, neurodegenerative disorder characterized by progressive motor deficits, cognitive impairments, and neuropsychiatric symptoms. It is caused by excessive cytosine-adenine-guanine (CAG) trinucleotide repeats within the huntingtin gene (HTT). Presently, therapeutic interventions capable of altering the trajectory of HD are lacking, while medications for abnormal movement and psychiatric symptoms are limited. Numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. In this review, we update the latest advances on new promising molecular-based therapeutic strategies for this disorder, including DNA-targeting techniques such as zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9; post-transcriptional huntingtin-lowering approaches such as RNAi, antisense oligonucleotides, and small-molecule splicing modulators; and novel methods to clear the mHTT protein, such as proteolysis-targeting chimeras. We mainly focus on the ongoing clinical trials and the latest pre-clinical studies to explore the progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Sirui Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| |
Collapse
|
15
|
Chen C, Qi J, Li Y, Li D, Wu L, Li R, Chen Q, Sun N. Applications of Raman spectroscopy in the diagnosis and monitoring of neurodegenerative diseases. Front Neurosci 2024; 18:1301107. [PMID: 38370434 PMCID: PMC10869569 DOI: 10.3389/fnins.2024.1301107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Raman scattering is an inelastic light scattering that occurs in a manner reflective of the molecular vibrations of molecular structures and chemical conditions in a given sample of interest. Energy changes in the scattered light can be assessed to determine the vibration mode and associated molecular and chemical conditions within the sample, providing a molecular fingerprint suitable for sample identification and characterization. Raman spectroscopy represents a particularly promising approach to the molecular analysis of many diseases owing to clinical advantages including its instantaneous nature and associated high degree of stability, as well as its ability to yield signal outputs corresponding to a single molecule type without any interference from other molecules as a result of its narrow peak width. This technology is thus ideally suited to the simultaneous assessment of multiple analytes. Neurodegenerative diseases represent an increasingly significant threat to global public health owing to progressive population aging, imposing a severe physical and social burden on affected patients who tend to develop cognitive and/or motor deficits beginning between the ages of 50 and 70. Owing to a relatively limited understanding of the etiological basis for these diseases, treatments are lacking for the most common neurodegenerative diseases, which include Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The present review was formulated with the goal of briefly explaining the principle of Raman spectroscopy and discussing its potential applications in the diagnosis and evaluation of neurodegenerative diseases, with a particular emphasis on the research prospects of this novel technological platform.
Collapse
Affiliation(s)
- Chao Chen
- Central Laboratory, Liaocheng People’s Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, China
| | - Jinfeng Qi
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ying Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ding Li
- Department of Clinical Laboratory, Liaocheng People’s Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, China
| | - Lihong Wu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ruihua Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qingfa Chen
- Institute of Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, China
- Research Center of Basic Medicine, Jinan Central Hospital, Jinan, China
| | - Ning Sun
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
16
|
Ahamad S, Bano N, Khan S, Hussain MK, Bhat SA. Unraveling the Puzzle of Therapeutic Peptides: A Promising Frontier in Huntington's Disease Treatment. J Med Chem 2024; 67:783-815. [PMID: 38207096 DOI: 10.1021/acs.jmedchem.3c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by a mutation in the huntingtin (HTT) gene, resulting in the production of a mutant huntingtin protein (mHTT). The accumulation of mHTT leads to the development of toxic aggregates in neurons, causing cell dysfunction and, eventually, cell death. Peptide therapeutics target various aspects of HD pathology, including mHTT reduction and aggregation inhibition, extended CAG mRNA degradation, and modulation of dysregulated signaling pathways, such as BDNF/TrkB signaling. In addition, these peptide therapeutics also target the detrimental interactions of mHTT with InsP3R1, CaM, or Caspase-6 proteins to mitigate HD. This Perspective provides a detailed perspective on anti-HD therapeutic peptides, highlighting their design, structural characteristics, neuroprotective effects, and specific mechanisms of action. Peptide therapeutics for HD exhibit promise in preclinical models, but further investigation is required to confirm their effectiveness as viable therapeutic strategies, recognizing that no approved peptide therapy for HD currently exists.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
17
|
Gushi S, Balis V. Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:381-393. [PMID: 37937560 DOI: 10.2174/0118715303250271231018103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
Mitochondria are essential organelles for the survival of a cell because they produce energy. The cells that need more mitochondria are neurons because they perform a variety of tasks that are necessary to support brain homeostasis. The build-up of abnormal proteins in neurons, as well as their interactions with mitochondrial proteins, or MAM proteins, cause serious health issues. As a result, mitochondrial functions, such as mitophagy, are impaired, resulting in the disorders described in this review. They are also due to mtDNA mutations, which alter the heritability of diseases. The topic of disease prevention, as well as the diagnosis, requires further explanation and exploration. Finally, there are treatments that are quite promising, but more detailed research is needed.
Collapse
Affiliation(s)
- Sofjana Gushi
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| | - Vasileios Balis
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| |
Collapse
|
18
|
Li C, Lin Y, Chen Y, Song X, Zheng X, Li J, He J, Chen X, Huang C, Wang W, Wu J, Wu J, Gao J, Tu Z, Li XJ, Yan S, Li S. A Specific Mini-Intrabody Mediates Lysosome Degradation of Mutant Huntingtin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301120. [PMID: 37688357 PMCID: PMC10625127 DOI: 10.1002/advs.202301120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Accumulation of misfolded proteins leads to many neurodegenerative diseases that can be treated by lowering or removing mutant proteins. Huntington's disease (HD) is characterized by the intracellular accumulation of mutant huntingtin (mHTT) that can be soluble and aggregated in the central nervous system and causes neuronal damage and death. Here, an intracellular antibody (intrabody) fragment is generated that can specifically bind mHTT and link to the lysosome for degradation. It is found that delivery of this peptide by either brain injection or intravenous administration can efficiently clear the soluble and aggregated mHTT by activating the lysosomal degradation pathway, resulting in amelioration of gliosis and dyskinesia in HD knock-in (KI-140Q) mice. These findings suggest that the small intrabody peptide linked to lysosomes can effectively lower mutant proteins and provide a new approach for treating neurodegenerative diseases that are caused by the accumulation of mutant proteins.
Collapse
Affiliation(s)
- Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yingqi Lin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jun He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, 510632, China
| | - Xiusheng Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
19
|
Tandoro Y, Chen BK, Ali A, Wang CK. Review of Phytochemical Potency as a Natural Anti- Helicobacter pylori and Neuroprotective Agent. Molecules 2023; 28:7150. [PMID: 37894629 PMCID: PMC10609179 DOI: 10.3390/molecules28207150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Phytochemicals are plant secondary metabolites that show health benefits for humans due to their bioactivity. There is a huge variety of phytochemicals that have already been identified, and these compounds can act as antimicrobial and neuroprotection agents. Due to their anti-microbial activity and neuroprotection, several phytochemicals might have the potency to be used as natural therapeutic agents, especially for Helicobacter pylori infection and neurodegenerative disease, which have become a global health concern nowadays. According to previous research, there are some connections between H. pylori infection and neurodegenerative diseases, especially Alzheimer's disease. Hence, this comprehensive review examines different kinds of phytochemicals from natural sources as potential therapeutic agents to reduce H. pylori infection and improve neurodegenerative disease. An additional large-scale study is needed to establish the connection between H. pylori infection and neurodegenerative disease and how phytochemicals could improve this condition.
Collapse
Affiliation(s)
- Yohanes Tandoro
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
- Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya, Surabaya 60265, Indonesia
| | - Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Asif Ali
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| |
Collapse
|
20
|
Dhingra H, Gaidhane SA. Huntington's Disease: Understanding Its Novel Drugs and Treatments. Cureus 2023; 15:e47526. [PMID: 38021751 PMCID: PMC10664735 DOI: 10.7759/cureus.47526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
An inherited neurodegenerative ailment called Huntington's disease (HD) of gradual physical impairment, cognitive decline, and psychiatric symptoms. It is brought on by a mutation of the HTT gene, which causes aberrant huntingtin protein buildup in neurons. This predominantly affects the striatum and cerebral cortex, where neuronal malfunction and eventual cell death follow. The quality index of life for both patients and their families is significantly impacted when symptoms first appear in mid-adulthood. An overview of the available therapies for HD is given in this article. Although HD has no known treatment options, there are several that try to lessen symptoms and reduce the disease's development. By lowering involuntary movements, pharmaceutical treatments like tetrabenazine and deutetrabenazine focus on motor symptoms. Antidepressants and antipsychotic medicines are also used to manage the mental and cognitive symptoms of HD. The investigation of prospective gene-based medicines is a result of research into disease-modifying medications. Reduced synthesis of mutant huntingtin protein is the goal of RNA interference (RNAi) strategies, which may halt the course of illness. Additionally, continuing research into Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9 (CRISPR-Cas9) and other gene editing methods shows promise for reversing the genetic mutation that causes HD. Individuals with HD can benefit from non-pharmacological therapies such as physical therapy, speech therapy, and occupational therapy to increase their functional abilities and general well-being. Supportive treatment, psychiatric therapy, and caregiver support groups are also essential in addressing the difficult problems the illness presents. In conclusion, tremendous progress is being made in the domain of HD treatment, with an emphasis on symptom control, disease modification, and prospective gene-based therapeutics. Even though there has been significant improvement, more study is still required to provide better therapies and ultimately discover a solution for this debilitating condition.
Collapse
Affiliation(s)
- Hitaansh Dhingra
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shilpa A Gaidhane
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
21
|
Ramos V, Reis M, Ferreira L, Silva AM, Ferraz R, Vieira M, Vasconcelos V, Martins R. Stalling the Course of Neurodegenerative Diseases: Could Cyanobacteria Constitute a New Approach toward Therapy? Biomolecules 2023; 13:1444. [PMID: 37892126 PMCID: PMC10604708 DOI: 10.3390/biom13101444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive and irreversible neuronal loss, accompanied by a range of pathological pathways, including aberrant protein aggregation, altered energy metabolism, excitotoxicity, inflammation, and oxidative stress. Some of the most common NDs include Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and Huntington's Disease (HD). There are currently no available cures; there are only therapeutic approaches that ameliorate the progression of symptoms, which makes the search for new drugs and therapeutic targets a constant battle. Cyanobacteria are ancient prokaryotic oxygenic phototrophs whose long evolutionary history has resulted in the production of a plethora of biomedically relevant compounds with anti-inflammatory, antioxidant, immunomodulatory, and neuroprotective properties, that can be valuable in this field. This review summarizes the major NDs and their pathophysiology, with a focus on the anti-neurodegenerative properties of cyanobacterial compounds and their main effects.
Collapse
Affiliation(s)
- Vitória Ramos
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
| | - Mariana Reis
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| | - Leonor Ferreira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Ana Margarida Silva
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
| | - Ricardo Ferraz
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
- Associated Laboratory for Green Chemistry—Network of Chemistry and Technology (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Mónica Vieira
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
- Center for Translational Health and Medical Biotechnology Research (TBIO/ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Rosário Martins
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| |
Collapse
|
22
|
Kioutchoukova IP, Foster DT, Thakkar RN, Foreman MA, Burgess BJ, Toms RM, Molina Valero EE, Lucke-Wold B. Neurologic orphan diseases: Emerging innovations and role for genetic treatments. World J Exp Med 2023; 13:59-74. [PMID: 37767543 PMCID: PMC10520757 DOI: 10.5493/wjem.v13.i4.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Orphan diseases are rare diseases that affect less than 200000 individuals within the United States. Most orphan diseases are of neurologic and genetic origin. With the current advances in technology, more funding has been devoted to developing therapeutic agents for patients with these conditions. In our review, we highlight emerging options for patients with neurologic orphan diseases, specifically including diseases resulting in muscular deterioration, epilepsy, seizures, neurodegenerative movement disorders, inhibited cognitive development, neuron deterioration, and tumors. After extensive literature review, gene therapy offers a promising route for the treatment of neurologic orphan diseases. The use of clustered regularly interspaced palindromic repeats/Cas9 has demonstrated positive results in experiments investigating its role in several diseases. Additionally, the use of adeno-associated viral vectors has shown improvement in survival, motor function, and developmental milestones, while also demonstrating reversal of sensory ataxia and cardiomyopathy in Friedreich ataxia patients. Antisense oligonucleotides have also been used in some neurologic orphan diseases with positive outcomes. Mammalian target of rapamycin inhibitors are currently being investigated and have reduced abnormal cell growth, proliferation, and angiogenesis. Emerging innovations and the role of genetic treatments open a new window of opportunity for the treatment of neurologic orphan diseases.
Collapse
Affiliation(s)
| | - Devon T Foster
- Florida International University Herbert Wertheim College of Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Rajvi N Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Marco A Foreman
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Brandon J Burgess
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Rebecca M Toms
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
23
|
Ouwerkerk J, Feleus S, van der Zwaan KF, Li Y, Roos M, van Roon-Mom WMC, de Bot ST, Wolstencroft KJ, Mina E. Machine learning in Huntington's disease: exploring the Enroll-HD dataset for prognosis and driving capability prediction. Orphanet J Rare Dis 2023; 18:218. [PMID: 37501188 PMCID: PMC10375780 DOI: 10.1186/s13023-023-02785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND In biomedicine, machine learning (ML) has proven beneficial for the prognosis and diagnosis of different diseases, including cancer and neurodegenerative disorders. For rare diseases, however, the requirement for large datasets often prevents this approach. Huntington's disease (HD) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the coding region of the huntingtin gene. The world's largest observational study for HD, Enroll-HD, describes over 21,000 participants. As such, Enroll-HD is amenable to ML methods. In this study, we pre-processed and imputed Enroll-HD with ML methods to maximise the inclusion of participants and variables. With this dataset we developed models to improve the prediction of the age at onset (AAO) and compared it to the well-established Langbehn formula. In addition, we used recurrent neural networks (RNNs) to demonstrate the utility of ML methods for longitudinal datasets, assessing driving capabilities by learning from previous participant assessments. RESULTS Simple pre-processing imputed around 42% of missing values in Enroll-HD. Also, 167 variables were retained as a result of imputing with ML. We found that multiple ML models were able to outperform the Langbehn formula. The best ML model (light gradient boosting machine) improved the prognosis of AAO compared to the Langbehn formula by 9.2%, based on root mean squared error in the test set. In addition, our ML model provides more accurate prognosis for a wider CAG repeat range compared to the Langbehn formula. Driving capability was predicted with an accuracy of 85.2%. The resulting pre-processing workflow and code to train the ML models are available to be used for related HD predictions at: https://github.com/JasperO98/hdml/tree/main . CONCLUSIONS Our pre-processing workflow made it possible to resolve the missing values and include most participants and variables in Enroll-HD. We show the added value of a ML approach, which improved AAO predictions and allowed for the development of an advisory model that can assist clinicians and participants in estimating future driving capability.
Collapse
Affiliation(s)
- Jasper Ouwerkerk
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center (EMC), Wytemaweg, 3015 CN, Rotterdam, The Netherlands
| | - Stephanie Feleus
- Department of Neurology, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Kasper F van der Zwaan
- Department of Neurology, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center (EMC), Wytemaweg, 3015 CN, Rotterdam, The Netherlands
| | - Marco Roos
- Department of Human Genetics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Katherine J Wolstencroft
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands
| | - Eleni Mina
- Department of Human Genetics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
24
|
Bhatnagar A, Parmar V, Barbieri N, Bearoff F, Elefant F, Kortagere S. Novel EAAT2 activators improve motor and cognitive impairment in a transgenic model of Huntington's disease. Front Behav Neurosci 2023; 17:1176777. [PMID: 37351153 PMCID: PMC10282606 DOI: 10.3389/fnbeh.2023.1176777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Glutamate excitotoxicity is causal in striatal neurodegeneration underlying motor dysfunction and cognitive deficits in Huntington's disease (HD). Excitatory amino acid transporter 2 (EAAT2), the predominant glutamate transporter accounting for >90% of glutamate transport, plays a key role in preventing excitotoxicity by clearing excess glutamate from the intrasynaptic cleft. Accordingly, EAAT2 has emerged as a promising therapeutic target for prevention of neuronal excitotoxicity underlying HD and other neurodegenerative diseases. Methods We have previously designed novel EAAT2 positive allosteric modulator GT951, GTS467, and GTS551, with low nanomolar efficacy in glutamate uptake and favorable pharmacokinetic properties. In this study, we test the neuroprotective abilities of these novel EAAT2 activators in vivo using the robust Drosophila HD transgenic model expressing human huntingtin gene with expanded repeats (Htt128Q). Results All three compounds significantly restored motor function impaired under HD pathology over a wide dose range. Additionally, treatment with all three compounds significantly improved HD-associated olfactory associative learning and short-term memory defects, while GT951 and GTS551 also improved middle-term memory in low-performing group. Similarly, treatment with GT951 and GTS551 partially protected against early mortality observed in our HD model. Further, treatment with all three EAAT2 activators induced epigenetic expression of EAAT2 Drosophila homolog and several cognition-associated genes. Conclusion Together, these results highlight the efficacy of GT951, GTS467 and GTS551 in treating motor and cognitive impairments under HD pathology and support their development for treatment of HD.
Collapse
Affiliation(s)
- Akanksha Bhatnagar
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
| | - Visha Parmar
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Nicholas Barbieri
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Frank Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Felice Elefant
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
25
|
Sánchez-Vidaña DI, Li J, Abokyi S, Chan JNM, Ngai SPC, Lau BWM. In vitro methods in autophagy research: Applications in neurodegenerative diseases and mood disorders. Front Mol Neurosci 2023; 16:1168948. [PMID: 37122628 PMCID: PMC10130388 DOI: 10.3389/fnmol.2023.1168948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Background Autophagy is a conserved physiological intracellular mechanism responsible for the degradation and recycling of cytoplasmic constituents (e.g., damaged organelles, and protein aggregates) to maintain cell homeostasis. Aberrant autophagy has been observed in neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Huntington's Disease (HD), and recently aberrant autophagy has been associated with mood disorders, such as depression. Several in vitro methods have been developed to study the complex and tightly regulated mechanisms of autophagy. In vitro methods applied to autophagy research are used to identify molecular key players involved in dysfunctional autophagy and to screen autophagy regulators with therapeutic applications in neurological diseases and mood disorders. Therefore, the aims of this narrative review are (1) to compile information on the cell-based methods used in autophagy research, (2) to discuss their application, and (3) to create a catalog of traditional and novel in vitro methods applied in neurodegenerative diseases and depression. Methods Pubmed and Google Scholar were used to retrieve relevant in vitro studies on autophagy mechanisms in neurological diseases and depression using a combination of search terms per mechanism and disease (e.g., "macroautophagy" and "Alzheimer's disease"). A total of 37 studies were included (14 in PD, 8 in AD, 5 in ALS, 5 in %, and 5 in depression). Results A repertoire of traditional and novel approaches and techniques was compiled and discussed. The methods used in autophagy research focused on the mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy. The in vitro tools presented in this review can be applied to explore pathophysiological mechanisms at a molecular level and to screen for potential therapeutic agents and their mechanism of action, which can be of great importance to understanding disease biology and potential therapeutic options in the context of neurodegenerative disorders and depression. Conclusion This is the first review to compile, discuss, and provide a catalog of traditional and novel in vitro models applied to neurodegenerative disorders and depression.
Collapse
Affiliation(s)
- Dalinda Isabel Sánchez-Vidaña
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Samuel Abokyi
- School of Optometry, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jackie Ngai-Man Chan
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Shirley Pui-Ching Ngai
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
26
|
Li E, Choi J, Sim HR, Kim J, Jun JH, Kyung J, Ha N, Kim S, Ryu KH, Chung SS, Kim HS, Lee S, Seol W, Song J. A novel HDAC6 inhibitor, CKD-504, is effective in treating preclinical models of huntington's disease. BMB Rep 2023; 56:178-183. [PMID: 36593104 PMCID: PMC10068348 DOI: 10.5483/bmbrep.2022-0157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/09/2022] [Accepted: 01/02/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder, of which pathogenesis is caused by a polyglutamine expansion in the amino-terminus of huntingtin gene that resulted in the aggregation of mutant HTT proteins. HD is characterized by progressive motor dysfunction, cognitive impairment and neuropsychiatric disturbances. Histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase, has been shown to induce transport- and release-defect phenotypes in HD models, whilst treatment with HDAC6 inhibitors ameliorates the phenotypic effects of HD by increasing the levels of α-tubulin acetylation, as well as decreasing the accumulation of mutant huntingtin (mHTT) aggregates, suggesting HDAC6 inhibitor as a HD therapeutics. In this study, we employed in vitro neural stem cell (NSC) model and in vivo YAC128 transgenic (TG) mouse model of HD to test the effect of a novel HDAC6 selective inhibitor, CKD-504, developed by Chong Kun Dang (CKD Pharmaceutical Corp., Korea). We found that treatment of CKD-504 increased tubulin acetylation, microtubule stabilization, axonal transport, and the decrease of mutant huntingtin protein in vitro. From in vivo study, we observed CKD-504 improved the pathology of Huntington's disease: alleviated behavioral deficits, increased axonal transport and number of neurons, restored synaptic function in corticostriatal (CS) circuit, reduced mHTT accumulation, inflammation and tau hyperphosphorylation in YAC128 TG mouse model. These novel results highlight CKD-504 as a potential therapeutic strategy in HD. [BMB Reports 2023; 56(3): 178-183].
Collapse
Affiliation(s)
- Endan Li
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea
| | - Jiwoo Choi
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea
| | - Hye-Ri Sim
- CKD Research Institute, Chong Kun Dang Pharmaceutical Corp., Yongin 16995, Korea
| | - Jiyeon Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea
| | - Jae Hyun Jun
- CKD Research Institute, Chong Kun Dang Pharmaceutical Corp., Yongin 16995, Korea
| | - Jangbeen Kyung
- CKD Research Institute, Chong Kun Dang Pharmaceutical Corp., Yongin 16995, Korea
| | - Nina Ha
- CKD Research Institute, Chong Kun Dang Pharmaceutical Corp., Yongin 16995, Korea
| | - Semi Kim
- CKD Research Institute, Chong Kun Dang Pharmaceutical Corp., Yongin 16995, Korea
| | - Keun Ho Ryu
- CKD Research Institute, Chong Kun Dang Pharmaceutical Corp., Yongin 16995, Korea
| | - Seung Soo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyun Sook Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | | | | | - Jihwan Song
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea
- iPS Bio Inc., Seongnam 13488, Korea
| |
Collapse
|
27
|
Mendizabal A, Diaz JM, Bustamante AV, Bordelon Y. Health Services in Huntington Disease: A Systematic Literature Review. Neurol Clin Pract 2023; 13:e200108. [PMID: 36865636 PMCID: PMC9973320 DOI: 10.1212/cpj.0000000000200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/06/2022] [Indexed: 01/12/2023]
Abstract
Purpose of Review Clinical trials for Huntington disease (HD) have primarily focused on managing chorea and, more recently, the development of disease-modifying therapies (DMTs). Nonetheless, understanding health services among patients with HD is essential for assessing new therapeutics, development of quality metrics, and overall quality of life of patients and families with HD. Health services assess health care utilization patterns, outcomes, and health care-associated costs, which can help shape the development of therapeutics and aid in policies that affect patients with a specific condition. In this systematic literature review, we analyze data of published studies looking at causes of hospitalization, outcomes, and health care costs in HD. Recent Findings The search yielded 8 articles published in the English language and comprising data from the United States, Australia, New Zealand, and Israel. The most common cause of hospitalization among patients with HD was dysphagia or dysphagia-related complications (e.g., aspiration pneumonia or malnutrition), followed by psychiatric or behavioral symptoms. Patients with HD had more prolonged hospitalizations than non-HD patients, and it was most prominent among those with advanced disease. Patients with HD were more likely to be discharged to a facility. A small percentage received inpatient palliative care consultation, and behavioral symptoms were a primary cause of discharge to another facility. Interventions such as gastrostomy tube placement had associated morbidity, and it was common among patients with HD with a diagnosis of dementia. Palliative care consultation and specialized nursing care were associated with more routine discharges and fewer hospitalizations. In terms of cost, patients with HD with private and public insurances had the highest expenditure with more advanced disease, and expenses were associated with hospitalization and medication costs. Summary In addition to DMTs, HD clinical trial development should also consider the leading causes of hospitalization, morbidity, and mortality in patients with HD, including dysphagia and psychiatric disease. No research study, to our knowledge, has systematically reviewed health services research studies in HD. Evidence from health services research is needed to evaluate the efficacy of pharmacologic and supportive therapies. This type of research is also critical in understanding health care costs associated with the disease and to better advocate and shape policies that can benefit this patient population.
Collapse
Affiliation(s)
- Adys Mendizabal
- Department of Neurology (AM, JMD, YB), David Geffen School of Medicine, University of California Los Angeles (UCLA); Institute of Society and Genetics (AM), College of Life Sciences, University of California Los Angeles (UCLA); and Department of Health Policy and Management (AVB), Fielding School of Public Health, University of California Los Angeles (UCLA)
| | - Jennifer M Diaz
- Department of Neurology (AM, JMD, YB), David Geffen School of Medicine, University of California Los Angeles (UCLA); Institute of Society and Genetics (AM), College of Life Sciences, University of California Los Angeles (UCLA); and Department of Health Policy and Management (AVB), Fielding School of Public Health, University of California Los Angeles (UCLA)
| | - Arturo V Bustamante
- Department of Neurology (AM, JMD, YB), David Geffen School of Medicine, University of California Los Angeles (UCLA); Institute of Society and Genetics (AM), College of Life Sciences, University of California Los Angeles (UCLA); and Department of Health Policy and Management (AVB), Fielding School of Public Health, University of California Los Angeles (UCLA)
| | - Yvette Bordelon
- Department of Neurology (AM, JMD, YB), David Geffen School of Medicine, University of California Los Angeles (UCLA); Institute of Society and Genetics (AM), College of Life Sciences, University of California Los Angeles (UCLA); and Department of Health Policy and Management (AVB), Fielding School of Public Health, University of California Los Angeles (UCLA)
| |
Collapse
|
28
|
Bhat SA, Ahamad S, Dar NJ, Siddique YH, Nazir A. The Emerging Landscape of Natural Small-molecule Therapeutics for Huntington's Disease. Curr Neuropharmacol 2023; 21:867-889. [PMID: 36797612 PMCID: PMC10227909 DOI: 10.2174/1570159x21666230216104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
Huntington's disease (HD) is a rare and fatal neurodegenerative disorder with no diseasemodifying therapeutics. HD is characterized by extensive neuronal loss and is caused by the inherited expansion of the huntingtin (HTT) gene that encodes a toxic mutant HTT (mHTT) protein having expanded polyglutamine (polyQ) residues. Current HD therapeutics only offer symptomatic relief. In fact, Food and Drug Administration (FDA) approved two synthetic small-molecule VMAT2 inhibitors, tetrabenazine (1) and deutetrabenazine (2), for managing HD chorea and various other diseases in clinical trials. Therefore, the landscape of drug discovery programs for HD is evolving to discover disease- modifying HD therapeutics. Likewise, numerous natural products are being evaluated at different stages of clinical development and have shown the potential to ameliorate HD pathology. The inherent anti-inflammatory and antioxidant properties of natural products mitigate the mHTT-induced oxidative stress and neuroinflammation, improve mitochondrial functions, and augment the anti-apoptotic and pro-autophagic mechanisms for increased survival of neurons in HD. In this review, we have discussed HD pathogenesis and summarized the anti-HD clinical and pre-clinical natural products, focusing on their therapeutic effects and neuroprotective mechanism/s.
Collapse
Affiliation(s)
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Nawab John Dar
- School of Medicine, UT Health San Antonio, Texas, TX, USA
| | | | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
29
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
30
|
Liu M, Sun X, Chen B, Dai R, Xi Z, Xu H. Insights into Manganese Superoxide Dismutase and Human Diseases. Int J Mol Sci 2022; 23:ijms232415893. [PMID: 36555531 PMCID: PMC9786916 DOI: 10.3390/ijms232415893] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body's antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. This review focuses on preclinical evidence that describes the mechanisms of MnSOD in diseases accompanied with an imbalanced redox status, including fibrotic diseases, inflammation, diabetes, vascular diseases, neurodegenerative diseases, and cancer. The potential therapeutic effects of MnSOD activators and MnSOD mimetics are also discussed. Targeting this specific superoxide anion radical scavenger may be a clinically beneficial strategy, and understanding the therapeutic role of MnSOD may provide a positive insight into preventing and treating related diseases.
Collapse
Affiliation(s)
- Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xueyang Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Boya Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| |
Collapse
|
31
|
Shao H, Wu W, Wang P, Han T, Zhuang C. Role of Necroptosis in Central Nervous System Diseases. ACS Chem Neurosci 2022; 13:3213-3229. [PMID: 36373337 DOI: 10.1021/acschemneuro.2c00405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Necroptosis is a type of precisely regulated necrotic cell death activated in caspase-deficient conditions. Multiple factors initiate the necroptotic signaling pathway, including toll-like receptor 3/4, tumor necrosis factor (TNF), dsRNA viruses, and T cell receptors. Presently, TNF-induced necroptosis via the phosphorylation of three key proteins, receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed lineage kinase domain-like protein, is the best-characterized process. Necroptosis induced by Z-DNA-binding protein 1 (ZBP-1) and toll/interleukin-1 receptor (TIR)-domain-containing adapter-inducing interferon (TRIF) plays a significant role in infectious diseases, such as influenza A virus, Zika virus, and herpesvirus infection. An increasing number of studies have demonstrated the close association of necroptosis with multiple diseases, and disrupting necroptosis has been confirmed to be effective for treating (or managing) these diseases. The central nervous system (CNS) exhibits unique physiological structures and immune characteristics. Necroptosis may occur without the sequential activation of signal proteins, and the necroptosis of supporting cells has more important implications in disease development. Additionally, necroptotic signals can be activated in the absence of necroptosis. Here, we summarize the role of necroptosis and its signal proteins in CNS diseases and characterize typical necroptosis regulators to provide a basis for the further development of therapeutic strategies for treating such diseases. In the present review, relevant information has been consolidated from recent studies (from 2010 until the present), excluding the patents in this field.
Collapse
Affiliation(s)
- Hongming Shao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wenbin Wu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Han
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
32
|
Radiation as a Tool against Neurodegeneration-A Potential Treatment for Amyloidosis in the Central Nervous System. Int J Mol Sci 2022; 23:ijms232012265. [PMID: 36293118 PMCID: PMC9603404 DOI: 10.3390/ijms232012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
Radiotherapy (RT) is a relatively safe and established treatment for cancer, where the goal is to kill tumoral cells with the lowest toxicity to healthy tissues. Using it for disorders involving cell loss is counterintuitive. However, ionizing radiation has a hormetic nature: it can have deleterious or beneficial effects depending on how it is applied. Current evidence indicates that radiation could be a promising treatment for neurodegenerative disorders involving protein misfolding and amyloidogenesis, such as Alzheimer's or Parkinson's diseases. Low-dose RT can trigger antioxidant, anti-inflammatory and tissue regeneration responses. RT has been used to treat peripheral amyloidosis, which is very similar to other neurodegenerative disorders from a molecular perspective. Ionizing radiation prevents amyloid formation and other hallmarks in cell cultures, animal models and pilot clinical trials. Although some hypotheses have been formulated, the mechanism of action of RT on systemic amyloid deposits is still unclear, and uncertainty remains regarding its impact in the central nervous system. However, new RT modalities such as low-dose RT, FLASH, proton therapy or nanoparticle-enhanced RT could increase biological effects while reducing toxicity. Current evidence indicates that the potential of RT to treat neurodegeneration should be further explored.
Collapse
|
33
|
Nose-to-Brain: The Next Step for Stem Cell and Biomaterial Therapy in Neurological Disorders. Cells 2022; 11:cells11193095. [PMID: 36231058 PMCID: PMC9564248 DOI: 10.3390/cells11193095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Neurological disorders are a leading cause of morbidity worldwide, giving rise to a growing need to develop treatments to revert their symptoms. This review highlights the great potential of recent advances in cell therapy for the treatment of neurological disorders. Through the administration of pluripotent or stem cells, this novel therapy may promote neuroprotection, neuroplasticity, and neuroregeneration in lesion areas. The review also addresses the administration of these therapeutic molecules by the intranasal route, a promising, non-conventional route that allows for direct access to the central nervous system without crossing the blood–brain barrier, avoiding potential adverse reactions and enabling the administration of large quantities of therapeutic molecules to the brain. Finally, we focus on the need to use biomaterials, which play an important role as nutrient carriers, scaffolds, and immune modulators in the administration of non-autologous cells. Little research has been conducted into the integration of biomaterials alongside intranasally administered cell therapy, a highly promising approach for the treatment of neurological disorders.
Collapse
|
34
|
Afzal M, Sayyed N, Alharbi KS, Alzarea SI, Alshammari MS, Alomar FA, Alenezi SK, Quazi AM, Alzarea AI, Kazmi I. Anti-Huntington's Effect of Rosiridin via Oxidative Stress/AchE Inhibition and Modulation of Succinate Dehydrogenase, Nitrite, and BDNF Levels against 3-Nitropropionic Acid in Rodents. Biomolecules 2022; 12:1023. [PMID: 35892333 PMCID: PMC9329716 DOI: 10.3390/biom12081023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Rosiridin is a compound extracted from Rhodiola sachalinensis; water extracts of Rhodiola root elicit positive effects on the human central nervous system and improve brain function. They are also thought to be beneficial to one's health, in addition to being antioxidants. The present study aims to evaluate the anti-Huntington's effect of rosiridin against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD)-like effects in rats. Materials and Methods: The acute toxicity in rats was elucidated to track the conceivable toxicities in the rats. The effectiveness of rosiridin at a dosage of 10 mg/kg was evaluated against several dose administrations of 3-NPA-induced HD-like symptoms in the rats for 22 days. At the end of the study, behavioral parameters were assessed as a hallmark for the cognitive and motor functions in the rats. Similarly, after the behavioral assessment, the animals were sacrificed to obtain a brain tissue homogenate. The prepared homogenate was utilized for the estimation of several biochemical parameters, including oxidative stress (glutathione, catalase, and malondialdehyde), brain-derived neurotrophic factor and succinate dehydrogenase activity, and the glutamate and acetylcholinesterase levels in the brain. Furthermore, inflammatory mediators linked to the occurrence of neuroinflammation in rats were evaluated in the perfused brain tissues. Results: The rosiridin-treated group exhibited a significant restoration of behavioral parameters, including in the beam-walk test, latency in falling during the hanging wire test, and percentage of memory retention during the elevated plus-maze test. Further, rosiridin modulated several biochemical parameters, including oxidative stress, pro-inflammatory activity, brain-derived neurotrophic factor, nitrite, and acetylcholinesterase as compared to disease control group that was treated with 3-NPA. Conclusions: The current study exhibits the anti-Huntington's effects of rosiridin in experimental animal models.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India;
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Mohammed Salem Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Anwarulabedin Mohsin Quazi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Abdulaziz I. Alzarea
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
35
|
Kotowska-Zimmer A, Przybyl L, Pewinska M, Suszynska-Zajczyk J, Wronka D, Figiel M, Olejniczak M. A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:702-715. [PMID: 35664700 PMCID: PMC9126840 DOI: 10.1016/j.omtn.2022.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Among the many proposed therapeutic strategies for Huntington's disease (HD), allele-selective therapies are the most desirable but also the most challenging. RNA interference (RNAi) tools that target CAG repeats selectively reduce the mutant huntingtin level in cellular models of HD. The purpose of this study was to test the efficacy, selectivity, and safety of two vector-based RNAi triggers in an animal model of HD. CAG repeat-targeting short hairpin RNA (shRNA) and artificial miRNA (amiRNA) were delivered to the brains of YAC128 mice via intrastriatal injection of AAV5 vectors. Molecular tests demonstrated that both the shRNA and amiRNA reduced the mutant huntingtin level by 50% without influencing endogenous mouse huntingtin. In addition, a concentration-dependent reduction in HTT aggregates in the striatum was observed. In contrast to the shRNA, the amiRNA was well tolerated and did not show signs of toxicity during the course of the experiment up to 20 weeks post injection. Interestingly, amiRNA treatment reduced the spleen weight to values characteristic of healthy (WT) mice and improved motor performance on the static rod test. These preclinical data demonstrate that the CAG-targeting strategy and amiRNA could make an original and valuable contribution to currently used therapeutic approaches for HD.
Collapse
Affiliation(s)
- Anna Kotowska-Zimmer
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marianna Pewinska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Joanna Suszynska-Zajczyk
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, 60-632 Poznan, Poland
| | - Dorota Wronka
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Figiel
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Corresponding author Marta Olejniczak, Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
36
|
Brinvillier D, Barrast M, Couderc-Murillo P, Bono-Yagüe J, Rousteau A, Gómez Escribano AP, Palmeira-Mello MV, Doménech-Carbó A, Passe-Coutrin N, Sylvestre M, Vázquez-Manrique RP, Cebrián-Torrejón G. Spectroscopic, Electrochemical, and Biological Assays of Copper-Binding Molecules for Screening of Different Drugs and Plant Extracts against Neurodegenerative Disorders. ACS OMEGA 2022; 7:16260-16269. [PMID: 35601340 PMCID: PMC9118385 DOI: 10.1021/acsomega.1c03378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/31/2021] [Indexed: 06/15/2023]
Abstract
Neurodegenerative disorders, caused by prone-to-aggregation proteins, such as Alzheimer disease or Huntington disease, share other traits such as disrupted homeostasis of essential metal ions, like copper. In this context, in an attempt to identify Cu2+ chelating agents, we study several organic compounds (ethylenediaminetetraacetic acid, phenylenediamine, metformin, salicylate, and trehalose) and organic extracts obtained from Bacopa monnieri L., which has been used in Ayurvedic therapies and presented a broad spectrum of biological properties. For this purpose, UV-visible spectroscopy analysis and electrochemical measurements were performed. Further, biological assays were performed in Caenorhabditis elegans models of polyQ toxicity, in an attempt to obtain better insights on neurodegenerative disorders.
Collapse
Affiliation(s)
- David Brinvillier
- COVACHIM-M2E
Laboratory EA 3592, UFR SEN, Department of Chemistry, University of the French West Indies, Fouillole Campus, Pointe-à-Pitre
Cedex 97157, France
| | - Melissa Barrast
- COVACHIM-M2E
Laboratory EA 3592, UFR SEN, Department of Chemistry, University of the French West Indies, Fouillole Campus, Pointe-à-Pitre
Cedex 97157, France
| | - Petra Couderc-Murillo
- COVACHIM-M2E
Laboratory EA 3592, UFR SEN, Department of Chemistry, University of the French West Indies, Fouillole Campus, Pointe-à-Pitre
Cedex 97157, France
- UA,
UMR EcoFoG, CNRS, Cirad, INRA, Université des Antilles, Université
de Guyane, Université des Antilles, Pointe-à-Pitre 97159, France
| | - José Bono-Yagüe
- Laboratory
of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
- Joint
Unit for Rare Diseases IIS La Fe-CIPF, Valencia 46012, Spain
| | - Alain Rousteau
- UA,
UMR EcoFoG, CNRS, Cirad, INRA, Université des Antilles, Université
de Guyane, Université des Antilles, Pointe-à-Pitre 97159, France
| | - Ana Pilar Gómez Escribano
- Laboratory
of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
- Joint
Unit for Rare Diseases IIS La Fe-CIPF, Valencia 46012, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Raras
(CIBERER), Madrid 46010, Spain
| | - Marcos V. Palmeira-Mello
- Instituto
de Química, Universidade Federal
Fluminense, Outeiro S. João Batista S/N, Niterói 24020-141, RJ, Brazil
| | - Antonio Doménech-Carbó
- Departament
de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, Burjassot 46100, Valencia, Spain
| | - Nady Passe-Coutrin
- COVACHIM-M2E
Laboratory EA 3592, UFR SEN, Department of Chemistry, University of the French West Indies, Fouillole Campus, Pointe-à-Pitre
Cedex 97157, France
| | - Muriel Sylvestre
- COVACHIM-M2E
Laboratory EA 3592, UFR SEN, Department of Chemistry, University of the French West Indies, Fouillole Campus, Pointe-à-Pitre
Cedex 97157, France
| | - Rafael P. Vázquez-Manrique
- Laboratory
of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
- Joint
Unit for Rare Diseases IIS La Fe-CIPF, Valencia 46012, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Raras
(CIBERER), Madrid 46010, Spain
| | - Gerardo Cebrián-Torrejón
- COVACHIM-M2E
Laboratory EA 3592, UFR SEN, Department of Chemistry, University of the French West Indies, Fouillole Campus, Pointe-à-Pitre
Cedex 97157, France
| |
Collapse
|
37
|
Calpain Inhibitors as Potential Therapeutic Modulators in Neurodegenerative Diseases. Neurochem Res 2022; 47:1125-1149. [PMID: 34982393 DOI: 10.1007/s11064-021-03521-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
It is considered a significant challenge to understand the neuronal cell death mechanisms with a suitable cure for neurodegenerative disorders in the coming years. Calpains are one of the best-considered "cysteine proteases activated" in brain disorders. Calpain is an important marker and mediator in the pathophysiology of neurodegeneration. Calpain activation being the essential neurodegenerative factor causing apoptotic machinery activation, it is crucial to develop reliable and effective approaches to prevent calpain-mediated apoptosis in degenerating neurons. It has been recently seen that the "inhibition of calpain activation" has appeared as a possible therapeutic target for managing neurodegenerative diseases. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was conducted. The present article reviews the basic pathobiology and role of selective calpain inhibitors used in various neurodegenerative diseases as a therapeutic target.
Collapse
|
38
|
Karlstedt M, Winnberg U, Winnberg E. Sense of Coherence in partners to persons with Huntington's disease. Acta Neurol Scand 2021; 144:576-584. [PMID: 34224135 DOI: 10.1111/ane.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Huntington's disease (HD) is a progressive neuropsychiatric disease characterized by involuntary movements and behavioural symptoms. This study aimed to explore the association between the level of Sense of Coherence (SOC) and health problems, and psychological distress factors in partners to HD affected persons and their need of support. MATERIALS & METHODS A cross-sectional, descriptive, correlational design was used. Data was generated from 94 HD partners from almost all networks, outpatient clinics and nursing homes specialized in HD across Sweden. HD partners filled out questionnaires with scales measuring SOC, health problems, psychological distress factors and the Total Functional Capacity Scale (TFC). Non-parametric analysis was used to analyse group differences. RESULTS Huntington's disease partners with a lower level of SOC experienced more health problems than those with a higher level. Health problems among HD partners were most common among HD affected in TFC stage 3, indicating that the partners need most support during this period. Lower level of SOC was associated with loneliness in the relationship; less possibilities to socialize with friends; worries about the future as well as being subjected to physical aggression. The experience of physical aggression from the HD affected person was common (44.7%) and 28.6% of the partners expressed worries about being subjected to physical aggression. CONCLUSION Our findings suggest that knowledge about the partners' SOC score may be a helpful indicator identifying HD partners who are more vulnerable and need additional help caring for the person with HD and can be a complementary tool in assessment protocols.
Collapse
Affiliation(s)
- Michaela Karlstedt
- Department of Neurobiology, Care Sciences and Society Karolinska Institutet Stockholm Sweden
| | - Ulrika Winnberg
- Department of Health Care Sciences Ersta Sköndal Bräcke University College Stockholm Sweden
| | - Elisabeth Winnberg
- Department of Health Care Sciences Ersta Sköndal Bräcke University College Stockholm Sweden
| |
Collapse
|
39
|
Konieczny P, Mukherjee S, Stepniak-Konieczna E, Taylor K, Niewiadomska D, Piasecka A, Walczak A, Baud A, Dohno C, Nakatani K, Sobczak K. Cyclic mismatch binding ligands interact with disease-associated CGG trinucleotide repeats in RNA and suppress their translation. Nucleic Acids Res 2021; 49:9479-9495. [PMID: 34358321 PMCID: PMC8450082 DOI: 10.1093/nar/gkab669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by a limited expansion of CGG repeats in the FMR1 gene. Degeneration of neurons in FXTAS cell models can be triggered by accumulation of polyglycine protein (FMRpolyG), a by-product of translation initiated upstream to the repeats. Specific aims of our work included testing if naphthyridine-based molecules could (i) block FMRpolyG synthesis by binding to CGG repeats in RNA, (ii) reverse pathological alterations in affected cells and (iii) preserve the content of FMRP, translated from the same FMR1 mRNA. We demonstrate that cyclic mismatch binding ligand CMBL4c binds to RNA structure formed by CGG repeats and attenuates translation of FMRpolyG and formation of nuclear inclusions in cells transfected with vectors expressing RNA with expanded CGG repeats. Moreover, our results indicate that CMBL4c delivery can reduce FMRpolyG-mediated cytotoxicity and apoptosis. Importantly, its therapeutic potential is also observed once the inclusions are already formed. We also show that CMBL4c-driven FMRpolyG loss is accompanied by partial FMRP reduction. As complete loss of FMRP induces FXS in children, future experiments should aim at evaluation of CMBL4c therapeutic intervention in differentiated tissues, in which FMRpolyG translation inhibition might outweigh adverse effects related to FMRP depletion.
Collapse
Affiliation(s)
- Patryk Konieczny
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland.,Institute of Human Biology and Evolution, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Sanjukta Mukherjee
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.,National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore 560065, Karnataka, India
| | - Ewa Stepniak-Konieczna
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Agnieszka Piasecka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Agnieszka Walczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Chikara Dohno
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| |
Collapse
|
40
|
Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New Avenues for the Treatment of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22168363. [PMID: 34445070 PMCID: PMC8394361 DOI: 10.3390/ijms22168363] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.
Collapse
Affiliation(s)
- Amy Kim
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Kathryn Lalonde
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Aaron Truesdell
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Priscilla Gomes Welter
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Tatiana R. Rosenstock
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Pharmacology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: ; Tel.: +1-250-472-4597; Fax: +1-250-472-5505
| |
Collapse
|
41
|
Ananbeh H, Vodicka P, Kupcova Skalnikova H. Emerging Roles of Exosomes in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22084085. [PMID: 33920936 PMCID: PMC8071291 DOI: 10.3390/ijms22084085] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Huntington’s disease (HD) is a rare hereditary autosomal dominant neurodegenerative disorder, which is caused by expression of mutant huntingtin protein (mHTT) with an abnormal number of glutamine repeats in its N terminus, and characterized by intracellular mHTT aggregates (inclusions) in the brain. Exosomes are small extracellular vesicles that are secreted generally by all cell types and can be isolated from almost all body fluids such as blood, urine, saliva, and cerebrospinal fluid. Exosomes may participate in the spreading of toxic misfolded proteins across the central nervous system in neurodegenerative diseases. In HD, such propagation of mHTT was observed both in vitro and in vivo. On the other hand, exosomes might carry molecules with neuroprotective effects. In addition, due to their capability to cross blood-brain barrier, exosomes hold great potential as sources of biomarkers available from periphery or carriers of therapeutics into the central nervous system. In this review, we discuss the emerging roles of exosomes in HD pathogenesis, diagnosis, and therapy.
Collapse
|