1
|
Zhao Y, Du J, Shen X. Targeting myeloid-derived suppressor cells in tumor immunotherapy: Current, future and beyond. Front Immunol 2023; 14:1157537. [PMID: 37006306 PMCID: PMC10063857 DOI: 10.3389/fimmu.2023.1157537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the major negative regulators in tumor microenvironment (TME) due to their potent immunosuppressive capacity. MDSCs are the products of myeloid progenitor abnormal differentiation in bone marrow, which inhibits the immune response mediated by T cells, natural killer cells and dendritic cells; promotes the generation of regulatory T cells and tumor-associated macrophages; drives the immune escape; and finally leads to tumor progression and metastasis. In this review, we highlight key features of MDSCs biology in TME that are being explored as potential targets for tumor immunotherapy. We discuss the therapies and approaches that aim to reprogram TME from immunosuppressive to immunostimulatory circumstance, which prevents MDSC immunosuppression activity; promotes MDSC differentiation; and impacts MDSC recruitment and abundance in tumor site. We also summarize current advances in the identification of rational combinatorial strategies to improve clinical efficacy and outcomes of cancer patients, via deeply understanding and pursuing the mechanisms and characterization of MDSCs generation and suppression in TME.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Junfeng Du
- Department of General Surgery, The 7th Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| |
Collapse
|
2
|
Liang M, Liu Y, Zhang Z, Yang H, Dai N, Zhang N, Sun W, Guo Y, Kong J, Wang X, Wang M, Zhou F. Fusobacterium nucleatum induces MDSCs enrichment via activation the NLRP3 inflammosome in ESCC cells, leading to cisplatin resistance. Ann Med 2022; 54:989-1003. [PMID: 35435776 PMCID: PMC9891225 DOI: 10.1080/07853890.2022.2061045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To analyse the regulatory effect of Fusobacterium nucleatum (Fn) on NOD-like receptor protein 3 (NLRP3) and myeloid-derived suppressor cells (MDSCs) in oesophageal squamous cell carcinoma (ESCC) as well as its effect on cisplatin (CDDP) therapy and to explore its clinical significance. METHODS Fn infection, NLRP3 expression and MDSCs infiltration in ESCC tissues were detected by RNAscope and immunohistochemistry (IHC). The correlation between these three factors and the clinicopathological features and survival of ESCC patients was analysed. A coculture system of human peripheral blood monocytes (PBMCs) and ESCC cells was established to simulate the tumour microenvironment. In vitro and in vivo models were used to analyse the effects of Fn on the percentage of MDSCs in the coculture system and the NLRP3 expression level and CDDP sensitivity of ESCC cells. RESULTS Fn infection was consistent with high NLRP3 expression and MDSCs enrichment in ESCC tissues. Moreover, the survival time of ESCC patients was significantly shortened under Fn infection, high NLRP3 expression and MDSCs enrichment. In the in vitro and in vivo models, Fn induced abundant enrichment of MDSCs by inducing high expression of NLRP3 in ESCC cells and reducing the sensitivity of ESCC cells to CDDP. CONCLUSIONS Fn infection can induce high expression of NLRP3 in ESCC, lead to MDSCs enrichment, weaken the body's antitumour immunity, and lead to CDDP treatment resistance. The effective elimination of Fn and the inhibition of MDSCs enrichment may provide new strategies and treatments for ESCC.HighlightsThe survival of ESCC patients with Fn infection, high NLRP3 expression and MDSCs enrichment was significantly shortened.Fn infection could cause CDDP resistance in ESCC.Fn could induce the enrichment of MDSCs in the tumour microenvironment by activating NLRP3 in ESCC cells.
Collapse
Affiliation(s)
- Mengxia Liang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, China.,Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital(College of Clinical Medicine)of Henan University of Science and Technology, Luoyang, China
| | - Yiwen Liu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital(College of Clinical Medicine)of Henan University of Science and Technology, Luoyang, China
| | - Zheyuan Zhang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital(College of Clinical Medicine)of Henan University of Science and Technology, Luoyang, China
| | - Haijun Yang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, China
| | - Ningtao Dai
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, China
| | - Ning Zhang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, China
| | - Wei Sun
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital(College of Clinical Medicine)of Henan University of Science and Technology, Luoyang, China
| | - Yibo Guo
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital(College of Clinical Medicine)of Henan University of Science and Technology, Luoyang, China
| | - Jinyu Kong
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital(College of Clinical Medicine)of Henan University of Science and Technology, Luoyang, China
| | - Xiaopeng Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Min Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fuyou Zhou
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, China
| |
Collapse
|
3
|
Burkert SC, He X, Shurin GV, Nefedova Y, Kagan VE, Shurin MR, Star A. Nitrogen-Doped Carbon Nanotube Cups for Cancer Therapy. ACS APPLIED NANO MATERIALS 2022; 5:13685-13696. [PMID: 36711215 PMCID: PMC9879341 DOI: 10.1021/acsanm.1c03245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon nanomaterials have attracted significant attention for a variety of biomedical applications including sensing and detection, photothermal therapy, and delivery of therapeutic cargo. The ease of chemical functionalization, tunable length scales and morphologies, and ability to undergo complete enzymatic degradation make carbon nanomaterials an ideal drug delivery system. Much work has been done to synthesize carbon nanomaterials ranging from carbon dots, graphene, and carbon nanotubes to carbon nanocapsules, specifically carbon nanohorns or nitrogen-doped carbon nanocups. Here, we analyze specific properties of nitrogen-doped carbon nanotube cups which have been designed and utilized as drug delivery systems with the focus on the loading of these nanocapsules with specific therapeutic cargo and the targeted delivery for cancer therapy. We also summarize our targeted synthesis of gold nanoparticles on the open edge of nitrogen-doped carbon nanotube cups to create loaded and sealed nanocarriers for the delivery of chemotherapeutic agents to myeloid regulatory cells responsible for the immunosuppressive properties of the tumor microenvironment and thus tumor immune escape.
Collapse
Affiliation(s)
- Seth C. Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Yulia Nefedova
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Valerian E. Kagan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Corresponding author: Alexander Star —Department of Chemistry and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States;
| |
Collapse
|
4
|
Liu H, Wu X, Gan C, Wang L, Wang G, Yue L, Liu Z, Wei W, Su X, Zhang Q, Tan Z, Yao Y, Ouyang L, Yu L, Ye T. A novel multikinase inhibitor SKLB-YTH-60 ameliorates inflammation and fibrosis in bleomycin-induced lung fibrosis mouse models. Cell Prolif 2021; 54:e13081. [PMID: 34121240 PMCID: PMC8249783 DOI: 10.1111/cpr.13081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Idiopathic pulmonary fibrosis (IPF) is marked by the excessive accumulation of extracellular matrix, which participates in a variety of chronic diseases or injuries and seriously threatens human health. Due to the side effects of clinical drugs, there is still a need to develop novel and less toxic drugs to treat pulmonary fibrosis. MATERIALS AND METHODS SKLB-YTH-60 was developed through computer-aided drug design, de novo synthesis and high-throughput screening. We employed the bleomycin (BLM)-induced lung fibrosis animal models and used TGF-β1 to induce the epithelial-mesenchymal transition (EMT) of A549 cells in vitro. Meanwhile, the protein expression of collagen I and the α-smooth muscle actin (α-SMA), E-cadherin, p-FGFR1, p-PLCγ, p-Smad2/3 and p-Erk1/2 was detected by western blot. RESULTS YTH-60 has obvious anti-proliferative activity on fibroblasts and A549 cells. Moreover, YTH-60 could impair the EMT of A549 cells and suppressed fibrosis by inhibiting FGFR and TGF-β/Smad-dependent pathways. Intraperitoneal administration of preventive YTH-60 could significantly reduce the degree of fibrosis in mice and regulate the imbalance of the immune microenvironment. In addition, we observed that therapeutic YTH-60 treatment attenuated fibrotic changes in mice during the period of fibrosis. Importantly, YTH-60 has shown an acceptable oral bioavailability (F = 17.86%) and appropriate eliminated half-life time (T1/2 = 8.03 hours). CONCLUSIONS Taken together, these preclinical evaluations suggested that YTH-60 could be a promising drug candidate for treating IPF.
Collapse
Affiliation(s)
- Hongyao Liu
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xiuli Wu
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Cailing Gan
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Liqun Wang
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth HospitalSichuan UniversityChengduChina
| | - Guan Wang
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lin Yue
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhihao Liu
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wei Wei
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xingping Su
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Qianyu Zhang
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth HospitalSichuan UniversityChengduChina
| | - Zui Tan
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yuqin Yao
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth HospitalSichuan UniversityChengduChina
| | - Liang Ouyang
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Luoting Yu
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Tinghong Ye
- Sichuan University‐Oxford University Huaxi Gastrointestinal Cancer CentreState Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cell Immunol 2021; 364:104347. [PMID: 33838447 DOI: 10.1016/j.cellimm.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important immune-regulatory cells but their identification remains difficult. Here, we provide a critical view on selected surface markers, transcriptional and translational pathways commonly used to identify MDSC by specific, their developmental origin and new possibilities by transcriptional or proteomic profiling. Discrimination of MDSC from their non-suppressive counterparts is a prerequisite for the development of successful therapies. Understanding the switch mechanisms that direct granulocytic and monocytic development into a pro-inflammatory or anti-inflammatory direction will be crucial for therapeutic strategies. Manipulation of these myeloid checkpoints are exploited by tumors and pathogens, such as M. tuberculosis (Mtb), HIV or SARS-CoV-2, that induce MDSC for immune evasion. Thus, specific markers for MDSC identification may reveal also novel molecular candidates for therapeutic intervention at the level of MDSC.
Collapse
|
6
|
Yan L, Liang M, Yang T, Ji J, Jose Kumar Sreena GS, Hou X, Cao M, Feng Z. The Immunoregulatory Role of Myeloid-Derived Suppressor Cells in the Pathogenesis of Rheumatoid Arthritis. Front Immunol 2020; 11:568362. [PMID: 33042149 PMCID: PMC7522347 DOI: 10.3389/fimmu.2020.568362] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of cells that regulate the immune response and exert immunosuppressive effects on various immune cells. Current studies indicate that MDSCs have both anti-inflammatory effects and proinflammatory effects on rheumatoid arthritis (RA) and RA animal models. MDSCs inhibit CD4+ T cells, which secrete proinflammatory factors such as IFN-γ, IL-2, IL-6, IL-17, and TNF-α, by inhibiting iNOS, ROS, and IFN-γ and promoting the production of the anti-inflammatory factor IL-10. MDSCs can suppress dendritic cells by reducing MHC-II and CD86 expression, expand Treg cells in vitro through the action of IL-10, inhibit B cells through NO and PGE2, and promote Th17 cell responses by secreting IL-1β. As a type of osteoclast precursor cell, MDSCs can differentiate into osteoclasts through activation of the NF-κB pathway via IL-1α. Overall, our study reviews the research progress related to MDSCs in RA, focusing on the effects of MDSCs on various types of cells and aiming to provide ideas to help reveal the important role of MDSCs in RA.
Collapse
Affiliation(s)
- Lan Yan
- Medical College of China Three Gorges University, Yichang, China
| | - Mingge Liang
- Medical College of China Three Gorges University, Yichang, China
| | - Tong Yang
- Medical College of China Three Gorges University, Yichang, China
| | - Jinyu Ji
- Medical College of China Three Gorges University, Yichang, China
| | | | - Xiaoqiang Hou
- The Institute of Rheumatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Meiqun Cao
- Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhitao Feng
- Medical College of China Three Gorges University, Yichang, China
- The Institute of Rheumatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
7
|
A novel methodology of the myeloid-derived suppressor cells (MDSCs) generation with splenic stroma feeder cells. Exp Cell Res 2020; 394:112119. [PMID: 32485182 DOI: 10.1016/j.yexcr.2020.112119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 01/17/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a significant obstacle for immunotherapy of cancer. It is of great clinical relevance to study the mechanism of MDSCs accumulation in mouse spleens and establish a stable method to obtain high-purity MDSCs in vitro for further research. Here, we established a new method for amplifying a large number of highly pure MDSCs in vitro. To mimic the microenvironment of MDSCs development in vivo, mouse splenic stroma feeder cells and serum-free medium containing granulocyte-macrophage colony stimulating factor (GM-CSF) were used to induce myeloid precursors in mouse bone marrow cells, which differentiate into MDSCs. Development and immunological functions of the cells were monitored both in vivo and in vitro. A total of 4 × 108 MDSCs could be obtained from the bone marrow from one mouse, the ratio of CD11b+Gr-1+ MDSCs could reach 93.8% ± 3.3% after nine days of culture in vitro. Cultured MDSCs maintained a similar immunophenotype with MDSCs found in tumor-bearing mice. Colony forming assay in vitro and in vivo demonstrated that these were myeloid precursor cells. These cells generated high levels of reactive oxygen species and arginase 1 to prevent proliferation of CD8+ T cells in vitro. These also increased regulatory T (Treg) cells in blood while promoting the growth of lymphoma in vivo. In addition, cultured MDSCs effectively inhibited acute graft-versus-host disease (aGVHD). Our findings suggest that mouse splenic stroma plays an important role in the generation of MDSCs and represent a preliminary mechanism for the accumulation of MDSCs in spleens, and thereby lay the foundation for basic research and the clinical application of MDSCs.
Collapse
|
8
|
Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv Med Sci 2019; 64:104-110. [PMID: 30605863 DOI: 10.1016/j.advms.2018.08.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/03/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Difference in the metabolism of normal and cancer cells inspires to search for new, more specific and less toxic therapies than those currently used. The development of tumors is conditioned by genetic changes in cancer-transformed cells, immunological tolerance and immunosuppression. At the initial stages of carcinogenesis, the immune system shows anti-tumor activity, however later, cancer disrupts the function of Th1/Th17/Th2 lymphocytes by regulatory T (Treg) cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) and finally causes immunosuppression. Recently, much attention has been devoted to the influence of l-arginine metabolism disorders on both carcinogenesis and the immune system. l-Arginine is essential for the maturation of the T cell receptor zeta (TCRζ), and its absence deprives T-cells of the ability to interact with tumor antigens. MDSCs deplete l-arginine due to a high expression of arginase 1 (ARG1) and their number increases 4-10 times depending on the type of the cancer. L-Arginine has been shown to be essential for the survival and progression of arginine auxotrophic tumors. However, the progression of arginine non-auxotrophic tumors is independent of exogenous l-arginine, because these tumors have arginine-succinate synthetase (ASS1) activity and are available to produce l-arginine from citrulline. Clinical studies have confirmed the high efficacy of arginine auxotrophic tumors therapy based on the elimination of l-arginine. However, l-arginine supplementation may improve the results of treatment of patients with arginine non-auxotrophic cancer. This review is an attempt to explain the seemingly contradictory results of oncological therapies based on the deprivation or supplementation of l-arginine.
Collapse
|
9
|
Azuma T, Sato Y, Ohno T, Azuma M, Kume H. Serum soluble B7-H4 is a prognostic marker for patients with non-metastatic clear cell renal cell carcinoma. PLoS One 2018; 13:e0199719. [PMID: 30044793 PMCID: PMC6059393 DOI: 10.1371/journal.pone.0199719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
Background B7-H4 is a member of the B7 family of immune-regulatory ligands and is considered to be a negative regulator of the immune response. We investigated the clinical significance of serum soluble B7-H4 in patients with non-metastatic clear cell renal cell carcinoma. Methods We analyzed 108 patients in whom non-metastatic clear cell renal cancer was diagnosed at Tokyo Metropolitan Tama Medical Center between 2008 and 2013. We measured the serum soluble B7-H4 level using the Enzyme-Linked ImmunoSorbent Assay (ELISA) and evaluated the association between the peripheral blood neutrophil count and sB7-H4 as well as the utility of soluble B7-H4 as a prognostic biomarker for clear cell renal cancer. The Cox proportional hazards regression model was used to assess the PFS and OS with the soluble B7-H4 level. Results We detected high levels of soluble B7-H4 in the sera of 56% of patients with non-metastatic clear cell renal cell carcinoma versus only 10% of healthy donors. Elevated soluble B7-H4 levels were associated with changes in an elevated peripheral blood neutrophil count. The increase of soluble B7-H4 also was significantly associated with poor PFS and OS. Multivariate analysis showed that the elevation of the soluble B7-H4 level was an independent prognostic factor for PFS and OS. Conclusions Our data suggest that the association between serum soluble B7-H4 and peripheral blood neutrophil count, as well as the evaluation of serum soluble B7-H4 expression is a useful tool for predicting the prognosis of patients with non-metastatic clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Takeshi Azuma
- Department of Urology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Urology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Yujiro Sato
- Department of Urology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Tetsukuni Ohno
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Abstract
Myeloid-derived suppressor cells (MDSCs) have a strong immunosuppressive character that allows them to regulate immune responses and hinder overt inflammatory responses. In cancer, this leads to tumor immune evasion and disease progression. MDSCs come in at least two forms: monocytic (Mo-MDSCs) and granulocytic (G-MDSCs). The classical definition of MDSCs as immature myeloid cells blocked from differentiating has been challenged by recent studies suggesting that Mo-MDSCs and G-MDSCs may represent monocytes and granulocytes that have acquired immunosuppressive properties. The molecular mechanism behind their generation and their true origins are now widely debated. In this review we discuss the different proposed mechanisms of the generation of both types of MDSCs, with a special focus on human MDSCs in cancer.
Collapse
|
11
|
The prognostic value of the myeloid-mediated immunosuppression marker Arginase-1 in classic Hodgkin lymphoma. Oncotarget 2018; 7:67333-67346. [PMID: 27637084 PMCID: PMC5341879 DOI: 10.18632/oncotarget.12024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 01/04/2023] Open
Abstract
Purpose Neutrophilia is hallmark of classic Hodgkin Lymphoma (cHL), but its precise characterization remains elusive. We aimed at investigating the immunosuppressive role of high-density neutrophils in HL. Experimental design First, N-HL function was evaluated in vitro, showing increased arginase (Arg-1) expression and activity compared to healthy subjects. Second, we measured serum level of Arg-1 (s-Arg-1) by ELISA in two independent, training (N = 40) and validation (N = 78) sets. Results s-Arg-1 was higher in patients with advanced stage (p = 0.045), B-symptoms (p = 0.0048) and a positive FDG-PET scan after two cycles of chemotherapy (PET-2, p = 0.012). Baseline levels of s-Arg-1 > 200 ng/mL resulted in 92% sensitivity and 56% specificity to predict a positive PET-2. Patients showing s-Arg-1 levels > 200 ng/mL had a shorter progression free survival (PFS). In multivariate analysis, PET-2 and s-Arg-1 at diagnosis were the only statistically significant prognostic variables related to PFS (respectively p = 0.0004 and p = 0.012). Moving from PET-2 status and s-Arg-1 level we constructed a prognostic score to predict long-term treatment outcome: low s-Arg-1 and negative PET-2 scan (score 0, N = 63), with a 3-Y PFS of 89.5%; either positive PET-2 or high s-Arg-1 (score 1, N = 46) with 3-Y PFS of 67.6%, and both positive markers (score 2, N = 9) with a 3-Y PFS of 37% (p = 0.0004). Conclusions We conclude that N-HL are immunosuppressive through increased Arg-1 expression, a novel potential biomarker for HL prognosis.
Collapse
|
12
|
Kersh AE, Ng S, Chang YM, Sasaki M, Thomas SN, Kissick HT, Lesinski GB, Kudchadkar RR, Waller EK, Pollack BP. Targeted Therapies: Immunologic Effects and Potential Applications Outside of Cancer. J Clin Pharmacol 2018; 58:7-24. [PMID: 29136276 PMCID: PMC5972536 DOI: 10.1002/jcph.1028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Two pharmacologic approaches that are currently at the forefront of treating advanced cancer are those that center on disrupting critical growth/survival signaling pathways within tumor cells (commonly referred to as "targeted therapies") and those that center on enhancing the capacity of a patient's immune system to mount an antitumor response (immunotherapy). Maximizing responses to both of these approaches requires an understanding of the oncogenic events present in a given patient's tumor and the nature of the tumor-immune microenvironment. Although these 2 modalities were developed and initially used independently, combination regimens are now being tested in clinical trials, underscoring the need to understand how targeted therapies influence immunologic events. Translational studies and preclinical models have demonstrated that targeted therapies can influence immune cell trafficking, the production of and response to chemokines and cytokines, antigen presentation, and other processes relevant to antitumor immunity and immune homeostasis. Moreover, because these and other effects of targeted therapies occur in nonmalignant cells, targeted therapies are being evaluated for use in applications outside of oncology.
Collapse
Affiliation(s)
- Anna E. Kersh
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Spencer Ng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Min Chang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA
| | | | - Susan N. Thomas
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haydn T. Kissick
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory B. Lesinski
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ragini R. Kudchadkar
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Edmund K. Waller
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Brian P. Pollack
- Atlanta VA Medical Center, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
- Emory University Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
13
|
Abstract
The relatively high DNA mutational burden in melanoma allows for the creation of potentially "foreign," immune-stimulating neoantigens, and leads to its exceptional immunogenicity. Brisk tumor-infiltrating lymphocytes, a marker of immune editing, confer improved overall survival in melanoma, possibly due to reduced sentinel lymph node spread. Meanwhile, T-cell-stimulating drugs, so-called T-cell checkpoint inhibitors, which reverse peripheral tolerance-dependent tumor escape, have demonstrated unparalleled clinical success in metastatic melanoma. Markers to predict response to immunotherapy are currently imperfect, and the subject of intense research, which will guide the future of ancillary pathologic testing in this setting.
Collapse
Affiliation(s)
- Jennifer S Ko
- Department of Anatomic Pathology, Cleveland Clinic, 9500 Euclid Avenue, L2-150, Cleveland, OH 44195, USA.
| |
Collapse
|
14
|
Abstract
Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.
Collapse
|
15
|
Secondini C, Coquoz O, Spagnuolo L, Spinetti T, Peyvandi S, Ciarloni L, Botta F, Bourquin C, Rüegg C. Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti-metastatic effects of VEGFR-2 blockade. Oncoimmunology 2017; 6:e1316437. [PMID: 28680747 DOI: 10.1080/2162402x.2017.1316437] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 01/18/2023] Open
Abstract
Tumor angiogenesis promotes tumor growth and metastasis. Anti-angiogenic therapy in combination with chemotherapy is used for the treatment of metastatic cancers, including breast cancer but therapeutic benefits are limited. Mobilization and accumulation of myeloid-derived suppressor cells (MDSC) during tumor progression and therapy have been implicated in metastasis formation and resistance to anti-angiogenic treatments. Here, we used the 4T1 orthotopic syngenic mouse model of mammary adenocarcinoma to investigate the effect of VEGF/VEGFR-2 axis inhibition on lung metastasis, MDSC and regulatory T cells (Tregs). We show that treatment with the anti-VEGFR-2 blocking antibody DC101 inhibits primary tumor growth, angiogenesis and lung metastasis. DC101 treatment had no effect on MDSC mobilization, but partially attenuated the inhibitory effect of mMDSC on T cell proliferation and decreased the frequency of Tregs in primary tumors and lung metastases. Strikingly, DC101 treatment induced the expression of the immune-suppressive molecule arginase I in mMDSC. Treatment with the arginase inhibitor Nω-hydroxy-nor-Arginine (Nor-NOHA) reduced the inhibitory effect of MDSC on T cell proliferation and inhibited number and size of lung metastasis but had little or no additional effects in combination with DC101. In conclusion, DC101 treatment suppresses 4T1 tumor growth and metastasis, partially reverses the inhibitory effect of mMDSC on T cell proliferation, decreases Tregs in tumors and increases arginase I expression in mMDSC. Arginase inhibition suppresses lung metastasis independently of DC101 effects. These observations contribute to the further characterization of the immunomodulatory effect of anti-VEGF/VEGFR2 therapy and provide a rationale to pursue arginase inhibition as potential anti-metastatic therapy.
Collapse
Affiliation(s)
- Chiara Secondini
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Oriana Coquoz
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Lorenzo Spagnuolo
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Thibaud Spinetti
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Sanam Peyvandi
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Laura Ciarloni
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Francesca Botta
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Carole Bourquin
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,Division of Experimental Oncology, University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Najac C, Chaumeil MM, Kohanbash G, Guglielmetti C, Gordon JW, Okada H, Ronen SM. Detection of inflammatory cell function using (13)C magnetic resonance spectroscopy of hyperpolarized [6-(13)C]-arginine. Sci Rep 2016; 6:31397. [PMID: 27507680 PMCID: PMC4979036 DOI: 10.1038/srep31397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized (13)C probe, [6-(13)C]-arginine, to image arginase activity. We show that [6-(13)C]-arginine can be hyperpolarized, and hyperpolarized [(13)C]-urea production from [6-(13)C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [(13)C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-(13)C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages.
Collapse
Affiliation(s)
- Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
17
|
Cheng S, Zhang X, Huang N, Qiu Q, Jin Y, Jiang D. Down-regulation of S100A9 inhibits osteosarcoma cell growth through inactivating MAPK and NF-κB signaling pathways. BMC Cancer 2016; 16:253. [PMID: 27020242 PMCID: PMC4810516 DOI: 10.1186/s12885-016-2294-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 03/23/2016] [Indexed: 02/05/2023] Open
Abstract
Background Osteosarcoma (OS) is well-known for poor prognosis due to its high incidence of proliferation and metastasis. Researches have provided valuable insights into the tumorigenesis of S100A9 in some cancers. We aimed to understand the expression level, functions and mechanisms of S100A9 in human osteosarcoma for the first time. Methods The expression of S100A9 protein was detected in 120 human osteosarcoma tissues and 40 normal human bone tissues using tissue microarrays analysis. The knockdown of S100A9 induced by RNA interference (RNAi) method in three osteosarcoma cell lines (U2OS, 143B, MG63) was applied to analyze the effects of S100A9 on cell proliferation, cell cycle distribution, migration, invasion and xenotransplanted tumors. Moreover, MAPK-ERK1/2, MAPK-p38, NF-κB-p65, NF-κB-p50, p21, p27, CDK2 and CDK4 were tested. Results The expression of S100A9 was increased in human osteosarcoma issues and was positively correlated with clinical classification and survival rate. Down-regulation of S100A9 inhibited OS cellular proliferation, migration, invasion and cell cycle S phase in vitro and suppressed tumor formation in vivo with the reduction on PCNA and Ki67 proliferation index. Our data also demonstrated that knockdown of S100A9 repressed the protein levels of phospho-ERK1/2, phospho-p50, phospho-p65 except phospho-p38, and prompted up-regulation of p21 and p27 leading to inactivation of cyclin dependent kinase 2(CDK2) and cyclin dependent kinase 4(CDK4). Conclusions S100A9 might be a significant role for predicting osteosarcoma prognosis and down-regulation of S100A9 could be used as a potential target for gene therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2294-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Si Cheng
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xi Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Institute of Life Sciences,Chongqing Medical University, Chongqing, PR China
| | - Quanhe Qiu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ying Jin
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, WestChina School of Stomatology, Sichuan University, Chongqing, PR China
| | - Dianming Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
18
|
Hunter K. The role of individual inheritance in tumor progression and metastasis. J Mol Med (Berl) 2015; 93:719-25. [PMID: 26054921 DOI: 10.1007/s00109-015-1299-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/02/2023]
Abstract
Metastasis, the dissemination and growth of tumor cells at secondary sites, is the primary cause of patient mortality from solid tumors. Metastasis is an extremely complex, inefficient process requiring contributions of not only the tumor cell but also local and distant environmental factors, at both the cellular and molecular level. Variation in the function of any of the steps in the metastatic cascade may therefore have profound implications for the ultimate course of the disease. In addition to the somatic and cellular heterogeneity that can affect cancer outcome, an individual's specific ancestry or genetic background can also significantly influence metastatic progression. These inherited variants not only encoded for metastatic susceptibility but also provided a window to study critical factors that are not easily accessible with current technologies. Furthermore, investigations into inherited metastatic susceptibility enable identification of important molecular and cellular processes that are not subject to mutation and are consequently not detectable by standard cancer genome sequencing strategies. Incorporation of inherited variation into metastasis research therefore provides methods to more comprehensively investigate the etiology of the lethal consequences of tumor progression.
Collapse
Affiliation(s)
- Kent Hunter
- Laboratory of Cancer Biology and Genetics, CCR/NCI/NIH, Building 37 Room 5046C, 37 Convent Drive, Bethesda, MD, 20892-4264, USA,
| |
Collapse
|
19
|
Zakharia Y, Zakharia K, Rixe O. Axitinib: from preclinical development to future clinical perspectives in renal cell carcinoma. Expert Opin Drug Discov 2015; 10:925-35. [DOI: 10.1517/17460441.2015.1045411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yousef Zakharia
- 1University of Iowa Division of Hematology/Oncology and Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Kais Zakharia
- 2Mayo Clinic College of Medicine - Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA
| | - Olivier Rixe
- 3University of New Mexico Cancer Center, Division of Hematology/Oncology, Albuquerque, New Mexico, USA
| |
Collapse
|
20
|
Raychaudhuri B, Rayman P, Huang P, Grabowski M, Hambardzumyan D, Finke JH, Vogelbaum MA. Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. J Neurooncol 2015; 122:293-301. [DOI: 10.1007/s11060-015-1720-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/03/2015] [Indexed: 01/02/2023]
|
21
|
Zhao Y, Burkert SC, Tang Y, Sorescu DC, Kapralov AA, Shurin GV, Shurin MR, Kagan VE, Star A. Nano-gold corking and enzymatic uncorking of carbon nanotube cups. J Am Chem Soc 2015; 137:675-84. [PMID: 25530234 PMCID: PMC4308760 DOI: 10.1021/ja511843w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Because
of their unique stacked, cup-shaped, hollow compartments,
nitrogen-doped carbon nanotube cups (NCNCs) have promising potential
as nanoscale containers. Individual NCNCs are isolated from their
stacked structure through acid oxidation and subsequent probe-tip
sonication. The NCNCs are then effectively corked with gold nanoparticles
(GNPs) by sodium citrate reduction with chloroauric acid, forming
graphitic nanocapsules with significant surface-enhanced Raman signature.
Mechanistically, the growth of the GNP corks starts from the nucleation
and welding of gold seeds on the open rims of NCNCs enriched with
nitrogen functionalities, as confirmed by density functional theory
calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase
(MPO), can effectively open the corked NCNCs through GNP detachment,
with subsequent complete enzymatic degradation of the graphitic shells.
This controlled opening and degradation was further carried out in
vitro with human neutrophils. Furthermore, the GNP-corked NCNCs were
demonstrated to function as novel drug delivery carriers, capable
of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived
suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade
of MDSC immunosuppressive potential.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology 2014; 2:e24117. [PMID: 23734336 PMCID: PMC3654606 DOI: 10.4161/onci.24117] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 01/14/2023] Open
Abstract
The goal of achieving measurable response with cancer immunotherapy requires counteracting the immunosuppressive characteristics of tumors. One of the mechanisms that tumors utilize to escape immunosurveillance is the activation of myeloid derived suppressor cells (MDSCs). Upon activation by tumor-derived signals, MDSCs inhibit the ability of the host to mount an anti-tumor immune response via their capacity to suppress both the innate and adaptive immune systems. Despite their relatively recent discovery and characterization, anti-MDSC agents have been identified, which may improve immunotherapy efficacy.
Collapse
Affiliation(s)
- Todd J Waldron
- Gastroenterology Division; Department of Medicine; University of Pennsylvania; Philadelphia, PA USA ; Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
23
|
Zhong H, Gutkin DW, Han B, Ma Y, Keskinov AA, Shurin MR, Shurin GV. Origin and pharmacological modulation of tumor-associated regulatory dendritic cells. Int J Cancer 2014; 134:2633-45. [PMID: 24443321 DOI: 10.1002/ijc.28590] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/29/2022]
Abstract
Protumorigenic activity of immune regulatory cells has been proven to play a major role in precluding immunosurveillance and limiting the efficacy of anticancer therapies. Although several approaches have been offered to deplete myeloid-derived suppressor cells (MDSC) and regulatory T cells, there are no data on how to control suppressive dendritic cell (DC) accumulation or function in the tumor environment. Although immunosuppressive function of DC in cancer was implicated to immature and plasmacytoid DC, details of how conventional DC (cDC) develop immunosuppressive properties remain less understood. Here, we show that the development of lung cancer in mice was associated with fast accumulation of regulatory DC (regDC) prior to the appearance of MDSC. Using the in vitro and in vivo approaches, we demonstrated that (i)both cDC and MDSC could be polarized into protumor regDC in the lung cancer environment; (ii) cDC → regDC polarization was mediated by the small Rho GTPase signaling, which could be controlled by noncytotoxic doses of paclitaxel; and (iii) prevention of regDC appearance increased the antitumor potential of DC vaccine in lung cancer. These findings not only bring new players to the family of myeloid regulatory cells and provide new targets for cancer therapy, but offer novel insights into the immunomodulatory capacity of chemotherapeutic agents used in low, noncytotoxic doses.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol 2013; 10:41-62. [PMID: 24325346 DOI: 10.1586/1744666x.2014.865519] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immune escape is the final phase of cancer immunoediting process wherein cancer modulates our immune system to escape from being destroyed by it. Many cellular and molecular events govern the cancer's evasion of host immune response. The tumor undergoes continuous remodeling at the genetic, epigenetic and metabolic level to acquire resistance to apoptosis. At the same time, it effectively modifies all the components of the host's immunome so as to escape from its antitumor effects. Moreover, it induces accumulation of suppressive cells like Treg and myeloid derived suppressor cells and factors which also enable it to elude the immune system. Recent research in this area helps in defining the role of newer players like miRNAs and exosomes in immune escape. The immunotherapeutic approaches developed to target the escape phase appear quite promising; however, the quest for a perfect therapeutic agent that can achieve maximum cure with minimal toxicity continues.
Collapse
Affiliation(s)
- Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh-160012, India
| | | |
Collapse
|
25
|
Raymond E, Dalgleish A, Damber JE, Smith M, Pili R. Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol 2013; 73:1-8. [PMID: 24162378 PMCID: PMC3889691 DOI: 10.1007/s00280-013-2321-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022]
Abstract
Tasquinimod is a small molecule with pleiotropic effects on the tumour microenvironment. Tasquinimod inhibits the growth and metastasis of tumour cells in vitro and in vivo. It targets the tumour microenvironment, enhancing the host immune response and inhibiting the angiogenic response. Tasquinimod influences infiltrating myeloid cells in the tumour milieu shifting the balance towards a less immunosuppressive phenotype. Myeloid-derived suppressor cells and tumour-associated macrophages are major components of the immunosuppressive microenvironment and as a result promote tumour growth and favour angiogenesis and metastasis formation. Growing evidence indicates that tasquinimod targets these myeloid cells and modulates local tumour immunity by blocking the interaction between the multifunctional protein S100A9 and its ligands receptor of advanced glycation end products and Toll-like receptor 4. Its anti-angiogenic effects are achieved at least in part through these effects on regulatory myeloid cells and also potentially through inactivating histone deacetylase-4 and reducing expression of hypoxia-inducible factor 1-controlled genes. The aim is to comprehensively review the mode of action of tasquinimod as a novel oral anti-cancer agent. Based on its unique combination of effects, tasquinimod is a novel agent with clinical therapeutic potential in various solid tumours, both alone and as part of rational combination therapy.
Collapse
Affiliation(s)
- E Raymond
- Department of Medical Oncology, Beaujon University Hospital, Clichy, France,
| | | | | | | | | |
Collapse
|
26
|
Yu F, Shi Y, Wang J, Li J, Fan D, Ai W. Deficiency of Kruppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells. Int J Cancer 2013; 133:2872-83. [PMID: 23737434 DOI: 10.1002/ijc.28302] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 05/17/2013] [Indexed: 12/27/2022]
Abstract
Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development.
Collapse
Affiliation(s)
- Fang Yu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC; Department of Nutrition and Food Hygiene, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
27
|
Batty N, Ghonimi E, Feng L, Fayad L, Younes A, Rodriguez MA, Romaguera JE, McLaughlin P, Samaniego F, Kwak LW, Hagemeister FB. The absolute monocyte and lymphocyte prognostic index for patients with diffuse large B-cell lymphoma who receive R-CHOP. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2012; 13:15-8. [PMID: 23137719 DOI: 10.1016/j.clml.2012.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/02/2012] [Accepted: 09/14/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND The baseline absolute monocyte count and absolute lymphocyte count were used to generate a prognostic index (the AMLPI) for survival in diffuse large B-cell lymphoma (DLBCL). METHODS Data from 245 patients with DLBCL who were treated with standard R-CHOP (rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, prednisone) were reviewed. By using the values previously reported for the AMLPI, its prognostic value was examined in our population. RESULTS After a median follow-up of 22 months for censored observations, the 3-year progression-free survival (PFS) rates for the international prognostic index (IPI) 0-2 and 3-5 risk groups were 73% and 58%, respectively (P = .0004); comparable overall survival (OS) rates were 88% and 68%, respectively (P < .0001). For patients with IPI scores of 0-2, 1-year PFS rates for AMLPI low-, intermediate-, and high-risk groups were 92%, 89%, and 80%, respectively (P = .022); comparable 1-year OS rates were 96%, 95%, and 80%, respectively (P = .049). By multivariate analysis, with the adjustment of IPI in the model, AMLPI effects (low- vs. high-risk groups) on PFS and OS rates were significant, with P = .046 (hazard ratio [HR] 0.402 [95% CI, 0.164-0.986] and P = .052 (HR 0.325 [95% CI, 0.104-1.011]), respectively. CONCLUSIONS The absolute monocyte and lymphocyte counts prognostic index (the AMLPI) may add prognostic value beyond that of the IPI for patients with DLBCL who receive R-CHOP.
Collapse
Affiliation(s)
- Nicolas Batty
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Markowitz J, Carson WE. Review of S100A9 biology and its role in cancer. Biochim Biophys Acta Rev Cancer 2012; 1835:100-9. [PMID: 23123827 DOI: 10.1016/j.bbcan.2012.10.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/28/2022]
Abstract
S100A9 is a calcium binding protein with multiple ligands and post-translation modifications that is involved in inflammatory events and the initial development of the cancer cell through to the development of metastatic disease. This review has a threefold purpose: 1) describe the S100A9 structural elements important for its biological activity, 2) describe the S100A9 biology in the context of the immune system, and 3) illustrate the role of S100A9 in the development of malignancy via interactions with the immune system and other cellular processes.
Collapse
Affiliation(s)
- Joseph Markowitz
- OSU Comprehensive Cancer Center, The Ohio State University, 320 West 10th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
29
|
Neutrophil Number After Interferon-Alfa Treatment is an Independent Predictive Marker of Overall Survival in Metastatic Renal Cell Carcinoma. Clin Genitourin Cancer 2012; 10:180-4. [DOI: 10.1016/j.clgc.2012.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 12/24/2022]
|
30
|
Zhang M, Kim JA. Effect of molecular size and modification pattern on the internalization of water soluble β-(1 → 3)-(1 → 4)-glucan by primary murine macrophages. Int J Biochem Cell Biol 2012; 44:914-27. [PMID: 22679629 DOI: 10.1016/j.biocel.2012.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been shown that -(1→3)-(1→4)-glucans (BG34) from barley and oats can trigger recognition and internalization by murine and human macrophages. Increasing evidence has suggested that macrophage recognition and internalization of BG34 are dramatically affected by the purity of BG34, the molecular weight and chemical modification. In this study, we investigated the structural features of BG34 for macrophage recognition and internalization. We prepared homogeneous BG34s of 10 kDa (BG34-10),200 kDa (BG34-200) and 500 kDa (BG34-500) with high purity, and then introduced green fluorescence FITC to the reducing ends (Re) or main chain (Mc). The results of size exclusion chromatography, 13C NMR,fluorescence microscopy, FACS analyses and MTS assay demonstrated that non-toxic BG34 of 10 kDa(BG34-10) effectively trigger macrophage internalization. The internalization was adversely affected by modifying the main chain of BG34-10 but not the reducing end. Studies using blocking antibodies on several CD11b+ and CD11b− cells suggested that CD11b may play an important role in mediating macrophage internalization of BG34-10. Quantitative RT-PCR and intracellular cytokine stain revealed that macrophages generate increased level of CD11b and TNF-α in response to BG34-10. This study for the first time demonstrated the molecular size (10 kDa) and pattern of modification (reducing end modification)for BG34-10 to mediate macrophage internalization. Since BG34 is water soluble, biocompatible and biodegradable FDA-approved material, this mechanism of BG34-10 can be used to design drug delivery system targeting macrophages.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
31
|
Michels T, Shurin GV, Naiditch H, Sevko A, Umansky V, Shurin MR. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner. J Immunotoxicol 2012; 9:292-300. [PMID: 22283566 DOI: 10.3109/1547691x.2011.642418] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myeloid cells play a key role in the outcome of anti-tumor immunity and response to anti-cancer therapy, since in the tumor microenvironment they may exert both stimulatory and inhibitory pressures on the proliferative, angiogenic, metastatic, and immunomodulating potential of tumor cells. Therefore, understanding the mechanisms of myeloid regulatory cell differentiation is critical for developing strategies for the therapeutic reversal of myeloid derived suppressor cell (MDSC) accumulation in the tumor-bearing hosts. Here, using an in vitro model system, several potential mechanisms of the direct effect of paclitaxel on MDSC were tested, which might be responsible for the anti-tumor potential of low-dose paclitaxel therapy in mice. It was hypothesized that a decreased level of MDSC in vivo after paclitaxel administration might be due to (i) the blockage of MDSC generation, (ii) an induction of MDSC apoptosis, or (iii) the stimulation of MDSC differentiation. The results revealed that paclitaxel in ultra-low concentrations neither increased MDSC apoptosis nor blocked MDSC generation, but stimulated MDSC differentiation towards dendritic cells. This effect of paclitaxel was TLR4-independent since it was not diminished in cell cultures originated from TLR4-/- mice. These results support a new concept that certain chemotherapeutic agents in ultra-low non-cytotoxic doses may suppress tumor progression by targeting several cell populations in the tumor microenvironment, including MDSC.
Collapse
|
32
|
Sim SH, Ahn YO, Yoon J, Kim TM, Lee SH, Kim DW, Heo DS. Influence of chemotherapy on nitric oxide synthase, indole-amine-2,3-dioxygenase and CD124 expression in granulocytes and monocytes of non-small cell lung cancer. Cancer Sci 2011; 103:155-60. [PMID: 22107611 DOI: 10.1111/j.1349-7006.2011.02158.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is no specific marker to evaluate the immuno-suppressive status of cancer patients. Several markers, such as CD124, latency-associated peptide (LAP), arginase I, indole-amine-2,3-dioxygenase (IDO) and inducible nitric oxide synthase (iNOS), are known to be associated with immune suppression. However, there is little research regarding the change in these parameters after chemotherapy. The present study enrolled 23 chemo-naïve non-small cell lung cancer (NSCLC) patients and 19 healthy donors. From the 23 NSCLC patients, 11 post-chemotherapy samples were collected. Surface and functional markers were analyzed by flow-cytometry. The mean fluorescence intensities (MFI) of iNOS were higher and the MFI of LAP were lower in NSCLC patient than in healthy donors (P < 0.05). In a comparison of pre-chemotherapy and post-chemotherapy groups with NSCLC, the MFI of iNOS on granulocytes and monocytes and IDO on monocytes were significantly lower in the post-chemotherapy group than in the pre-chemotherapy group (P < 0.05). In a serial analysis with 10 patients who had paired samples and who showed clinical benefits from chemotherapy, the MFI of iNOS for both cell types, and of IDO and CD124 for monocytes decreased significantly after chemotherapy, compared with those before chemotherapy (iNOS, 4.79 ± 1.75 vs 2.83 ± 0.77, P = 0.005, for granulocytes and 6.15 ± 2.94 vs 2.76 ± 1.05, P = 0.005 for monocytes; IDO, 6.81 ± 3.43 vs 4.64 ± 1.55, P = 0.012 for monocytes; CD124, 2.31 ± 0.39 vs 1.94 ± 0.43, P = 0.008 for monocytes). The changes in arginase I and LAP expression were not significant. The changes in iNOS, IDO and CD124 expression were significant after chemotherapy in NSCLC. Further evaluation of the possibility of immune status monitoring using these parameters is needed.
Collapse
Affiliation(s)
- Sung Hoon Sim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Naiditch H, Shurin MR, Shurin GV. Targeting myeloid regulatory cells in cancer by chemotherapeutic agents. Immunol Res 2011; 50:276-85. [PMID: 21717082 DOI: 10.1007/s12026-011-8213-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent findings in humans and numerous experimental models provide evidence of the important role of immune regulatory cells in cancer and various diseases. "Myeloid regulatory cells" (MRC) include myeloid-derived suppressor cells, regulatory dendritic cells, regulatory macrophages, and subsets of granulocytes that expand during pathologic conditions and that have the ability to suppress cellular immunity. A decrease in MRC population and/or activity has been shown to have positive immune-potentiating effects. Several clinical trials have thus been initiated with the goal of manipulating the expansion or activation of these cells and thereby improving patient immune responses. New data from our own and other laboratories recently revealed that ultralow noncytotoxic doses of certain chemotherapeutic drugs could up-regulate antitumor immunity by modulating the formation, differentiation, and/or function of MRC. This new phenomenon, termed "chemomodulation," allows for the regulation of the tumor microenvironment without the undesirable toxic effects associated with conventional chemotherapy. However, further studies are required before this new targeted therapy can find its way to patients with cancer.
Collapse
Affiliation(s)
- Hiam Naiditch
- Departments of Pathology and Immunology, Experimental Pathology, University of Pittsburgh Medical Center, S735 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
34
|
A Th1 cytokine-enriched microenvironment enhances tumor killing by activated T cells armed with bispecific antibodies and inhibits the development of myeloid-derived suppressor cells. Cancer Immunol Immunother 2011; 61:497-509. [PMID: 21971587 DOI: 10.1007/s00262-011-1116-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Abstract
In this study, we investigated whether activated T cells (ATC) armed with bispecific antibodies (aATC) can inhibits tumor growth and MDSC development in a Th1 cytokine-enriched (IL-2 and IFN-γ) microenvironment. Cytotoxicity mediated by aATC was significantly higher (P < 0.001) against breast cancer cell lines in the presence of Th1 cytokines as compared with control co-cultures. In the presence of aATC, CD33+ /CD11b+ /CD14- /HLA-DR- MDSC population was reduced significantly under both control (P < 0.03) and Th1-enriched (P < 0.036) culture conditions. Cytokine analysis in the culture supernatants showed high levels of MDSC suppressive chemokines CXCL9 and CXCL10 in Th1-enriched culture supernatants with highly significant increase (P < 0.001) in the presence of aATC. Interestingly, MDSC recovered from co-cultures without aATC showed potent ability to suppress activated T-cell-mediated cytotoxicity (P < 0.001), IFN-γ production (P < 0.01) and T-cell proliferation (P < 0.05) compared to those recovered from aATC-containing co-cultures. These data suggest that aATC can mediate enhanced killing of tumor cells and may suppress MDSC and T(reg) differentiation, and presence of Th() cytokines potentiates aATC-induced suppression of MDSC, suggesting that Th1-enriching immunotherapy may be beneficial in cancer treatment.
Collapse
|
35
|
Wilcox RA, Ristow K, Habermann TM, Inwards DJ, Micallef INM, Johnston PB, Colgan JP, Nowakowski GS, Ansell SM, Witzig TE, Markovic SN, Porrata L. The absolute monocyte and lymphocyte prognostic score predicts survival and identifies high-risk patients in diffuse large-B-cell lymphoma. Leukemia 2011; 25:1502-9. [PMID: 21606957 DOI: 10.1038/leu.2011.112] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the use of modern immunochemotherapy regimens, almost 50% of patients with diffuse large-B-cell lymphoma will relapse. Current prognostic models, including the International Prognostic Index, incorporate patient and tumor characteristics. In contrast, recent observations show that variables related to host adaptive immunity and the tumor microenvironment are significant prognostic variables in non-Hodgkin lymphoma. Therefore, we retrospectively examined the absolute monocyte and lymphocyte counts as prognostic variables in a cohort of 366 diffuse large-B-cell lymphoma patients who were treated between 1993 and 2007 and followed at a single institution. The absolute monocyte and lymphocyte counts in univariate analysis predicted progression-free and overall survival when analyzed as continuous and dichotomized variables. On multivariate analysis performed with factors included in the IPI, the absolute monocyte and lymphocyte counts remained independent predictors of progression-free and overall survival. Therefore, the absolute monocyte and lymphocyte counts were combined to generate a prognostic score that identified patients with an especially poor overall survival. This prognostic score was independent of the IPI and added to its ability to identify high-risk patients.
Collapse
Affiliation(s)
- R A Wilcox
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tadmor T, Attias D, Polliack A. Myeloid-derived suppressor cells--their role in haemato-oncological malignancies and other cancers and possible implications for therapy. Br J Haematol 2011; 153:557-67. [PMID: 21477210 DOI: 10.1111/j.1365-2141.2011.08678.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells at different stages of maturation that play a role in cancer tolerance and function as an immune-suppressive cell subpopulation. They utilize different mechanisms to block both innate and adaptive arms of anti-tumour immunity, mostly through inhibition of T cell activation and expansion. Further advances in our understanding of this cell population in both murine models and humans has enabled more accurate characterization of their phenotype and the recognition of two major classes of MDSCs: granulocytic and monocytic. Recently, the mechanism of action and clinical importance of MDSCs has been more clearly defined and their interactions with cancer cells have been shown to be among the factors influencing tumour development and induction of tolerance. Most of the earlier studies were performed using murine models, but recent clinical investigations have shown their potential role in human cancers. Here, we review the origin of MDSCs, their mechanisms of action, the factors influencing their production and related signalling pathways. We focus on their role in human solid tumours and haemato-oncological malignancies, and relate to possible novel therapeutic approaches targeting MDSCs which could be considered together with other anticancer strategies in the not too distant future.
Collapse
Affiliation(s)
- Tamar Tadmor
- Haematology Unit, Bnai-Zion Medical Centre, Haifa, Israel.
| | | | | |
Collapse
|
37
|
Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 2010; 40:2969-75. [PMID: 21061430 DOI: 10.1002/eji.201040895] [Citation(s) in RCA: 447] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) play an important role in the cellular network regulating immune responses in cancer, chronic infectious diseases, autoimmunity, and in other pathological conditions. Morphological, phenotypic and functional heterogeneity is a hallmark of MDSC. This heterogeneity demonstrates the plasticity of this immune suppressive myeloid compartment, and shows how various tumors and infectious agents can have similar biological effects on myeloid cells despite the differences in the factors that they produce to influence the immune system; however, such a heterogeneity creates ambiguity in the definition of MDSC as well as confusion regarding the origin and fate of these cells. In this review, we will discuss recent findings that help to better clarify these issues and to determine the place of MDSC within the myeloid cell lineage.
Collapse
Affiliation(s)
- Je-In Youn
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
38
|
Boros P, Ochando JC, Chen SH, Bromberg JS. Myeloid-derived suppressor cells: natural regulators for transplant tolerance. Hum Immunol 2010; 71:1061-6. [PMID: 20705113 PMCID: PMC3713408 DOI: 10.1016/j.humimm.2010.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/27/2010] [Accepted: 08/04/2010] [Indexed: 12/18/2022]
Abstract
Myeloid derived suppressor cells (MDSC) contribute to the negative regulation of immune response in cancer patients. This review summarizes results on important issues related to MDSC biology, including expansion and activation of MDSC, phenotype, and subsets as well pathways and different mechanisms by which these cells exert their suppressive effect. Recent observations suggesting that MDSC may have roles in transplant tolerance are presented. Although therapeutic targeting and destruction of MDCS is of primary interest in cancer patients, in transplantation it will instead be necessary to induce, expand, and activate these cells; thus current possibilities for in vitro generation of MDSC are also discussed.
Collapse
Affiliation(s)
- Peter Boros
- Recanati/Miller Transplantation Institute, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | |
Collapse
|
39
|
Chi N, Maranchie JK, Appleman LJ, Storkus WJ. Update on vaccine development for renal cell cancer. Res Rep Urol 2010; 2:125-41. [PMID: 24198621 PMCID: PMC3703676 DOI: 10.2147/rru.s7242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) remains a significant health concern that frequently presents as metastatic disease at the time of initial diagnosis. Current first-line therapeutics for the advanced-stage RCC include antiangiogenic drugs that have yielded high rates of objective clinical response; however, these tend to be transient in nature, with many patients becoming refractory to chronic treatment with these agents. Adjuvant immunotherapies remain viable candidates to sustain disease-free and overall patient survival. In particular, vaccines designed to optimize the activation, maintenance, and recruitment of specific immunity within or into the tumor site continue to evolve. Based on the integration of increasingly refined immunomonitoring systems in both translational models and clinical trials, allowing for the improved understanding of treatment mechanism(s) of action, further refined (combinational) vaccine protocols are currently being developed and evaluated. This review provides a brief history of RCC vaccine development, discusses the successes and limitations in such approaches, and provides a rationale for developing combinational vaccine approaches that may provide improved clinical benefits to patients with RCC.
Collapse
Affiliation(s)
- Nina Chi
- Department of immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | | |
Collapse
|
40
|
Abstract
The association between malignancy and development of a paraneoplastic leukocytosis, the so-called leukemoid reaction, has long been appreciated. Although a leukemoid reaction has conventionally been defined as a peripheral blood leukocytosis composed of both mature and immature granulocytes that exceeds 50,000/microL, a less profound leukocytosis may be appreciated in many patients harboring a malignant disease. More recent insights have shed new light on this long-recognized association, because research performed in both murine models and cancer patients has uncovered multiple mechanisms by which tumors both drive myelopoiesis, sometimes leading to a clinically apparent leukocytosis, and inhibit the differentiation of myeloid cells, resulting in a qualitative change in myelopoiesis. This qualitative change leads to the accumulation of immature myeloid cells, which due to their immune suppressive effects have been collectively called myeloid-derived suppressor cells. More recently, myeloid cells have been shown to promote tumor angiogenesis. Cancer-associated myeloproliferation is not merely a paraneoplastic phenomenon of questionable importance but leads to the suppression of host immunity and promotion of tumor angiogenesis, both of which play an integral part in tumorigenesis and metastasis. Therefore, cancer-associated myeloproliferation represents a novel therapeutic target in cancer that, decades after its recognition, is only now being translated into clinical practice.
Collapse
Affiliation(s)
- Ryan A Wilcox
- Division of Hematology, Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Seliger B, Massa C, Rini B, Ko J, Finke J. Antitumour and immune-adjuvant activities of protein-tyrosine kinase inhibitors. Trends Mol Med 2010; 16:184-92. [DOI: 10.1016/j.molmed.2010.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 01/29/2023]
|
42
|
Salem ML, El-Demellawy M, El-Azm ARA. The potential use of Toll-like receptor agonists to restore the dysfunctional immunity induced by hepatitis C virus. Cell Immunol 2010; 262:96-104. [PMID: 20338549 DOI: 10.1016/j.cellimm.2010.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/02/2010] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a major public health concern with approximately 3% of the world's population is infected, posing social, economical and health burden. Less than 20% of the infected individuals clear the virus during the acute infection, while the rest develop chronic infection. The treatment of choice for HCV infection is pegylated interferon-alpha (IFN-alpha) in combination with ribavarin. Despite the cost and side effects of this treatment regimen, many patients fail this therapy and develop persistent HCV infection, leading to cirrhosis and hepatocellular carcinoma. Although the mechanisms underlying the failure to resolve HCV infection are poorly understood, the incapability of patients to develop effective anti-HCV immunity is a potential cause. We hypothesize that the dysfunctional anti-HCV immunity is due to the emergence of immunosuppressive cells coinciding with a decrease in the stimulatory dendritic cells (DCs) and natural killer (NK) cells. We further hypothesize that applying agents that can correct the imbalance between the immunosuppressive cells and stimulatory cells can results in resolution of chronic HCV. In this review article, we will discuss potential approaches, focusing on the use of Toll-like receptor agonists, to block the suppressive effects of the regulatory cells and restore the stimulatory effects of DCs and NK cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/therapeutic use
- Antiviral Agents/therapeutic use
- Dendritic Cells/immunology
- Enzyme Inhibitors/therapeutic use
- Hepacivirus/immunology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/epidemiology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Humans
- Immunity, Innate
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Interferon-alpha/therapeutic use
- Killer Cells, Natural/immunology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Ribavirin/therapeutic use
- T-Lymphocytes, Regulatory/immunology
- Toll-Like Receptors/agonists
- Toll-Like Receptors/immunology
Collapse
Affiliation(s)
- Mohamed L Salem
- Surgery Department and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | | | | |
Collapse
|
43
|
Salem ML, Cole DJ. Dendritic cell recovery post-lymphodepletion: a potential mechanism for anti-cancer adoptive T cell therapy and vaccination. Cancer Immunol Immunother 2010; 59:341-353. [PMID: 19921513 PMCID: PMC3070377 DOI: 10.1007/s00262-009-0792-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/26/2009] [Indexed: 02/07/2023]
Abstract
Adoptive transfer of autologous tumor-reactive T cells holds promise as a cancer immunotherapy. In this approach, T cells are harvested from a tumor-bearing host, expanded in vitro and infused back to the same host. Conditioning of the recipient host with a lymphodepletion regimen of chemotherapy or radiotherapy before adoptive T cell transfer has been shown to substantially improve survival and anti-tumor responses of the transferred cells. These effects are further enhanced when the adoptive T cell transfer is followed by vaccination with tumor antigens in combination with a potent immune adjuvant. Although significant progress has been made toward an understanding of the reasons underlying the beneficial effects of lymphodepletion to T cell adoptive therapy, the precise mechanisms remain poorly understood. Recent studies, including ours, would indicate a more central role for antigen presenting cells, in particular dendritic cells. Unraveling the exact role of these important cells in mediation of the beneficial effects of lymphodepletion could provide novel pathways toward the rational design of more effective anti-cancer immunotherapy. This article focuses on how the frequency, phenotype, and functions of dendritic cells are altered during the lymphopenic and recovery phases post-induction of lymphodepletion, and how they affect the anti-tumor responses of adoptively transferred T cells.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- Surgery Department, Medical University of South Carolina, Charleston, 29425, USA.
| | | |
Collapse
|
44
|
Vuk-Pavlović S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB. Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate 2010; 70:443-55. [PMID: 19902470 PMCID: PMC2935631 DOI: 10.1002/pros.21078] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To determine if the levels of circulating myeloid-derived suppressor cells increase with progression of prostate cancer (PCa); to determine if such cells could contribute to the relative inefficiency of PCa immunotherapy. MATERIALS AND METHODS We analyzed peripheral blood mononuclear cells isolated from untreated PCa patients (uPCa; N = 18; mean age +/- SD: 72.1 +/- 6.9 years), tPCa (N = 22; 72.8 +/- 9.8 years) and age matched controls (AMC; N = 12; 68.8 +/- 7.5 years). We quantified surface marker phenotype, differentiation potential, effects on T cell proliferation and intracellular cytokines. RESULTS We observed an unexpectedly high percentage of a type of myeloid-derived suppressor cells, CD14(+)HLA-DR(low/-) monocytes, in tPCa (30.7 +/- 15.0% of CD14(+) cells) relative to AMC (4.1 +/- 6.5%, P < 0.0001) and uPCa (10.6 +/- 14.3%, P = 0.0001). The levels of CD14(+) HLA-DR(low/-) cells were significantly correlated with circulating PSA levels and treatment with LHRH-agonist leuprolide in combination with either an antiandrogen or dexamethasone. Monocytes from tPCa inhibited autologous T cell proliferation statistically significantly more effectively than AMC monocytes and were defective in their ability to differentiate into phenotypically mature dendritic cells. Isolated CD14(+)HLA-DR(low/-) cells expressed higher levels of intracellular interleukin-10 and suppressed T cell proliferation more effectively than isolated CD14(+)HLA-DR(+) cells. CONCLUSIONS This is the first report of CD14(+) cells exhibiting reduced expression of HLA-DR molecules in PCa patients. These cells suppress immune cell function in vitro and, plausibly, in vivo, a finding that must be factored into the design of immunotherapy protocols for PCa patients.
Collapse
Affiliation(s)
- Stanimir Vuk-Pavlović
- Stem Cell Laboratory, Mayo Clinic Cancer Center, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abe F, Younos I, Westphal S, Samson H, Scholar E, Dafferner A, Hoke TA, Talmadge JE. Therapeutic activity of sunitinib for Her2/neu induced mammary cancer in FVB mice. Int Immunopharmacol 2009; 10:140-5. [PMID: 19833232 DOI: 10.1016/j.intimp.2009.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Mouse mammary tumor virus-Neu (MMTV/neu) transgenic mice on an FVB-background (FVB-neuN) have increased numbers of myeloid derived suppressor cells (MDSCs) and regulatory T-cells (T-regs) in the spleen during mammary tumor induction and progression. Using this transgenic tumor model, we assessed the therapeutic activity of sunitinib, a multi-targeted, tyrosine kinase (TK) inhibitor and its effects on immune-regulatory cells. Our preliminary results show that sunitinib at 40mg/kg/day, p.o. (per os), delayed the time to tumor induction and reduced the incidence and growth of tumors in FVB-neuN mice. In association with its therapeutic activity, sunitinib reduced the absolute number of splenic T-reg cells (CD4(+)CD25(+)CD62L(+)) and MDSCs (CD11b(+)Gr1(+)) that were increased during tumor progression with less activity in mice with gross tumors. A significant decrease in the absolute number of splenic T-regs, dendritic cells (DCs), MDSCs and hematopoietic progenitors (Lin(-)Sca1(+)CD90(dull)) was observed following sunitinib treatment. The frequency of splenic T-regs and hematopoietic progenitors, but not MDSCs was also reduced by sunitinib treatment. Additionally immune-regulatory cytokines and enzymes were down regulated by sunitinib treatment, including TGFbeta and NOS2 in the spleen cells of sunitinib treated mice as compared to untreated tumor bearing (TB) mice. We conclude that sunitinib has therapeutic activity, in association with the down regulation of MDSCs and T-regs and has a trend towards the normalization of the inflammatory cytokine levels induced by tumor progression and growth. Based on these results, we suggest that sunitinib reduction of immune suppressive cells is a critical part of its adjuvant immune therapeutic activity.
Collapse
Affiliation(s)
- Fuminori Abe
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660, USA
| | | | | | | | | | | | | | | |
Collapse
|