1
|
Torres MDP, Lobato FS, Libotte GB. Exploring trade-offs in drug administration for cancer treatment: A multi-criteria optimisation approach. Math Biosci 2025; 382:109404. [PMID: 40015445 DOI: 10.1016/j.mbs.2025.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/28/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
This study addresses the combination of immunotherapy and chemotherapy in cancer treatment, recognising its promising effectiveness but highlighting the challenges of complex interactions between these therapeutic modalities. The central objective is to determine guidelines for the optimal administration of drugs, using an optimal control model that considers interactions in tumour dynamics, including cancer cells, the immune system, and therapeutic agents. The optimal control model is transformed into a multi-objective optimisation problem with treatment constraints. This is achieved by introducing adjustable trade-offs, allowing personalised adaptations in drug administration to achieve an optimal balance between established objectives. Various optimisation problems are addressed, considering two and three simultaneous objectives, such as optimising the number of cancer cells and the density of effector cells at the final treatment time. The diverse combinations presented reflect the model's flexibility in the face of multi-objective optimisation, providing a range of approaches to meet specific medical needs. The analysis of Pareto optimal fronts in in silico investigation offers an additional resource for decision-makers, enabling a more effective determination of the optimal administration of cytotoxic and immunotherapeutic agents. By leveraging an optimal control model, we have demonstrated the effectiveness of considering interactions in tumour dynamics, including the integration of immunotherapy and chemotherapy. Our findings underscore the importance of tailored treatment plans to achieve optimal outcomes, showcasing the versatility of our approach in addressing individual patient needs. The insights gained from our analysis offer valuable guidance for future research and clinical practice, paving the way for more effective and personalised cancer therapies.
Collapse
Affiliation(s)
- Maicon de Paiva Torres
- Department of Computational Modeling, Polytechnic Institute, Rio de Janeiro State University, Nova Friburgo, Brazil.
| | - Fran Sérgio Lobato
- Chemical Engineering Faculty, Federal University of Uberlâ,ndia, Uberlândia, Brazil.
| | - Gustavo Barbosa Libotte
- Department of Computational Modeling, Polytechnic Institute, Rio de Janeiro State University, Nova Friburgo, Brazil.
| |
Collapse
|
2
|
Ghasempour A, Mohseni R, Sharif PM, Hamidieh AA. Natural killer cell-based therapies in neuroblastoma. Cell Immunol 2025; 407:104898. [PMID: 39631142 DOI: 10.1016/j.cellimm.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood forming around 15 % of all pediatric tumors. Despite advances in the treatment of NB, high-risk patients still face a grave prognosis. Adoptive cell therapies based on NK cells are becoming an assistive treatment for such cases. Moreover, there is also evidence that NKT-based therapies have promising results in the management of NB. Lower complications in comparison with adoptive T cell therapies, various cell sources, and miscellaneous tumor recognition mechanisms are some of the advantages of NK- and NKT-based therapies. This review is dedicated to searching for recent advances in this field.
Collapse
Affiliation(s)
- Abtin Ghasempour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wan Z, Wang Y, Li C, Zheng D. The G protein-coupled receptor-related gene signatures for predicting prognosis and immunotherapy response in bladder urothelial carcinoma. Open Life Sci 2023; 18:20220682. [PMID: 37588995 PMCID: PMC10426760 DOI: 10.1515/biol-2022-0682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Bladder urothelial carcinoma (BLCA) is the most common malignant tumor of the urinary tract with a high lethality rate, and its immunotherapy resistance and tumor recurrence have become a major challenge in its clinical treatment. G Protein-Coupled Receptors (GPRs) are the largest family of receptors on the cell membrane surface, involved in multiple signaling pathways, and are excellent targets for oncology drug action. The transcriptome profile, single cell transcriptome profile, and clinical data of BLCA were extracted and integrated from TCGA and GEO databases, respectively. The GPR-related genes were obtained from GSEA-MSigDB database. The GPR-related gene signatures of 15 genes were constructed by using the methods of least absolute shrinkage and selection operator regression, multifactor Cox model. At the same time, tumor microenvironment (TME)-score signatures were constructed based on the immune microenvironment of BLCA, and GPR-TME-score signature was further constructed. The stability of this model was verified by using the external dataset GSE160693. We constructed risk groups by combining BLCA patient prognostic information, and with the help of BLCA scRNA transcriptome profiling, we explored differences in prognosis, immune scores, cell-cell interactions, tumor mutational burden, immune checkpoints, and response to immunotherapy in each risk group. We found that the GPR-TME-score signature was an independent prognostic factor for BLCA patients. the TME-score was a protective factor for the prognosis of BLCA patients. Among BLCA patients, GPR-high + TME-low risk group had the worst prognosis, while GPR-high + TME-high risk group had the best prognosis, and the latter had better immune score and immunotherapy response. The above differences in immune response among the subgroups may be related to the higher immune cell infiltration in the GPR-high + TME-high group. GPR-related gene signatures and TME are closely related to BLCA prognosis and immunotherapy, and GPR-related gene signature can be a useful tool to assess BLCA prognosis and immunotherapy response.
Collapse
Affiliation(s)
- Zhengqiang Wan
- Department of Thoracic Surgery, The First People’s Hospital of Suining, Suining, Sichuan, China
| | - Yinglei Wang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Cheng Li
- Binzhou Medical University, Yantai, China
| | - Dongbing Zheng
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Jain K, Henrich IC, Quick L, Young R, Mondal S, Oliveira AM, Blobel GA, Chou MM. Natural Killer Cell Activation by Ubiquitin-specific Protease 6 Mediates Tumor Suppression in Ewing Sarcoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1615-1627. [PMID: 37615015 PMCID: PMC10443598 DOI: 10.1158/2767-9764.crc-22-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Ewing sarcoma is a rare and deadly pediatric bone cancer for which survival rates and treatment options have stagnated for decades. Ewing sarcoma has not benefited from immunotherapy due to poor understanding of how its immune landscape is regulated. We recently reported that ubiquitin-specific protease 6 (USP6) functions as a tumor suppressor in Ewing sarcoma, and identified it as the first cell-intrinsic factor to modulate the Ewing sarcoma immune tumor microenvironment (TME). USP6 induces intratumoral infiltration and activation of multiple innate immune lineages in xenografted nude mice. Here we report that natural killer (NK) cells are essential for its tumor-inhibitory functions, as NK cell depletion reverses USP6-mediated suppression of Ewing sarcoma xenograft growth. USP6 expression in Ewing sarcoma cells directly stimulates NK cell activation and degranulation in vitro, and functions by increasing surface levels of multiple NK cell-activating ligands. USP6 also induces surface upregulation of the receptor for the apoptosis-inducing ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), providing an additional route for enhanced sensitivity to NK cell killing. Furthermore, USP6-expressing Ewing sarcoma and NK cells participate in a paracrine immunostimulatory feedforward loop, wherein IFNγ secreted by activated NK cells feeds back on USP6/Ewing sarcoma cells to induce synergistic expression of chemokines CXCL9 and CXCL10. Remarkably, expression of USP6 in subcutaneous Ewing sarcoma xenografts induces systemic activation and maturation of NK cells, and induces an abscopal response in which growth of distal tumors is inhibited, coincident with increased infiltration and activation of NK cells. This work reveals how USP6 reprograms the Ewing sarcoma TME to enhance antitumor immunity, and may be exploited for future therapeutic benefit. Significance This study provides novel insights into the immunomodulatory functions of USP6, the only cancer cell-intrinsic factor demonstrated to regulate the immune TME in Ewing sarcoma. We demonstrate that USP6-mediated suppression of Ewing sarcoma tumorigenesis is dependent on NK cells. USP6 directly activates NK cell cytolytic function, inducing both intratumoral and systemic activation of NK cells in an Ewing sarcoma xenograft model.
Collapse
Affiliation(s)
- Kanika Jain
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian C. Henrich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laura Quick
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert Young
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shreya Mondal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andre M. Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gerd A. Blobel
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pediatric Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Margaret M. Chou
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Ash S, Askenasy N. Immunotherapy for neuroblastoma by hematopoietic cell transplantation and post-transplant immunomodulation. Crit Rev Oncol Hematol 2023; 185:103956. [PMID: 36893946 DOI: 10.1016/j.critrevonc.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma represents a relatively common childhood tumor that imposes therapeutic difficulties. High risk neuroblastoma patients have poor prognosis, display limited response to radiochemotherapy and may be treated by hematopoietic cell transplantation. Allogeneic and haploidentical transplants have the distinct advantage of reinstitution of immune surveillance, reinforced by antigenic barriers. The key factors favorable to ignition of potent anti-tumor reactions are transition to adaptive immunity, recovery from lymphopenia and removal of inhibitory signals that inactivate immune cells at the local and systemic levels. Post-transplant immunomodulation may further foster anti-tumor reactivity, with positive but transient impact of infusions of lymphocytes and natural killer cells both from the donor, the recipient or third party. The most promising approaches include introduction of antigen-presenting cells in early post-transplant stages and neutralization of inhibitory signals. Further studies will likely shed light on the nature and actions of suppressor factors within tumor stroma and at the systemic level.
Collapse
Affiliation(s)
- Shifra Ash
- Department of Pediatric Hematology-Oncology, Rambam Medical Center, Haifa, Israel; Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | - Nadir Askenasy
- Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
6
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
The Current Landscape of Targeted Clinical Trials in Non-WNT/Non-SHH Medulloblastoma. Cancers (Basel) 2022; 14:cancers14030679. [PMID: 35158947 PMCID: PMC8833659 DOI: 10.3390/cancers14030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Medulloblastoma is a form of malignant brain tumor that arises predominantly in infants and young children and can be divided into different groups based on molecular markers. The group of non-WNT/non-SHH medulloblastoma includes a spectrum of heterogeneous subgroups that differ in their biological characteristics, genetic underpinnings, and clinical course of disease. Non-WNT/non-SHH medulloblastoma is currently treated with surgery, chemotherapy, and radiotherapy; however, new drugs are needed to treat patients who are not yet curable and to reduce treatment-related toxicity and side effects. We here review which new treatment options for non-WNT/non-SHH medulloblastoma are currently clinically tested. Furthermore, we illustrate the challenges that have to be overcome to reach a new therapeutic standard for non-WNT/non-SHH medulloblastoma, for instance the current lack of good preclinical models, and the necessity to conduct trials in a comparably small patient collective. Abstract Medulloblastoma is an embryonal pediatric brain tumor and can be divided into at least four molecularly defined groups. The category non-WNT/non-SHH medulloblastoma summarizes medulloblastoma groups 3 and 4 and is characterized by considerable genetic and clinical heterogeneity. New therapeutic strategies are needed to increase survival rates and to reduce treatment-related toxicity. We performed a noncomprehensive targeted review of the current clinical trial landscape and literature to summarize innovative treatment options for non-WNT/non-SHH medulloblastoma. A multitude of new drugs is currently evaluated in trials for which non-WNT/non-SHH patients are eligible, for instance immunotherapy, kinase inhibitors, and drugs targeting the epigenome. However, the majority of these trials is not restricted to medulloblastoma and lacks molecular classification. Whereas many new molecular targets have been identified in the last decade, which are currently tested in clinical trials, several challenges remain on the way to reach a new therapeutic strategy for non-WNT/non-SHH medulloblastoma. These include the severe lack of faithful preclinical models and predictive biomarkers, the question on how to stratify patients for clinical trials, and the relative lack of studies that recruit large, homogeneous patient collectives. Innovative trial designs and international collaboration will be a key to eventually overcome these obstacles.
Collapse
|
8
|
Bangit LEP, Derwich K. Current Molecular Advancements in Chimeric Antigen Receptor (CAR-T) Cells for the Treatment of Leukemia. J Adolesc Young Adult Oncol 2021; 11:346-351. [PMID: 34935501 DOI: 10.1089/jayao.2021.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) is a relatively new treatment for pediatric leukemia and has been the focused of recent advancements. CAR is manufactured to express T cells through various ways such as using retroviruses, transposons and transposase, electroporation, and CRISPR (clustered regularly interspaced short palindromic repeats). Together, it provides flexibility since it recognizes proteins without the need of antigen processing and presentation, can recognize carbohydrates and lipids, and it has been proven to be cost-effective. Despite these benefits however, problems faced by this therapy include unrecognized tumor proteins possibly escaping the system, CAR T cell expression being transient, and the therapy being one of the most expensive cancer drug ever approved. As a result, recent progress has been ongoing where researchers have combined CAR-T cells with natural killer (NK) cells and different cytokines to maximize its efficacy and potency while limiting potential risks such as cytokine release syndrome. Consequently, these cells gained the ability to be universal-being able to be used to treat multiple patients, maintain viability for a longer period, and prevent relapse.
Collapse
Affiliation(s)
- Lavina Ery Paula Bangit
- Department of Pediatric Oncology, Hematology and Trasnplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Trasnplantology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
Smagina AS, Kulemzin SV, Yusubalieva GM, Kedrova AG, Sanzharov AE, Ivanov YV, Matvienko DA, Kalsin VA, Gorchakov AA, Baklaushev VP, Taranin AV. VAV1-overexpressing YT cells display improved cytotoxicity against malignant cells. Biotechnol Appl Biochem 2021; 68:849-855. [PMID: 32767384 DOI: 10.1002/bab.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Immunotherapy based on adoptive transfer of genetically engineered T- and NK-cells is an area of active ongoing research and has proven highly efficacious for patients with certain B-cell malignancies. Use of NK cells and NK cell lines as carriers of chimeric antigen receptors (CARs) appears particularly promising, as this opens an opportunity for moving the therapy from autologous to the allogeneic (universal) format. This "off-the-shelf" approach is thought to significantly reduce the price of the treatment and make it available to many more patients in need. Yet, the efficacy of CAR-NK cells in vivo presently remains low, and boosting the activity of CAR NK cells via stronger tumor homing, resistance to tumor microenvironment, as well as greater cytotoxicity may translate into improved patient outcomes. Here, we established a derivative of a human NK cell line YT overexpressing a positive regulator of cytotoxicity, VAV1. Activity of YT-VAV1 cells obtained was assayed in vitro against several cancer cell lines and primary patient-derived cancer cells. YT-VAV1 cells outperform parental YT cells in terms of cytotoxicity.
Collapse
Affiliation(s)
- Anna S Smagina
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Sergey V Kulemzin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | | | - Anna G Kedrova
- Federal Research Clinical Center FMBA of Russia, Moscow, Russian Federation
| | - Andrey E Sanzharov
- Federal Research Clinical Center FMBA of Russia, Moscow, Russian Federation
| | - Yurii V Ivanov
- Federal Research Clinical Center FMBA of Russia, Moscow, Russian Federation
| | - Darya A Matvienko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Vladimir A Kalsin
- Federal Research Clinical Center FMBA of Russia, Moscow, Russian Federation
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | | | - Aleksandr V Taranin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
10
|
CD38-specific Chimeric Antigen Receptor Expressing Natural Killer KHYG-1 Cells: A Proof of Concept for an "Off the Shelf" Therapy for Multiple Myeloma. Hemasphere 2021; 5:e596. [PMID: 34131635 PMCID: PMC8196092 DOI: 10.1097/hs9.0000000000000596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells are highly successful in the treatment of hematologic malignancies. We recently generated affinity-optimized CD38CAR T cells, which effectively eliminate multiple myeloma (MM) cells with little or no toxicities against nonmalignant hematopoietic cells. The lack of universal donors and long manufacturing times however limit the broad application of CAR T cell therapies. Natural killer (NK) cells generated from third party individuals may represent a viable source of "off the shelf" CAR-based products, as they are not associated with graft-versus-host disease unlike allogeneic T cells. We therefore explored the preclinical anti-MM efficacy and potential toxicity of the CD38CAR NK concept by expressing affinity-optimized CD38CARs in KHYG-1 cells, an immortal NK cell line with excellent expansion properties. KHYG-1 cells retrovirally transduced with the affinity-optimized CD38CARs expanded vigorously and mediated effective CD38-dependent cytotoxicity towards CD38high MM cell lines as well as primary MM cells ex vivo. Importantly, the intermediate affinity CD38CAR transduced KHYG-1 cells spared CD38neg or CD38int nonmalignant hematopoietic cells, indicating an optimal tumor nontumor discrimination. Irradiated, short living CD38CAR KHYG-1 cells also showed significant anti-MM effects in a xenograft model with a humanized bone marrow-like niche. Finally, CD38CAR KHYG-1 cells effectively eliminated primary MM cells derived from patients who are refractory to CD38 antibody daratumumab. Taken together, the results of this proof-of-principle study demonstrate the potential value of engineering affinity-optimized CD38CARs in NK cells to establish effective anti-MM effects, with an excellent safety profile, even in patients who failed to response to most advanced registered myeloma therapies, such as daratumumab.
Collapse
|
11
|
Caforio M, Sorino C, Caruana I, Weber G, Camera A, Cifaldi L, De Angelis B, Del Bufalo F, Vitale A, Goffredo BM, De Vito R, Fruci D, Quintarelli C, Fanciulli M, Locatelli F, Folgiero V. GD2 redirected CAR T and activated NK-cell-mediated secretion of IFNγ overcomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape. J Immunother Cancer 2021; 9:jitc-2020-001502. [PMID: 33737337 PMCID: PMC7978286 DOI: 10.1136/jitc-2020-001502] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
Immune escape mechanisms employed by neuroblastoma (NB) cells include secretion of immunosuppressive factors disrupting effective antitumor immunity. The use of cellular therapy to treat solid tumors needs to be implemented. Killing activity of anti-GD2 Chimeric Antigen Receptor (CAR) T or natural killer (NK) cells against target NB cells was assessed through coculture experiments and quantified by FACS analysis. ELISA assay was used to quantify interferon-γ (IFNγ) secreted by NK and CAR T cells. Real Time PCR and Western Blot were performed to analyze gene and protein levels modifications. Transcriptional study was performed by chromatin immunoprecipitation and luciferase reporter assays on experiments of mutagenesis on the promoter sequence. NB tissue sample were analyzed by IHC and Real Time PCR to perform correlation study. We demonstrate that Indoleamine-pyrrole 2,3-dioxygenase1 (IDO1), due to its ability to convert tryptophan into kynurenines, is involved in NB resistance to activity of immune cells. In NB, IDO1 is able to inhibit the anti-tumor effect displayed by of both anti-GD2 CAR (GD2.CAR) T-cell and NK cells, mainly by impairing their IFNγ production. Furthermore, inhibition of MYCN expression in NB results into accumulation of IDO1 and consequently of kynurenines, which negatively affect the immune surveillance. Inverse correlation between IDO1 and MYCN expression has been observed in a wide cohort of NB samples. This finding was supported by the identification of a transcriptional repressive role of MYCN on IDO1 promoter. The evidence of IDO1 involvement in NB immune escape and its ability to impair NK and GD2.CAR T-cell activity contribute to clarify one of the possible mechanisms responsible for the limited efficacy of these immunotherapeutic approaches. A combined therapy of NK or GD2.CAR T-cells with IDO1 inhibitors, a class of compounds already in phase I/II clinical studies, could represent a new and still unexplored strategy capable to improve long-term efficacy of these immunotherapeutic approaches.
Collapse
Affiliation(s)
- Matteo Caforio
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Departement of Biochemical Sciences "A Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Cristina Sorino
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, Istituto Regina Elena Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy, Italy
| | - Ignazio Caruana
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gerrit Weber
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Camera
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), IRCCS Bambino Gesù Children's Hospistal, Rome, Italy.,Department of Clical Sciences and Translational Medicine, University of Tor Vergata, Rome, Italy
| | - Biagio De Angelis
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessia Vitale
- Division of Metabolism and Research Unit of Metabolic Biochemistry, IRCCS Bambino gesù Children's Hospital, Rome, Italy
| | - Bianca Maria Goffredo
- Division of Metabolism and Research Unit of Metabolic Biochemistry, IRCCS Bambino gesù Children's Hospital, Rome, Italy
| | - Rita De Vito
- Department of Laboratories, Pathology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Doriana Fruci
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Concetta Quintarelli
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Departyment of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, Istituto Regina Elena Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Valentina Folgiero
- Department of Hematology/Oncology and Gene and Cell Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
12
|
Gómez García LM, Escudero A, Mestre C, Fuster Soler JL, Martínez AP, Vagace Valero JM, Vela M, Ruz B, Navarro A, Fernández L, Fernández A, Leivas A, Martínez-López J, Ferreras C, De Paz R, Blanquer M, Galán V, González B, Corral D, Sisinni L, Mirones I, Balas A, Vicario JL, Valle P, Borobia AM, Pérez-Martínez A. Phase 2 Clinical Trial of Infusing Haploidentical K562-mb15-41BBL-Activated and Expanded Natural Killer Cells as Consolidation Therapy for Pediatric Acute Myeloblastic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:328-337.e1. [PMID: 33610500 DOI: 10.1016/j.clml.2021.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) accounts for approximately 20% of pediatric leukemia cases; 30% of these patients experience relapse. The antileukemia properties of natural killer (NK) cells and their safety profile have been reported in AML therapy. We proposed a phase 2, open, prospective, multicenter, nonrandomized clinical trial for the adoptive infusion of haploidentical K562-mb15-41BBL-activated and expanded NK (NKAE) cells as a consolidation strategy for children with favorable and intermediate risk AML in first complete remission after chemotherapy (NCT02763475). PATIENTS AND METHODS Before the NKAE cell infusion, patients underwent a lymphodepleting regimen. After the NKAE cell infusion, patients were administered low doses (1 × 106/IU/m2) of subcutaneous interleukin-2. The primary study endpoint was AML relapse-free survival. We needed to include 35 patients to demonstrate a 50% reduction in relapses. RESULTS Seven patients (median age, 7.4 years; range, 0.78-15.98 years) were administered 13 infusions of NKAE cells, with a median of 36.44 × 106 cells/kg (range, 6.92 × 106 to 193.2 × 106 cells/kg). We observed chimerism in 4 patients (median chimerism, 0.065%; range, 0.05-0.27%). After a median follow-up of 33 months, the disease of 6 patients (85.7%) remained in complete remission. The 3-year overall survival was 83.3% (95% confidence interval, 68.1-98.5), and the cumulative 3-year relapse rate was 28.6% (95% confidence interval, 11.5-45.7). The study was terminated early because of low patient recruitment. CONCLUSION This study emphasizes the difficulties in recruiting patients for cell therapy trials, though NKAE cell infusion is safe and feasible. However, we cannot draw any conclusions regarding efficacy because of the small number of included patients and insufficient biological markers.
Collapse
Affiliation(s)
| | - Adela Escudero
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Carmen Mestre
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Jose L Fuster Soler
- Pediatric Hematology-Oncology Unit, University Clinic Hospital Virgen de la Arrixaca, El Palmar, Spain
| | - Antonia Pascual Martínez
- Pediatric Hematology Unit, Maternal and Children Hospital, Regional University Hospital of Málaga, Málaga, Spain
| | - Jose M Vagace Valero
- Pediatric Hematology Department, Maternal Pediatric Hospital, University Hospital Complex of Badajoz, Badajoz, Spain
| | - María Vela
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Beatriz Ruz
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Alfonso Navarro
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Lucia Fernández
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Adrián Fernández
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Alejandra Leivas
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Joaquin Martínez-López
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Cristina Ferreras
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Raquel De Paz
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Miguel Blanquer
- Pediatric Hematology-Oncology Unit, University Clinic Hospital Virgen de la Arrixaca, El Palmar, Spain
| | - Victor Galán
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Berta González
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Dolores Corral
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Isabel Mirones
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Antonio Balas
- Histocompatibility and HLA Typing Laboratory, Transfusion Center of the Community of Madrid, Madrid, Spain
| | - José Luis Vicario
- Histocompatibility and HLA Typing Laboratory, Transfusion Center of the Community of Madrid, Madrid, Spain
| | - Paula Valle
- Clinical Pharmacology Department, La Paz University Hospital, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain; Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain; Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain; Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
13
|
Ragoonanan D, Khazal SJ, Abdel-Azim H, McCall D, Cuglievan B, Tambaro FP, Ahmad AH, Rowan CM, Gutierrez C, Schadler K, Li S, Di Nardo M, Chi L, Gulbis AM, Shoberu B, Mireles ME, McArthur J, Kapoor N, Miller J, Fitzgerald JC, Tewari P, Petropoulos D, Gill JB, Duncan CN, Lehmann LE, Hingorani S, Angelo JR, Swinford RD, Steiner ME, Hernandez Tejada FN, Martin PL, Auletta J, Choi SW, Bajwa R, Dailey Garnes N, Kebriaei P, Rezvani K, Wierda WG, Neelapu SS, Shpall EJ, Corbacioglu S, Mahadeo KM. Diagnosis, grading and management of toxicities from immunotherapies in children, adolescents and young adults with cancer. Nat Rev Clin Oncol 2021; 18:435-453. [PMID: 33608690 PMCID: PMC9393856 DOI: 10.1038/s41571-021-00474-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapies are associated with remarkable therapeutic response rates but also with unique and severe toxicities, which potentially result in rapid deterioration in health. The number of clinical applications for novel immune effector-cell therapies, including chimeric antigen receptor (CAR)-expressing cells, and other immunotherapies, such as immune-checkpoint inhibitors, is increasing. In this Consensus Statement, members of the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Hematopoietic Cell Transplantation-Cancer Immunotherapy (HCT-CI) Subgroup, Paediatric Diseases Working Party (PDWP) of the European Society of Blood and Marrow Transplantation (EBMT), Supportive Care Committee of the Pediatric Transplantation and Cellular Therapy Consortium (PTCTC) and MD Anderson Cancer Center CAR T Cell Therapy-Associated Toxicity (CARTOX) Program collaborated to provide updated comprehensive recommendations for the care of children, adolescents and young adults receiving cancer immunotherapies. With these recommendations, we address emerging toxicity mitigation strategies, we advocate for the characterization of baseline organ function according to age and discipline-specific criteria, we recommend early critical care assessment when indicated, with consideration of reversibility of underlying pathology (instead of organ failure scores) to guide critical care interventions, and we call for researchers, regulatory agencies and sponsors to support and facilitate early inclusion of young patients with cancer in well-designed clinical trials.
Collapse
Affiliation(s)
- Dristhi Ragoonanan
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sajad J Khazal
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hisham Abdel-Azim
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - David McCall
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Branko Cuglievan
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ali Haider Ahmad
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney M Rowan
- Department of Pediatrics, Division of Critical Care, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN, USA
| | - Cristina Gutierrez
- Department of Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keri Schadler
- Department of Pediatrics Research, Center for Energy Balance in Cancer Prevention and Survivorship, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shulin Li
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Linda Chi
- Division of Diagnostic Imaging, Neuroradiology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alison M Gulbis
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Basirat Shoberu
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria E Mireles
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer McArthur
- Department of Pediatrics, Division of Critical Care, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pediatrics, Division of Critical Care, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Neena Kapoor
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Miller
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julie C Fitzgerald
- Department of Anesthesia and Critical Care, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Priti Tewari
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Demetrios Petropoulos
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan B Gill
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine N Duncan
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Leslie E Lehmann
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Sangeeta Hingorani
- Department of Pediatrics, University of Washington School of Medicine, Division of Nephrology, Seattle Childrens and the Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joseph R Angelo
- Renal Section, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Rita D Swinford
- Department of Pediatrics, Division of Pediatric Nephrology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Marie E Steiner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Fiorela N Hernandez Tejada
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul L Martin
- Department of Pediatrics, Division of Transplant and Cellular Therapy, Duke Children's Hospital, Duke University, Durham, NC, USA
| | - Jeffery Auletta
- Division of Hematology, Oncology, Bone Marrow Transplant and Infectious Diseases, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Sung Won Choi
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Rajinder Bajwa
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Natalie Dailey Garnes
- Department of Infectious Disease, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg, Germany
| | - Kris M Mahadeo
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Zhang P, Yang S, Zou Y, Yan X, Wu H, Zhou M, Sun YC, Zhang Y, Zhu H, Xu K, Wang Y, Sheng LX, Mu Q, Sun L, Ouyang G. NK cell predicts the severity of acute graft-versus-host disease in patients after allogeneic stem cell transplantation using antithymocyte globulin (ATG) in pretreatment scheme. BMC Immunol 2019; 20:46. [PMID: 31818250 PMCID: PMC6902350 DOI: 10.1186/s12865-019-0326-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Background Graft-versus-host disease (GVHD) is one of the most complex complications after allogeneic stem cell transplantation. Current standard of grading system is based on clinical symptoms in skin, liver and intestinal. However, it’s difficult to differ GVHD and its extent just by clinical manifestation. Here we retrospectively analyzed cell immune function in patients implemented allogeneic stem cell transplantation in Ningbo first Hospital from Jan 2013 to Jan 2018. Results the data are collected from 51 patients (mean age was 42; 45.1% women). The average NK cell percentage was 39.31% in severe GVHD (Grade III-IV), was 16.98% in mild GVHD (GradeI-II), while was 21.15% in No GVHD group. The statistical analysis showed difference among each grade. Further analysis was performed in Antithymocyte globulin (ATG) treated group and control group. We showed NK Cell percentage was sharply different in ATG treated group: 47.34% in severe GVHD, 11.98% in mild GVHD group, while 18.3% in no GVHD group. However, in control group, the average percentage of NK cells was 23.27% in severe GVHD, was 23.22%in mild GVHD group, while was 21.13% in no GVHD group. Conclusion The data supports that ATG can prevent GVHD by increasing NK cell percentage. The percentage of NK cell seemed to be a useful probe to evaluate the severity of GVHD in allogeneic stem cell transplantation patients using ATG in pretreatment.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China.
| | - Shujun Yang
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, 315010, China
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, 27710, USA
| | - Xiao Yan
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Hao Wu
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Miao Zhou
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Yong Cheng Sun
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Yi Zhang
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, 315010, China
| | - Huiling Zhu
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Kaihong Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Yi Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Li Xia Sheng
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China
| | - Qitian Mu
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, 315010, China
| | - Liguang Sun
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, 315010, China.
| |
Collapse
|
15
|
Hutzen B, Paudel SN, Naeimi Kararoudi M, Cassady KA, Lee DA, Cripe TP. Immunotherapies for pediatric cancer: current landscape and future perspectives. Cancer Metastasis Rev 2019; 38:573-594. [PMID: 31828566 PMCID: PMC6994452 DOI: 10.1007/s10555-019-09819-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The advent of immunotherapy has revolutionized how we manage and treat cancer. While the majority of immunotherapy-related studies performed to date have focused on adult malignancies, a handful of these therapies have also recently found success within the pediatric space. In this review, we examine the immunotherapeutic agents that have achieved the approval of the US Food and Drug Administration for treating childhood cancers, highlighting their development, mechanisms of action, and the lessons learned from the seminal clinical trials that ultimately led to their approval. We also shine a spotlight on several emerging immunotherapeutic modalities that we believe are poised to have a positive impact on the treatment of pediatric malignancies in the near future.
Collapse
Affiliation(s)
- Brian Hutzen
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Siddhi Nath Paudel
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Kevin A Cassady
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
- Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Dean A Lee
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
- Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Timothy P Cripe
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA.
- Ohio State University Wexner College of Medicine, Columbus, OH, USA.
| |
Collapse
|