3
|
Shewarega A, Santana JG, Nam D, Berz A, Tefera J, Kahl V, Mishra SK, Coman D, Duncan J, Roberts SJ, Wetter A, Madoff DC, Chapiro J. Effect of Incomplete Cryoablation and Matrix Metalloproteinase Inhibition on Intratumoral CD8 + T-Cell Infiltration in Murine Hepatocellular Carcinoma. Radiology 2024; 310:e232365. [PMID: 38349244 PMCID: PMC10902598 DOI: 10.1148/radiol.232365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 02/15/2024]
Abstract
Background Image-guided tumor ablation is the first-line therapy for early-stage hepatocellular carcinoma (HCC), with ongoing investigations into its combination with immunotherapies. Matrix metalloproteinase (MMP) inhibition demonstrates immunomodulatory potential and reduces HCC tumor growth when combined with ablative treatment. Purpose To evaluate the effect of incomplete cryoablation with or without MMP inhibition on the local immune response in residual tumors in a murine HCC model. Materials and Methods Sixty 8- to 10-week-old female BALB/c mice underwent HCC induction with use of orthotopic implantation of syngeneic Tib-75 cells. After 7 days, mice with a single lesion were randomized into treatment groups: (a) no treatment, (b) MMP inhibitor, (c) incomplete cryoablation, and (d) incomplete cryoablation and MMP inhibitor. Macrophage and T-cell subsets were assessed in tissue samples with use of immunohistochemistry and immunofluorescence (cell averages calculated using five 1-μm2 fields of view [FOVs]). C-X-C motif chemokine receptor type 3 (CXCR3)- and interferon γ (IFNγ)-positive T cells were assessed using flow cytometry. Groups were compared using unpaired Student t tests, one-way analysis of variance with Tukey correction, and the Kruskal-Wallis test with Dunn correction. Results Mice treated with incomplete cryoablation (n = 6) showed greater infiltration of CD206+ tumor-associated macrophages (mean, 1.52 cells per FOV vs 0.64 cells per FOV; P = .03) and MMP9-expressing cells (mean, 0.89 cells per FOV vs 0.11 cells per FOV; P = .03) compared with untreated controls (n = 6). Incomplete cryoablation with MMP inhibition (n = 6) versus without (n = 6) led to greater CD8+ T-cell (mean, 15.8% vs 8.29%; P = .04), CXCR3+CD8+ T-cell (mean, 11.64% vs 8.47%; P = .004), and IFNγ+CD8+ T-cell infiltration (mean, 11.58% vs 5.18%; P = .02). Conclusion In a mouse model of HCC, incomplete cryoablation and systemic MMP inhibition showed increased cytotoxic CD8+ T-cell infiltration into the residual tumor compared with either treatment alone. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Gemmete in this issue.
Collapse
Affiliation(s)
- Annabella Shewarega
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - Jessica G. Santana
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - David Nam
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - Antonia Berz
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - Jonathan Tefera
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - Vinzent Kahl
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - Sandeep K. Mishra
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - Daniel Coman
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - James Duncan
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - Scott J. Roberts
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - Axel Wetter
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - David C. Madoff
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| | - Julius Chapiro
- From the Department of Radiology and Biomedical Imaging (A.S.,
J.G.S., D.N., J.T., S.K.M., D.C., J.D., D.C.M., J.C.), Section of Digestive
Diseases, Department of Internal Medicine (S.J.R., J.C.), Section of Medical
Oncology, Department of Medicine (D.C.M.), and Section of Surgical Oncology,
Department of Surgery (D.C.M.), Yale University School of Medicine, 300 Cedar
St, The Anlyan Center, N312A, New Haven, CT 06520; Department of Diagnostic and
Interventional Radiology and Neuroradiology, University Hospital Essen, Essen,
Germany (A.S., A.W.); Department of Radiology,
Charité-Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin and Humboldt-Universität, Berlin, Germany
(A.B., V.K.); Department of Biomedical Engineering, School of Engineering
& Applied Science, Yale University, New Haven, Conn (D.C., J.D., J.C.);
and Department of Diagnostic and Interventional Radiology and Neuroradiology,
Asklepios Clinic Altona, Hamburg, Germany (A.W.)
| |
Collapse
|
5
|
Posa A, Contegiacomo A, Ponziani FR, Punzi E, Mazza G, Scrofani A, Pompili M, Goldberg SN, Natale L, Gasbarrini A, Sala E, Iezzi R. Interventional Oncology and Immuno-Oncology: Current Challenges and Future Trends. Int J Mol Sci 2023; 24:ijms24087344. [PMID: 37108507 PMCID: PMC10138371 DOI: 10.3390/ijms24087344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Personalized cancer treatments help to deliver tailored and biologically driven therapies for cancer patients. Interventional oncology techniques are able to treat malignancies in a locoregional fashion, with a variety of mechanisms of action leading to tumor necrosis. Tumor destruction determines a great availability of tumor antigens that can be recognized by the immune system, potentially triggering an immune response. The advent of immunotherapy in cancer care, with the introduction of specific immune checkpoint inhibitors, has led to the investigation of the synergy of these drugs when used in combination with interventional oncology treatments. The aim of this paper is to review the most recent advances in the field of interventional oncology locoregional treatments and their interactions with immunotherapy.
Collapse
Affiliation(s)
- Alessandro Posa
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Andrea Contegiacomo
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Ernesto Punzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Mazza
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Annarita Scrofani
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Shraga Nahum Goldberg
- Division of Image-Guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem 12000, Israel
| | - Luigi Natale
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Evis Sala
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
7
|
Shou J, Mo F, Zhang S, Lu L, Han N, Liu L, Qiu M, Li H, Han W, Ma D, Guo X, Guo Q, Huang Q, Zhang X, Ye S, Pan H, Chen S, Fang Y. Combination treatment of radiofrequency ablation and peptide neoantigen vaccination: Promising modality for future cancer immunotherapy. Front Immunol 2022; 13:1000681. [PMID: 36248865 PMCID: PMC9559398 DOI: 10.3389/fimmu.2022.1000681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background The safety and immunogenicity of a personalized neoantigen-based peptide vaccine, iNeo-Vac-P01, was reported previously in patients with a variety of cancer types. The current study investigated the synergistic effects of radiofrequency ablation (RFA) and neoantigen vaccination in cancer patients and tumor-bearing mice. Methods Twenty-eight cancer patients were enrolled in this study, including 10 patients who had received RFA treatment within 6 months before vaccination (Cohort 1), and 18 patients who had not (Cohort 2). Individualized neoantigen peptide vaccines were designed, manufactured, and subcutaneously administrated with GM-CSF as an adjuvant for all patients. Mouse models were employed to validate the synergistic efficacy of combination treatment of RFA and neoantigen vaccination. Results Longer median progression free survival (mPFS) and median overall survival (mOS) were observed in patients in Cohort 1 compared to patients in Cohort 2 (4.42 and 20.18 months vs. 2.82 and 10.94 months). The results of ex vivo IFN-γ ELISpot assay showed that patients in Cohort 1 had stronger neoantigen-specific immune responses at baseline and post vaccination. Mice receiving combination treatment of RFA and neoantigen vaccines displayed higher antitumor immune responses than mice receiving single modality. The combination of PD-1 blockage with RFA and neoantigen vaccines further enhanced the antitumor response in mice. Conclusion Neoantigen vaccination after local RFA treatment could improve the clinical and immune response among patients of different cancer types. The synergistic antitumor potentials of these two modalities were also validated in mice, and might be further enhanced by immune checkpoint inhibition. The mechanisms of their synergies require further investigation. Clinical trial registration https://clinicaltrials.gov/, identifier NCT03662815.
Collapse
Affiliation(s)
- Jiawei Shou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Mo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Hangzhou AI-Force Therapeutics Co., Ltd., Hangzhou, China
| | - Shanshan Zhang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou, China
| | - Lantian Lu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ning Han
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- Hangzhou AI-Nano Therapeutics Co., Ltd., Hangzhou, China
| | - Liang Liu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Min Qiu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Hongseng Li
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Han
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongying Ma
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Xiaojie Guo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Qianpeng Guo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Qinxue Huang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Xiaomeng Zhang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Shengli Ye
- Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Hongming Pan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongming Pan, ; Shuqing Chen, ; Yong Fang,
| | - Shuqing Chen
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
- *Correspondence: Hongming Pan, ; Shuqing Chen, ; Yong Fang,
| | - Yong Fang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongming Pan, ; Shuqing Chen, ; Yong Fang,
| |
Collapse
|