1
|
Michalski MN, Williams BO. The Past, Present, and Future of Genetically Engineered Mouse Models for Skeletal Biology. Biomolecules 2023; 13:1311. [PMID: 37759711 PMCID: PMC10526739 DOI: 10.3390/biom13091311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The ability to create genetically engineered mouse models (GEMMs) has exponentially increased our understanding of many areas of biology. Musculoskeletal biology is no exception. In this review, we will first discuss the historical development of GEMMs and how these developments have influenced musculoskeletal disease research. This review will also update our 2008 review that appeared in BONEKey, a journal that is no longer readily available online. We will first review the historical development of GEMMs in general, followed by a particular emphasis on the ability to perform tissue-specific (conditional) knockouts focusing on musculoskeletal tissues. We will then discuss how the development of CRISPR/Cas-based technologies during the last decade has revolutionized the generation of GEMMs.
Collapse
Affiliation(s)
- Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
2
|
Nottmeier C, Lavicky J, Gonzalez Lopez M, Knauth S, Kahl-Nieke B, Amling M, Schinke T, Helms J, Krivanek J, Koehne T, Petersen J. Mechanical-induced bone remodeling does not depend on Piezo1 in dentoalveolar hard tissue. Sci Rep 2023; 13:9563. [PMID: 37308580 DOI: 10.1038/s41598-023-36699-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Mechanosensory ion channels are proteins that are sensitive to mechanical forces. They are found in tissues throughout the body and play an important role in bone remodeling by sensing changes in mechanical stress and transmitting signals to bone-forming cells. Orthodontic tooth movement (OTM) is a prime example of mechanically induced bone remodeling. However, the cell-specific role of the ion channels Piezo1 and Piezo2 in OTM has not been investigated yet. Here we first identify the expression of PIEZO1/2 in the dentoalveolar hard tissues. Results showed that PIEZO1 was expressed in odontoblasts, osteoblasts, and osteocytes, while PIEZO2 was localized in odontoblasts and cementoblasts. We therefore used a Piezo1floxed/floxed mouse model in combination with Dmp1cre to inactivate Piezo1 in mature osteoblasts/cementoblasts, osteocytes/cementocytes, and odontoblasts. Inactivation of Piezo1 in these cells did not affect the overall morphology of the skull but caused significant bone loss in the craniofacial skeleton. Histological analysis revealed a significantly increased number of osteoclasts in Piezo1floxed/floxed;Dmp1cre mice, while osteoblasts were not affected. Despite this increased number of osteoclasts, orthodontic tooth movement was not altered in these mice. Our results suggest that despite Piezo1 being crucial for osteoclast function, it may be dispensable for mechanical sensing of bone remodeling.
Collapse
Affiliation(s)
- Cita Nottmeier
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany
| | - Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarah Knauth
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jill Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Till Koehne
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany.
| | - Julian Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany.
| |
Collapse
|
3
|
Affiliation(s)
- Deborah McCurdy
- Division of Allergy/Immunology/Rheumatology, David Geffen School of Medicine, UCLA, Mattel Children's Hospital, 10833 Le Conte Avenue, MDCC 12-430, Los Angeles, CA 90095, USA
| | - Miriam F Parsa
- Division of Allergy/Immunology/Rheumatology, David Geffen School of Medicine, UCLA, Mattel Children's Hospital, 10833 Le Conte Avenue, MDCC 12-430, Los Angeles, CA 90095, USA; Pediatric Rheumatology, Cottage Children's Medical Center, 400 West Pueblo Street, PO Box 689, Santa Barbara, CA 93110-0689, USA.
| |
Collapse
|
4
|
Wang T, Yu X, He C. Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte. Curr Drug Targets 2020; 20:1-15. [PMID: 29618305 DOI: 10.2174/1389450119666180405094046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/11/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
Glucocorticoids are widely used to treat varieties of allergic and autoimmune diseases, however, long-term application results in glucocorticoid-induced osteoporosis (GIOP). Inflammatory cytokines: tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) play important regulatory roles in bone metabolism, but their roles in GIOP remain largely unknown. Osteocytes can modulate the formation and function of both osteoblasts and osteoclasts, directly via gap junctions, or indirectly by transferring molecule signaling. Apoptotic osteocytes release RANKL, HMGB1 and pro-inflammatory cytokines to stimulate osteoclastogenesis. Moreover, osteocytes can secrete FGF23 to regulate bone metabolism. Exposure to high levels of GCs can drive osteocyte apoptosis and influence gap junctions, leading to bone loss. GCs treatment is regarded to produce more FGF23 to inhibit bone mineralization. GCs also disrupt the vascular to decrease osteocyte feasibility and mineral appositional rate, resulting in a decline in bone strength. Apoptotic bodies from osteocytes induced by GCs treatment can enhance production of TNF-α and IL-6. On the other hand, TNF-α and IL-6 show synergistic effects by altering osteocytes signaling towards osteoclasts and osteoblasts. In addition, TNF-α can induce osteocyte apoptosis and attribute to a worsened bone quality in GCs. IL-6 and osteocytes may interact with each other. Therefore, we hypothesize that GCs regulate osteocyteogenesis through TNF-α and IL-6, which are highly expressed around osteocyte undergoing apoptosis. In the present review, we summarized the roles of osteocytes in regulating osteoblasts and osteoclasts. Furthermore, the mechanism of GCs altered relationship between osteocytes and osteoblasts/osteoclasts. In addition, we discussed the roles of TNF-α and IL-6 in GIOP by modulating osteocytes. Lastly, we discussed the possibility of using pro-inflammatory signaling pathway as therapeutic targets to develop drugs for GIOP.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Qiao Y, Wang Y, Zhou Y, Jiang F, Huang T, Chen L, Lan J, Yang C, Guo Y, Yan S, Wei Z, Li J. The role of nervous system in adaptive response of bone to mechanical loading. J Cell Physiol 2018; 234:7771-7780. [PMID: 30414185 DOI: 10.1002/jcp.27683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/09/2018] [Indexed: 02/05/2023]
Abstract
Bone tissue is remodeled through the catabolic function of the osteoclasts and the anabolic function of the osteoblasts. The process of bone homeostasis and metabolism has been identified to be co-ordinated with several local and systemic factors, of which mechanical stimulation acts as an important regulator. Very recent studies have shown a mutual effect between bone and other organs, which means bone influences the activity of other organs and is also influenced by other organs and systems of the body, especially the nervous system. With the discovery of neuropeptide (calcitonin gene-related peptide, vasoactive intestinal peptide, substance P, and neuropeptide Y) and neurotransmitter in bone and the adrenergic receptor observed in osteoclasts and osteoblasts, the function of peripheral nervous system including sympathetic and sensor nerves in bone resorption and its reaction to on osteoclasts and osteoblasts under mechanical stimulus cannot be ignored. Taken together, bone tissue is not only the mechanical transmitter, but as well the receptor of neural system under mechanical loading. This review aims to summarize the relationship among bone, nervous system, and mechanotransduction.
Collapse
Affiliation(s)
- Yini Qiao
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yang Wang
- Department of Oral Radiology, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yimei Zhou
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Fulin Jiang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Tu Huang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Liujing Chen
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Jingxiang Lan
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Cai Yang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yutong Guo
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Shanyu Yan
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Zhangming Wei
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Juan Li
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| |
Collapse
|
6
|
Kogawa M, Khalid KA, Wijenayaka AR, Ormsby RT, Evdokiou A, Anderson PH, Findlay DM, Atkins GJ. Recombinant sclerostin antagonizes effects of ex vivo mechanical loading in trabecular bone and increases osteocyte lacunar size. Am J Physiol Cell Physiol 2017; 314:C53-C61. [PMID: 28978523 DOI: 10.1152/ajpcell.00175.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sclerostin has emerged as an important regulator of bone mass. We have shown that sclerostin can act by targeting late osteoblasts/osteocytes to inhibit bone mineralization and to upregulate osteocyte expression of catabolic factors, resulting in osteocytic osteolysis. Here we sought to examine the effect of exogenous sclerostin on osteocytes in trabecular bone mechanically loaded ex vivo. Bovine trabecular bone cores, with bone marrow removed, were inserted into individual chambers and subjected to daily episodes of dynamic loading. Cores were perfused with either osteogenic media alone or media containing human recombinant sclerostin (rhSCL) (50 ng/ml). Loaded control bone increased in apparent stiffness over time compared with unloaded bone, and this was abrogated in the presence of rhSCL. Loaded bone showed an increase in calcein uptake as a surrogate of mineral accretion, compared with unloaded bone, in which this was substantially inhibited by rhSCL treatment. Sclerostin treatment induced a significant increase in the ionized calcium concentration in the perfusate and the release of β-CTX at several time points, an increased mean osteocyte lacunar size, indicative of osteocytic osteolysis, and the expression of catabolism-related genes. Human primary osteocyte-like cultures treated with rhSCL also released β-CTX from their matrix. These results suggest that osteocytes contribute directly to bone mineral accretion, and to the mechanical properties of bone. Moreover, it appears that sclerostin, acting on osteocytes, can negate this effect by modulating the dimensions of the lacunocanalicular porosity and the composition of the periosteocyte matrix.
Collapse
Affiliation(s)
- M Kogawa
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, University of Adelaide , Adelaide, South Australia , Australia
| | - K A Khalid
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, University of Adelaide , Adelaide, South Australia , Australia
| | - A R Wijenayaka
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, University of Adelaide , Adelaide, South Australia , Australia
| | - R T Ormsby
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, University of Adelaide , Adelaide, South Australia , Australia
| | - A Evdokiou
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, University of Adelaide, Woodville, South Australia, Australia
| | - P H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia , Australia
| | - D M Findlay
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, University of Adelaide , Adelaide, South Australia , Australia
| | - G J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, University of Adelaide , Adelaide, South Australia , Australia
| |
Collapse
|
7
|
Pathria MN, Chung CB, Resnick DL. Acute and Stress-related Injuries of Bone and Cartilage: Pertinent Anatomy, Basic Biomechanics, and Imaging Perspective. Radiology 2017; 280:21-38. [PMID: 27322971 DOI: 10.1148/radiol.16142305] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bone or cartilage, or both, are frequently injured related to either a single episode of trauma or repetitive overuse. The resulting structural damage is varied, governed by the complex macroscopic and microscopic composition of these tissues. Furthermore, the biomechanical properties of both cartilage and bone are not uniform, influenced by the precise age and activity level of the person and the specific anatomic location within the skeleton. Of the various histologic components that are found in cartilage and bone, the collagen fibers and bundles are most influential in transmitting the forces that are applied to them, explaining in large part the location and direction of the resulting internal stresses that develop within these tissues. Therefore, thorough knowledge of the anatomy, physiology, and biomechanics of normal bone and cartilage serves as a prerequisite to a full understanding of both the manner in which these tissues adapt to physiologic stresses and the patterns of tissue failure that develop under abnormal conditions. Such knowledge forms the basis for more accurate assessment of the diverse imaging features that are encountered following acute traumatic and stress-related injuries to the skeleton. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Mini N Pathria
- From the Department of Radiology (M.N.P.) and Radiology Service, VA San Diego Healthcare System (C.B.C.), UC San Diego Medical Center, 200 W Arbor Dr, San Diego, CA 92103; and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Christine B Chung
- From the Department of Radiology (M.N.P.) and Radiology Service, VA San Diego Healthcare System (C.B.C.), UC San Diego Medical Center, 200 W Arbor Dr, San Diego, CA 92103; and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Donald L Resnick
- From the Department of Radiology (M.N.P.) and Radiology Service, VA San Diego Healthcare System (C.B.C.), UC San Diego Medical Center, 200 W Arbor Dr, San Diego, CA 92103; and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| |
Collapse
|
8
|
Ashique AM, Hart LS, Thomas CDL, Clement JG, Pivonka P, Carter Y, Mousseau DD, Cooper DML. Lacunar-canalicular network in femoral cortical bone is reduced in aged women and is predominantly due to a loss of canalicular porosity. Bone Rep 2017; 7:9-16. [PMID: 28752112 PMCID: PMC5517690 DOI: 10.1016/j.bonr.2017.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022] Open
Abstract
The lacunar-canalicular network (LCN) of bone contains osteocytes and their dendritic extensions, which allow for intercellular communication, and are believed to serve as the mechanosensors that coordinate the processes of bone modeling and remodeling. Imbalances in remodeling, for example, are linked to bone disease, including fragility associated with aging. We have reported that there is a reduction in scale for one component of the LCN, osteocyte lacunar volume, across the human lifespan in females. In the present study, we explore the hypothesis that canalicular porosity also declines with age. To visualize the LCN and to determine how its components are altered with aging, we examined samples from young (age: 20–23 y; n = 5) and aged (age: 70–86 y; n = 6) healthy women donors utilizing a fluorescent labelling technique in combination with confocal laser scanning microscopy. A large cross-sectional area of cortical bone spanning the endosteal to periosteal surfaces from the anterior proximal femoral shaft was examined in order to account for potential trans-cortical variation in the LCN. Overall, we found that LCN areal fraction was reduced by 40.6% in the samples from aged women. This reduction was due, in part, to a reduction in lacunar density (21.4% decline in lacunae number per given area of bone), but much more so due to a 44.6% decline in canalicular areal fraction. While the areal fraction of larger vascular canals was higher in endosteal vs. periosteal regions for both age groups, no regional differences were observed in the areal fractions of the LCN and its components for either age group. Our data indicate that the LCN is diminished in aged women, and is largely due to a decline in the canalicular areal fraction, and that, unlike vascular canal porosity, this diminished LCN is uniform across the cortex. The lacunar-canalicular network (LCN) is reduced by 40.6% in aged women The lacunar density (lacunae number per given area of bone) is reduced by 21.4% in aged women The reduction in LCN in aged women is primarily due to a 44.6% loss of canaliculi No endosteal vs. periosteal regional differences were observed in the LCN and its components in either young or aged women A reduction in canaliculi with age may contribute to bone fragility in aged women
Collapse
Affiliation(s)
- A M Ashique
- Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - L S Hart
- Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - C D L Thomas
- Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia
| | - J G Clement
- Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia
| | - P Pivonka
- St. Vincent's Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Y Carter
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - D D Mousseau
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - D M L Cooper
- Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Currey JD, Dean MN, Shahar R. Revisiting the links between bone remodelling and osteocytes: insights from across phyla. Biol Rev Camb Philos Soc 2016; 92:1702-1719. [DOI: 10.1111/brv.12302] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Affiliation(s)
- John D. Currey
- Department of Biology; University of York; York YO10 5DD U.K
| | - Mason N. Dean
- Department Biomaterials; Max Planck Institute of Colloids & Interfaces; 14424 Potsdam Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| |
Collapse
|
10
|
|
11
|
Favaron PO, Rodrigues MN, Borghesi J, Anunciação AR, Oliveira MF, Miglino MA. Esqueletogênese em punaré (Thrichomys laurentinus- Rodentia, Echimyidae). PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016001300008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo: O objetivo deste estudo foi descrever o desenvolvimento do esqueleto do punaré (Thrichomys laurentinus). Para tanto, foram utilizados 11 embriões e 12 fetos em diferentes estágios de desenvolvimento, sendo divididos em 4 grupos de acordo com o período gestacional. As amostras foram obtidas no Centro de Multiplicação de Animais Silvestres da Universidade Federal Rural do Semi-Árido, Mossoró-RN, Brasil. Após fixados em formol (10%) ou glutaraldeído (2,5%), foi realizada a analise morfológica com auxílio de lupa, sendo as características macroscópicas fotodocumentadas. Análises de raios-x e coloração por alizarina red foram realizadas para melhor compreensão do desenvolvimento ósseo. Nas análises de raio-x os embriões não apresentaram nenhuma radiopacidade, ao contrário dos fetos que apresentavam radiopacidade gradual ao longo dos grupos. No grupo II houve aumento de radiopacidade na região da coluna vertebral e das regiões mandibular e maxilar. No grupo III a radiopacidade estava aumentada nos membros pélvicos, nas costelas e na região frontal e no grupo IV nos membros torácicos e nas regiões occipital, temporal e frontal do crânio. Tais características foram confirmadas pelas analises histológicas e pela técnica de Alizarina Red. Com isso podemos concluir que o conhecimento acerca da embriologia do sistema ósseo normal é fundamental para o entendimento dos efeitos adversos causados pela nutrição e uso de drogas durante o desenvolvimento.
Collapse
|
12
|
Fairfield H, Falank C, Avery L, Reagan MR. Multiple myeloma in the marrow: pathogenesis and treatments. Ann N Y Acad Sci 2016; 1364:32-51. [PMID: 27002787 PMCID: PMC4806534 DOI: 10.1111/nyas.13038] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is a B cell malignancy resulting in osteolytic lesions and fractures. In the disease state, bone healing is limited owing to increased osteoclastic and decreased osteoblastic activity, as well as an MM-induced forward-feedback cycle where bone-embedded growth factors further enhance tumor progression as bone is resorbed. Recent work on somatic mutation in MM tumors has provided insight into cytogenetic changes associated with this disease; the initiating driver mutations causing MM are diverse because of the complexity and multitude of mutations inherent in MM tumor cells. This manuscript provides an overview of MM pathogenesis by summarizing cytogenic changes related to oncogenes and tumor suppressors associated with MM, reviewing risk factors, and describing the disease progression from monoclonal gammopathy of undetermined significance to overt MM. It also highlights the importance of the bone marrow microenvironment (BMM) in the establishment and progression of MM, as well as associated MM-induced bone disease, and the relationship of the bone marrow to current and future therapeutics. This review highlights why understanding the basic biology of the healthy and diseased BMM is crucial in the quest for better treatments and work toward a cure for genetically diverse diseases such as MM.
Collapse
Affiliation(s)
| | | | | | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, Maine
- University of Maine, Orono, Maine
| |
Collapse
|
13
|
Algate K, Haynes DR, Bartold PM, Crotti TN, Cantley MD. The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. J Periodontal Res 2015; 51:549-66. [DOI: 10.1111/jre.12339] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/22/2022]
Affiliation(s)
- K. Algate
- Discipline of Anatomy and Pathology; University of Adelaide; Adelaide SA Australia
| | - D. R. Haynes
- Discipline of Anatomy and Pathology; University of Adelaide; Adelaide SA Australia
| | - P. M. Bartold
- School of Dentistry; University of Adelaide; Adelaide SA Australia
| | - T. N. Crotti
- Discipline of Anatomy and Pathology; University of Adelaide; Adelaide SA Australia
| | - M. D. Cantley
- Discipline of Anatomy and Pathology; University of Adelaide; Adelaide SA Australia
- Myeloma Research Laboratory; University of Adelaide; Adelaide SA Australia
| |
Collapse
|
14
|
Niedźwiedzki T, Filipowska J. Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 2015; 55:R23-36. [PMID: 26307562 DOI: 10.1530/jme-15-0067] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Bone is a dynamic tissue that undergoes constant remodeling. The appropriate course of this process determines development and regeneration of the skeleton. Tight molecular control of bone remodeling is vital for the maintenance of appropriate physiology and microarchitecture of the bone, providing homeostasis, also at the systemic level. The process of remodeling is regulated by a rich innervation of the skeleton, being the source of various growth factors, neurotransmitters, and hormones regulating function of the bone. Although the course of bone remodeling at the cellular level is mainly associated with the activity of osteoclasts and osteoblasts, recently also osteocytes have gained a growing interest as the principal regulators of bone turnover. Osteocytes play a significant role in the regulation of osteogenesis, releasing sclerostin (SOST), an inhibitor of bone formation. The process of bone turnover, especially osteogenesis, is also modulated by extra-skeletal molecules. Proliferation and differentiation of osteoblasts are promoted by the brain-derived serotonin and hypothetically inhibited by its intestinal equivalent. The activity of SOST and serotonin is either directly or indirectly associated with the canonical Wnt/β-catenin signaling pathway, the main regulatory pathway of osteoblasts function. The impairment of bone remodeling may lead to many skeletal diseases, such as high bone mass syndrome or osteoporosis. In this paper, we review the most recent data on the cellular and molecular mechanisms of bone remodeling control, with particular emphasis on the role of osteocytes and the nervous system in this process.
Collapse
Affiliation(s)
- Tadeusz Niedźwiedzki
- Department of Orthopedics and PhysiotherapyCollegium Medicum, Jagiellonian University, Cracow, PolandDepartment of Cell Biology and ImagingInstitute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Cracow, Poland
| | - Joanna Filipowska
- Department of Orthopedics and PhysiotherapyCollegium Medicum, Jagiellonian University, Cracow, PolandDepartment of Cell Biology and ImagingInstitute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Cracow, Poland
| |
Collapse
|
15
|
Dolan EB, Haugh MG, Voisin MC, Tallon D, McNamara LM. Thermally induced osteocyte damage initiates a remodelling signaling cascade. PLoS One 2015; 10:e0119652. [PMID: 25785846 PMCID: PMC4364670 DOI: 10.1371/journal.pone.0119652] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/31/2015] [Indexed: 11/18/2022] Open
Abstract
Thermal elevations experienced by bone during orthopaedic procedures, such as cutting and drilling, exothermal reactions from bone cement, and thermal therapies such as tumor ablation, can result in thermal damage leading to death of native bone cells (osteocytes, osteoblasts, osteoclasts and mesenchymal stem cells). Osteocytes are believed to be the orchestrators of bone remodeling, which recruit nearby osteoclast and osteoblasts to control resorption and bone growth in response to mechanical stimuli and physical damage. However, whether heat-induced osteocyte damage can directly elicit bone remodelling has yet to be determined. This study establishes the link between osteocyte thermal damage and the remodeling cascade. We show that osteocytes directly exposed to thermal elevations (47°C for 1 minute) become significantly apoptotic and alter the expression of osteogenic genes (Opg and Cox2). The Rankl/Opg ratio is consistently down-regulated, at days 1, 3 and 7 in MLO-Y4s heat-treated to 47°C for 1 minute. Additionally, the pro-osteoblastogenic signaling marker Cox2 is significantly up-regulated in heat-treated MLO-Y4s by day 7. Furthermore, secreted factors from heat-treated MLO-Y4s administered to MSCs using a novel co-culture system are shown to activate pre-osteoblastic MSCs to increase production of the pro-osteoblastic differentiation marker, alkaline phosphatase (day 7, 14), and calcium deposition (day 21). Most interestingly, an initial pro-osteoclastogenic signaling response (increase Rankl and Rankl/Opg ratio at day 1) followed by later stage pro-osteoblastogenic signaling (down-regulation in Rankl and the Rankl/Opg ratio and an up-regulation in Opg and Cox2 by day 7) was observed in non-heat-treated MLO-Y4s in co-culture when these were exposed to the biochemicals produced by heat-treated MLO-Y4s. Taken together, these results elucidate the vital role of osteocytes in detecting and responding to thermal damage by means of thermally induced apoptosis followed by a cascade of remodelling responses.
Collapse
Affiliation(s)
- Eimear B. Dolan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
- National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
| | - Matthew G. Haugh
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
- National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
| | - Muriel C. Voisin
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
- National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
| | | | - Laoise M. McNamara
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
- National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
16
|
Rochefort GY. The osteocyte as a therapeutic target in the treatment of osteoporosis. Ther Adv Musculoskelet Dis 2014; 6:79-91. [PMID: 24891879 DOI: 10.1177/1759720x14523500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is characterized by a low bone-mineral density associated with skeletal fractures. The decrease in bone-mineral density is the consequence of an unbalanced bone-remodeling process, with higher bone resorption than bone formation. The orchestration of the bone-remodeling process is under the control of the most abundant cell in bone, the osteocyte. Functioning as an endocrine cell, osteocytes are also a source of soluble factors that not only target cells on the bone surface, but also target distant organs. Therefore, any drugs targeting the osteocyte functions and signaling pathways will have a major impact on the bone-remodeling process. This review discusses potential advances in drug therapy for osteoporosis, including novel osteocyte-related antiresorptive and anabolic agents that may become available in the coming years.
Collapse
Affiliation(s)
- Gaël Y Rochefort
- EA 2496, Faculté de Chirurgie Dentaire, Université Paris Descartes, 1 rue Maurice Arnoux, 92120 Montrouge, France
| |
Collapse
|
17
|
Siddiqi MH, Siddiqi MZ, Ahn S, Kang S, Kim YJ, Sathishkumar N, Yang DU, Yang DC. Ginseng saponins and the treatment of osteoporosis: mini literature review. J Ginseng Res 2014; 37:261-8. [PMID: 24198650 PMCID: PMC3818951 DOI: 10.5142/jgr.2013.37.261] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
The ginseng plant (Panax ginseng Meyer) has a large number of active ingredients including steroidal saponins with a dammarane skeleton as well as protopanaxadiol and protopanaxatriol, commonly known as ginsenosides, which have antioxidant, anticancer, antidiabetic, anti-adipocyte, and sexual enhancing effects. Though several discoveries have demonstrated that ginseng saponins (ginsenosides) as the most important therapeutic agent for the treatment of osteoporosis, yet the molecular mechanism of its active metabolites is unknown. In this review, we summarize the evidence supporting the therapeutic properties of ginsenosides both in vivo and in vitro, with an emphasis on the different molecular agents comprising receptor activator of nuclear factor kappa-B ligand, receptor activator of nuclear factor kappa-B, and matrix metallopeptidase-9, as well as the bone morphogenetic protein-2 and Smad signaling pathways.
Collapse
Affiliation(s)
- Muhammad Hanif Siddiqi
- Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University, Suwon 449-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Siddiqi MH, Siddiqi MZ, Ahn S, Kang S, Kim YJ, Veerappan K, Yang DU, Yang DC. Stimulative effect of ginsenosides Rg5:Rk1 on murine osteoblastic MC3T3-E1 cells. Phytother Res 2014; 28:1447-55. [PMID: 24643957 DOI: 10.1002/ptr.5146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
Abstract
Panax ginseng C.A. Meyer (P. ginseng), hereafter referred to as P. ginseng, is known to exert a wide range of pharmacological effects both in vitro and in vivo; however, few studies have investigated the effects of ginseng on bone metabolism. We therefore investigated the potential antiosteoporotic properties of ginseng on the growth and differentiation of murine MC3T3-E1 cells. Rg5:Rk1 is a mixture of protopanaxadiol-type ginsenosides, isolated from fresh P. ginseng root, via a repetitive steaming and drying process. In this study, we examined the stimulatory effects of Rg5:Rk1 on the differentiation and mineralization of MC3T3-E1 cells. Undifferentiated cells were treated with a range of concentrations of Rg5:Rk1 (1-50 µg/mL), and cell viability was measured with the 3-(4,5-dimethyl-thiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Treatment with Rg5:Rk1 significantly increased cell viability in a dose-dependent manner. To investigate the possible mechanisms by which Rg5:Rk1 affects the early differentiation phase of MC3T3-E1 cells, the cells were treated with Rg5:Rk1 for 14-24 days before assessing the levels of multiple osteoblastic markers. The markers examined included alkaline phosphatase (ALP) activity type I collagen content (Coll-I), calcium deposition (by Alizarin Red S staining), extracellular mRNA expression of bone morphogenetic protein-2 (BMP-2), and the level of Runt-related transcription factor 2 (Runx2). Rg5:Rk1 treatment also increased the activities of proteins associated with osteoblast growth and differentiation in a dose-dependent manner. Overall, we found that the Rg5:Rk1 mixture of ginsenosides improved the osteoblastic function of MC3T3-E1 cells by increasing their proliferative capacity. This improvement is due to the action of Rg5:Rk1 on BMP-2, which is mediated by Runx2-dependent pathways.
Collapse
Affiliation(s)
- Muhammad Hanif Siddiqi
- Ginseng Genetic Resource Bank, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Suwon, 449-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Titorencu I, Pruna V, Jinga VV, Simionescu M. Osteoblast ontogeny and implications for bone pathology: an overview. Cell Tissue Res 2013; 355:23-33. [PMID: 24292720 DOI: 10.1007/s00441-013-1750-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/04/2013] [Indexed: 01/06/2023]
Abstract
Osteoblasts are specialized mesenchyme-derived cells accountable for bone synthesis, remodelling and healing. Differentiation of osteoblasts from mesenchymal stem cells (MSC) towards osteocytes is a multi-step process strictly controlled by various genes, transcription factors and signalling proteins. The aim of this review is to provide an update on the nature of bone-forming osteoblastic cells, highlighting recent data on MSC-osteoblast-osteocyte transformation from a molecular perspective and to discuss osteoblast malfunctions in various bone diseases. We present here the consecutive stages occurring in the differentiation of osteoblasts from MSC, the transcription factors involved and the role of miRNAs in the process. Recent data concerning the pathogenic mechanisms underlying the loss of bone mass and architecture caused by malfunctions in the synthetic activity and metabolism of osteoblasts in osteoporosis, osteogenesis imperfecta, osteoarthritis and rheumatoid arthritis are discussed. The newly acquired knowledge of the ontogeny of osteoblasts will assist in unravelling the abnormalities taking place during their differentiation and will facilitate the prevention and/or treatment of bone diseases by therapy directed against altered molecules and mechanisms.
Collapse
Affiliation(s)
- Irina Titorencu
- Regenerative Medicine Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
20
|
Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS, Cortizo AM. Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract 2013; 101:177-86. [PMID: 23806481 DOI: 10.1016/j.diabres.2013.05.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/15/2022]
Abstract
AIMS Diabetes mellitus is associated with metabolic bone disease and increased low-impact fractures. The insulin-sensitizer metformin possesses in vitro, in vivo and ex vivo osteogenic effects, although this has not been adequately studied in the context of diabetes. We evaluated the effect of insulin-deficient diabetes and/or metformin on bone microarchitecture, on osteogenic potential of bone marrow progenitor cells (BMPC) and possible mechanisms involved. METHODS Partially insulin-deficient diabetes was induced in rats by nicotinamide/streptozotocin-injection, with or without oral metformin treatment. Femoral metaphysis micro-architecture, ex vivo osteogenic potential of BMPC, and BMPC expression of Runx-2, PPARγ and receptor for advanced glycation endproducts (RAGE) were investigated. RESULTS Histomorphometric analysis of diabetic femoral metaphysis demonstrated a slight decrease in trabecular area and a significant reduction in osteocyte density, growth plate height and TRAP (tartrate-resistant acid phosphatase) activity in the primary spongiosa. BMPC obtained from diabetic animals showed a reduction in Runx-2/PPARγ ratio and in their osteogenic potential, and an increase in RAGE expression. Metformin treatment prevented the diabetes-induced alterations in bone micro-architecture and BMPC osteogenic potential. CONCLUSION Partially insulin-deficient diabetes induces deleterious effects on long-bone micro-architecture that are associated with a decrease in BMPC osteogenic potential, which could be mediated by a decrease in their Runx-2/PPARγ ratio and up-regulation of RAGE. These diabetes-induced alterations can be totally or partially prevented by oral administration of metformin.
Collapse
Affiliation(s)
- María José Tolosa
- Laboratorio de Investigación en Osteopatías y Metabolismo Mineral, Department of Biological Sciences, School of Exact Sciences, National University of La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
21
|
Wysolmerski JJ. Osteocytes remove and replace perilacunar mineral during reproductive cycles. Bone 2013; 54:230-6. [PMID: 23352996 PMCID: PMC3624069 DOI: 10.1016/j.bone.2013.01.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/05/2012] [Accepted: 01/11/2013] [Indexed: 11/16/2022]
Abstract
Lactation is associated with an increased demand for calcium and is accompanied by a remarkable cycle of bone loss and recovery that helps to supply calcium and phosphorus for milk production. Bone loss is the result of increased bone resorption that is due, in part, to increased levels of PTHrP and decreased levels of estrogen. However, the regulation of bone turnover during this time is not fully understood. In the 1960s and 1970s many observations were made to suggest that osteocytes could resorb bone and increase the size of their lacunae. This concept became known as osteocytic osteolysis and studies suggested that it occurred in response to parathyroid hormone and/or an increased systemic demand for calcium. However, this concept fell out of favor in the late 1970s when it was established that osteoclasts were the principal bone-resorbing cells. Given that lactation is associated with increased PTHrP levels and negative calcium balance, we recently examined whether osteocytes contribute to bone loss during this time. Our findings suggest that osteocytes can remodel their perilacunar and pericanalicular matrix and that they participate in the liberation of skeletal calcium stores during reproductive cycles. These findings raise new questions about the role of osteocytes in coordinating bone and mineral metabolism during lactation as well as the recovery of bone mass after weaning. It is also interesting to consider whether osteocyte lacunar and canalicular remodeling contribute more broadly to the maintenance of skeletal and mineral homeostasis.
Collapse
Affiliation(s)
- John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, TAC S131, PO Box 208020, New Haven, CT 06520-8020, USA.
| |
Collapse
|
22
|
Wang B, Zhou X, Price C, Li W, Pan J, Wang L. Quantifying load-induced solute transport and solute-matrix interaction within the osteocyte lacunar-canalicular system. J Bone Miner Res 2013; 28:1075-86. [PMID: 23109140 PMCID: PMC3593787 DOI: 10.1002/jbmr.1804] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/05/2012] [Accepted: 10/15/2012] [Indexed: 01/16/2023]
Abstract
Osteocytes, the most abundant cells in bone, are essential in maintaining tissue homeostasis and orchestrating bone's mechanical adaptation. Osteocytes depend upon load-induced convection within the lacunar-canalicular system (LCS) to maintain viability and to sense their mechanical environment. Using the fluorescence recovery after photobleaching (FRAP) imaging approach, we previously quantified the convection of a small tracer (sodium fluorescein, 376 Da) in the murine tibial LCS under intermittent cyclic loading. In the present study, we first expanded the investigation of solute transport using a larger tracer (parvalbumin, 12.3 kDa), which is comparable in size to some signaling proteins secreted by osteocytes. Murine tibiae were subjected to sequential FRAP tests under rest-inserted cyclic loading while the loading magnitude (0, 2.8, or 4.8 N) and frequency (0.5, 1, or 2 Hz) were varied. The characteristic transport rate k and the transport enhancement relative to diffusion (k/k0) were measured under each loading condition, from which the peak solute velocity in the LCS was derived using our LCS transport model. Both the transport enhancement and solute velocity increased with loading magnitude and decreased with loading frequency. Furthermore, the solute-matrix interaction, quantified in terms of the reflection coefficient through the osteocytic pericellular matrix (PCM), was measured and theoretically modeled. The reflection coefficient of parvalbumin (σ = 0.084) was derived from the differential fluid and solute velocities within loaded bone. Using a newly developed PCM sieving model, the PCM's fiber configurations accounting for the measured interactions were obtained for the first time. The present study provided not only new data on the micro-fluidic environment experienced by osteocytes in situ but also a powerful quantitative tool for future study of the PCM, the critical interface that controls both outside-in and inside-out signaling in osteocytes during normal bone adaptation and in pathological conditions.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | | | | | | | | | | |
Collapse
|
23
|
Schweitzer MH, Zheng W, Cleland TP, Bern M. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone 2013; 52:414-23. [PMID: 23085295 DOI: 10.1016/j.bone.2012.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 11/15/2022]
Abstract
The discovery of soft, transparent microstructures in dinosaur bone consistent in morphology with osteocytes was controversial. We hypothesize that, if original, these microstructures will have molecular features in common with extant osteocytes. We present immunological and mass spectrometry evidence for preservation of proteins comprising extant osteocytes (Actin, Tubulin, PHEX, Histone H4) in osteocytes recovered from two non-avian dinosaurs. Furthermore, antibodies to DNA show localized binding to these microstructures, which also react positively with DNA intercalating stains propidium iodide (PI) and 4',6'-diamidino-2-phenylindole dihydrochloride (DAPI). Each antibody binds dinosaur cells in patterns similar to extant cells. These data are the first to support preservation of multiple proteins and to present multiple lines of evidence for material consistent with DNA in dinosaurs, supporting the hypothesis that these structures were part of the once living animals. We propose mechanisms for preservation of cells and component molecules, and discuss implications for dinosaurian cellular biology.
Collapse
Affiliation(s)
- Mary Higby Schweitzer
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
24
|
Osteocytic osteolysis: time for a second look? BONEKEY REPORTS 2012; 1:229. [PMID: 24363929 PMCID: PMC3868715 DOI: 10.1038/bonekey.2012.229] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/18/2012] [Accepted: 10/29/2012] [Indexed: 11/08/2022]
Abstract
Over 100 years ago it was suggested that osteocytes could remodel their surrounding environment by removing and replacing bone. In the 1960s and 1970s, many observations were made to suggest that osteocytes could resorb bone and increase the size of their lacunae. This concept became known as osteocytic osteolysis and studies suggested that it occurred in response to diverse stimuli such as parathyroid hormone, calcium restriction, hibernation and reproductive cycles. However, this concept fell out of favor in the late 1970s when it became clear that osteoclasts were the principal bone-resorbing cells in the skeleton. Over the past decade, we have increasingly appreciated that osteocytes are remarkably versatile cells and are involved in all aspects of skeletal biology, including the response to loading, the regulation of bone turnover and the control of mineral metabolism. Recent data have demonstrated that osteocytes remodel their perilacunar and canalicular matrix and participate in the liberation of skeletal calcium stores during lactation. In light of these new findings, it may be time to reassess the concept of osteocytic osteolysis and reconsider whether osteocyte lacunar and canalicular remodeling contributes more broadly to the maintenance of skeletal and mineral homeostasis.
Collapse
|
25
|
Carew EO. A semi-empirical cell dynamics model for bone turnover under external stimulus. J Biomech Eng 2012; 134:024503. [PMID: 22482678 DOI: 10.1115/1.4005761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The normal periodic turnover of bone is referred to as remodeling. In remodeling, old or damaged bone is removed during a 'resorption' phase and new bone is formed in its place during a 'formation' phase in a sequence of events known as coupling. Resorption is preceded by an 'activation' phase in which the signal to remodel is initiated and transmitted. Remodeling is known to involve the interaction of external stimuli, bone cells, calcium and phosphate ions, and several proteins, hormones, molecules, and factors. In this study, a semi-empirical cell dynamics model for bone remodeling under external stimulus that accounts for the interaction between bone mass, bone fluid calcium, bone calcium, and all three major bone cell types, is presented. The model is formulated to mimic biological coupling by solving separately and sequentially systems of ODEs for the activation, resorption, and formation phases of bone remodeling. The charateristic time for resorption (20 days) and the amount of resorption (~0.5%) are fixed for all simulations, but the formation time at turnover is an output of the model. The model was used to investigate the effects of different types of strain stimuli on bone turnover under bone fluid calcium balance and imbalance conditions. For bone fluid calcium balance, the model predicts complete turnover after 130 days of formation under constant 1000 microstrain stimulus; after 47 days of formation under constant 2000 microstrain stimulus; after 173 days of formation under strain-free conditions, and after 80 days of formation under monotonic increasing strain stimulus from 1000 to 2000 microstrain. For bone fluid calcium imbalance, the model predicts that complete turnover occurs after 261 days of formation under constant 1000 microstrain stimulus and that turnover never occurs under strain-free conditions. These predictions were not impacted by mean dynamic input strain stimuli of 1000 and 2000 microstrain at 1 Hz and 1000 microstrain amplitude. The formation phase of remodeling lasts longer than the resorption phase, increased strain stimulus accelerates bone turnover, while absence of strain significantly delays or prevents it, and formation time for turnover under monotonic increasing strain conditions is intermediate to those for constant strain stimuli at the minimum and maximum monotonic strain levels. These results are consistent with the biology, and with Frost's mechanostat theory.
Collapse
Affiliation(s)
- E Owen Carew
- Department of Mathematical Sciences, Kent State University at Salem, Salem, OH 44460, USA.
| |
Collapse
|
26
|
Shandala T, Shen Ng Y, Hopwood B, Yip YC, Foster BK, Xian CJ. The role of osteocyte apoptosis in cancer chemotherapy-induced bone loss. J Cell Physiol 2012; 227:2889-97. [DOI: 10.1002/jcp.23034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Tommasini SM, Trinward A, Acerbo AS, De Carlo F, Miller LM, Judex S. Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT. Bone 2012; 50:596-604. [PMID: 22226688 PMCID: PMC3278519 DOI: 10.1016/j.bone.2011.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 12/20/2022]
Abstract
Bone's microporosities play important biologic and mechanical roles. Here, we quantified 3D changes in cortical osteocyte-lacunae and other small porosities induced by estrogen withdrawal and two different osteoporosis treatments. Unlike 2D measurements, these data collected via synchrotron radiation-based μCT describe the size and 3D spatial distribution of a large number of porous structures. Six-month old female Sprague-Dawley rats were separated into four groups of age-matched controls, untreated OVX, OVX treated with PTH, and OVX treated with Alendronate (ALN). Intracortical microporosity of the medial quadrant of the femoral diaphysis was quantified at endosteal, intracortical, and periosteal regions of the samples, allowing the quantification of osteocyte lacunae that were formed primarily before versus after the start of treatment. Across the overall thickness of the medial cortex, lacunar volume fraction (Lc.V/TV) was significantly lower in ALN treated rats compared to PTH. In the endosteal region, average osteocyte lacunar volume (<Lc.V>) of untreated OVX rats was significantly lower than in age-matched controls, indicating a decrease in osteocyte lacunar size in bone formed on the endosteal surface after estrogen withdrawal. The effect of treatment (OVX, ALN, PTH) on the number of lacunae per tissue volume (Lc.N/TV) was dependent on the specific location within the cortex (endosteal, intracortical, periosteal). In both the endosteal and intracortical regions, Lc.N/TV was significantly lower in ALN than in untreated OVX, suggesting a site-specific effect in osteocyte lacuna density with ALN treatment. There also were a significantly greater number of small pores (5-100 μm(3) in volume) in the endosteal region for PTH compared to ALN. The mechanical impact of this altered microporosity structure is unknown, but might serve to enhance, rather than deteriorate bone strength with PTH treatment, as smaller osteocyte lacunae may be better able to absorb shear forces than larger lacunae. Together, these data demonstrate that current treatments of osteoporosis can alter the number, size, and distribution of microporosities in cortical rat lamellar bone.
Collapse
Affiliation(s)
- Steven M. Tommasini
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Andrea Trinward
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alvin S. Acerbo
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Francesco De Carlo
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Lisa M. Miller
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
28
|
Jaiprakash A, Prasadam I, Feng JQ, Liu Y, Crawford R, Xiao Y. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis. Int J Biol Sci 2012; 8:406-17. [PMID: 22419886 PMCID: PMC3303142 DOI: 10.7150/ijbs.4221] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
Subchondral bone sclerosis is a well-recognised manifestation of osteoarthritis (OA). The osteocyte cell network is now considered to be central to the regulation of bone homeostasis; however, it is not known whether the integrity of the osteocyte cell network is altered in OA patients. The aim of this study was to investigate OA osteocyte phenotypic changes and its potential role in OA subchondral bone pathogenesis. The morphological and phenotypic changes of osteocytes in OA samples were investigated by micro-CT, SEM, histology, immunohistochemistry, TRAP staining, apoptosis assay and real-time PCR studies. We demonstrated that in OA subchondral bone, the osteocyte morphology was altered showing rough and rounded cell body with fewer and disorganized dendrites compared with the osteocytes in control samples. OA osteocyte also showed dysregulated expression of osteocyte markers, apoptosis, and degradative enzymes, indicating that the phenotypical changes in OA osteocytes were accompanied with OA subchondral bone remodelling (increased osteoblast and osteoclast activity) and increased bone volume with altered mineral content. Significant alteration of osteocytes identified in OA samples indicates a potential regulatory role of osteocytes in subchondral bone remodelling and mineral metabolism during OA pathogenesis.
Collapse
Affiliation(s)
- Anjali Jaiprakash
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
This article reviews the conceptual framework for agents that are antiresorptive or anabolic, including pathways that affect bone formation and resorption, and the steps in those pathways that are targets for new therapeutic agents. This article discusses novel antiresorptive and anabolic agents in development. Recent developments that link bone remodeling with serotonin in the gastrointestinal system and the central nervous system via the sympathetic nervous system may change the paradigm for skeletal remodeling. Novel anabolic agents in development include antibodies that target molecules involved in Wnt signaling.
Collapse
|
30
|
Park SK, Oh S, Shin HK, Kim SH, Ham J, Song JS, Lee S. Synthesis of substituted triazolyl curcumin mimics that inhibit RANKL-induced osteoclastogenesis. Bioorg Med Chem Lett 2011; 21:3573-7. [DOI: 10.1016/j.bmcl.2011.04.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 11/26/2022]
|
31
|
Price C, Zhou X, Li W, Wang L. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res 2011; 26:277-85. [PMID: 20715178 PMCID: PMC3179346 DOI: 10.1002/jbmr.211] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/07/2010] [Accepted: 08/03/2010] [Indexed: 01/21/2023]
Abstract
Since proposed by Piekarski and Munro in 1977, load-induced fluid flow through the bone lacunar-canalicular system (LCS) has been accepted as critical for bone metabolism, mechanotransduction, and adaptation. However, direct unequivocal observation and quantification of load-induced fluid and solute convection through the LCS have been lacking due to technical difficulties. Using a novel experimental approach based on fluorescence recovery after photobleaching (FRAP) and synchronized mechanical loading and imaging, we successfully quantified the diffusive and convective transport of a small fluorescent tracer (sodium fluorescein, 376 Da) in the bone LCS of adult male C57BL/6J mice. We demonstrated that cyclic end-compression of the mouse tibia with a moderate loading magnitude (-3 N peak load or 400 µε surface strain at 0.5 Hz) and a 4-second rest/imaging window inserted between adjacent load cycles significantly enhanced (+31%) the transport of sodium fluorescein through the LCS compared with diffusion alone. Using an anatomically based three-compartment transport model, the peak canalicular fluid velocity in the loaded bone was predicted (60 µm/s), and the resulting peak shear stress at the osteocyte process membrane was estimated (∼5 Pa). This study convincingly demonstrated the presence of load-induced convection in mechanically loaded bone. The combined experimental and mathematical approach presented herein represents an important advance in quantifying the microfluidic environment experienced by osteocytes in situ and provides a foundation for further studying the mechanisms by which mechanical stimulation modulates osteocytic cellular responses, which will inform basic bone biology, clinical understanding of osteoporosis and bone loss, and the rational engineering of their treatments.
Collapse
Affiliation(s)
- Christopher Price
- Department of Mechanical Engineering, University of DelawareNewark, DE, USA
| | - Xiaozhou Zhou
- Department of Mechanical Engineering, University of DelawareNewark, DE, USA
| | - Wen Li
- Graduate Program in Biomechanics and Movement Sciences, University of DelawareNewark, DE, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of DelawareNewark, DE, USA
- Graduate Program in Biomechanics and Movement Sciences, University of DelawareNewark, DE, USA
| |
Collapse
|
32
|
Abstract
CONCLUSIONS The location and three-dimensional (3D) shapes of the otosclerotic foci suggest a general centripetal distribution of otosclerotic bone remodeling around the inner ear space, whereas the normal bone remodeling is distributed centrifugally. The existence of an inverse spatial relation between normal and otosclerotic bone remodeling suggests that inner ear mechanisms in control of bone remodeling may have a pathogenetic role in otosclerosis. OBJECTIVES To explore the 3D shape of otosclerotic lesions around the inner ear space by introducing the use of 3D reconstructions and to discuss the results in a new context of temporal bone dynamics and perilabyrinthine signaling pathways. METHODS Thirty-four otosclerotic lesions from 20 decalcified human temporal bones were rendered and visualized with the public 3D 'Reconstruct' software. RESULTS The majority of otosclerotic lesions were found close to the labyrinthine space at the well-established topographical sites of predilection with a smooth demarcation against the surrounding bone. However, in addition the virtual 3D technique revealed a new perilabyrinthine anisotropy of individual otosclerotic lesions, displaying a bulky end facing the inner ear space and a volumetric decline towards the capsular periphery.
Collapse
Affiliation(s)
- Sune Land Bloch
- Otopathological Laboratory, Department of Otorhinolaryngology Head and Neck Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
33
|
Reppe S, Refvem H, Gautvik VT, Olstad OK, Høvring PI, Reinholt FP, Holden M, Frigessi A, Jemtland R, Gautvik KM. Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. Bone 2010; 46:604-12. [PMID: 19922823 DOI: 10.1016/j.bone.2009.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/22/2009] [Accepted: 11/09/2009] [Indexed: 02/09/2023]
Abstract
Low bone mineral density (BMD) is an important risk factor for skeletal fractures which occur in about 40% of women >/=50 years in the western world. We describe the transcriptional changes in 84 trans-iliacal bone biopsies associated with BMD variations in postmenopausal females (50 to 86 years), aiming to identify genetic determinants of bone structure. The women were healthy or having a primary osteopenic or osteoporotic status with or without low energy fractures. The total cohort of 91 unrelated women representing a wide range of BMDs, were consecutively registered and submitted to global gene Affymetrix microarray expression analysis or histomorphometry. Among almost 23,000 expressed transcripts, a set represented by ACSL3 (acyl-CoA synthetase long-chain family member 3), NIPSNAP3B (nipsnap homolog 3B), DLEU2 (Deleted in lymphocytic leukemia, 2), C1ORF61 (Chromosome 1 open reading frame 61), DKK1 (Dickkopf homolog 1), SOST (Sclerostin), ABCA8, (ATP-binding cassette, sub-family A, member 8), and uncharacterized (AFFX-M27830-M-at), was significantly correlated to total hip BMD (5% false discovery rate) explaining 62% of the BMD variation expressed as T-score, 53% when adjusting for the influence of age (Z-score) and 44% when further adjusting for body mass index (BMI). Only SOST was previously associated to BMD, and the majority of the genes have previously not been associated with a bone phenotype. In molecular network analyses, SOST shows a strong, positive correlation with DKK1, both being members of the Wnt signaling pathway. The results provide novel insight in the underlying biology of bone metabolism and osteoporosis which is the ultimate consequence of low BMD.
Collapse
Affiliation(s)
- Sjur Reppe
- Institute of Basic Medical Sciences, University of Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To describe new agents for the treatment of osteoporosis, discuss a conceptual framework of agents that are antiresorptive or anabolic, and review pathways that affect bone turnover and steps in those pathways that are targets for new therapeutic agents. RECENT FINDINGS Novel antiresorptive agents are being developed. Denosumab, a fully human mononoclonal antibody to receptor activator of nuclear factor kappa B ligand, has completed its major fracture trial. Assessment of odanacatib, an inhibitor of cathepsin K, an osteoclast enzyme required for resorption of bone matrix, is underway. Glucagon-like peptide 2 is an intestinal peptide that prevents the nocturnal rise in bone resorption. Anabolic agents act by stimulating new bone formation. Novel anabolic agents in development include antibodies that target molecules (sclerostin and Dkk1) involved in Wnt signaling, a pathway that regulates gene transcription of proteins that are important for osteoblast function. An antagonist to the calcium-sensing receptor and an activin receptor fusion protein, which functions as an activin antagonist, have shown promise as anabolic agents in early human trials. SUMMARY This review discusses potential future advances in drug therapy for osteoporosis including novel antiresorptive and anabolic agents that may become available in the coming years.
Collapse
Affiliation(s)
- Chad Deal
- Center for Osteoporosis and Metabolic Bone Disease, Department of Rheumatology, Orthopedic and Rheumatology Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| |
Collapse
|
35
|
Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 2009; 44:11-6. [PMID: 18977320 DOI: 10.1016/j.bone.2008.09.017] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/10/2008] [Accepted: 09/20/2008] [Indexed: 10/21/2022]
Abstract
Osteocytes are cells buried in the bone matrix. They largely contribute to the regulation of bone remodeling in response to mechanical and microenvironmental changes. Much has been recognized in recent years regarding the role of osteocytes in bone homeostasis, nevertheless their ability to directly contribute to mineral equilibrium has been neglected. In the light of the renewed interest in their biology, we revisited the literature and discuss experimental evidence favoring the hypothesis that osteocytes are able to remove and replace the bone matrix according to the systemic needs of the body. We also reviewed reports against this theory, thus providing current views of what is known so far on the ability of osteocytes to mobilize bone mineral. This re-examination of osteocytic osteolysis might stimulate new interest and open new perspectives in osteocyte biology and in the cellular mechanisms that control bone homeostasis.
Collapse
Affiliation(s)
- Anna Teti
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
36
|
Potential new drug targets for osteoporosis. ACTA ACUST UNITED AC 2009; 5:20-7. [DOI: 10.1038/ncprheum0977] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 11/12/2008] [Indexed: 11/09/2022]
|
37
|
McGee-Lawrence ME, Carey HV, Donahue SW. Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1999-2014. [PMID: 18843088 DOI: 10.1152/ajpregu.90648.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced skeletal loading typically leads to bone loss because bone formation and bone resorption become unbalanced. Hibernation is a natural model of musculoskeletal disuse because hibernating animals greatly reduce weight-bearing activity, and therefore, they would be expected to lose bone. Some evidence suggests that small mammals like ground squirrels, bats, and hamsters do lose bone during hibernation, but the mechanism of bone loss is unclear. In contrast, hibernating bears maintain balanced bone remodeling and preserve bone structure and strength. Differences in the skeletal responses of bears and smaller mammals to hibernation may be due to differences in their hibernation patterns; smaller mammals may excrete calcium liberated from bone during periodic arousals throughout hibernation, leading to progressive bone loss over time, whereas bears may have evolved more sophisticated physiological processes to recycle calcium, prevent hypercalcemia, and maintain bone integrity. Investigating the roles of neural and hormonal control of bear bone metabolism could give valuable insight into translating the mechanisms that prevent disuse-induced bone loss in bears into novel therapies for treating osteoporosis.
Collapse
Affiliation(s)
- Meghan E McGee-Lawrence
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Bldg., 1400 Townsend Dr., Houghton, MI 49931, USA
| | | | | |
Collapse
|
38
|
VanKoevering KK, Williams BO. Transgenic mouse strains for conditional gene deletion during skeletal development. ACTA ACUST UNITED AC 2008. [DOI: 10.1138/20080312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
|