1
|
Mkhize BC, Mosili P, Ngubane PS, Sibiya NH, Khathi A. The Relationship between Renin-Angiotensin-Aldosterone System (RAAS) Activity, Osteoporosis and Estrogen Deficiency in Type 2 Diabetes. Int J Mol Sci 2023; 24:11963. [PMID: 37569338 PMCID: PMC10419188 DOI: 10.3390/ijms241511963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with a plethora of comorbidities, including osteoporosis, which occurs due to an imbalance between bone resorption and formation. Numerous mechanisms have been explored to understand this association, including the renin-angiotensin-aldosterone system (RAAS). An upregulated RAAS has been positively correlated with T2D and estrogen deficiency in comorbidities such as osteoporosis in humans and experimental studies. Therefore, research has focused on these associations in order to find ways to improve glucose handling, osteoporosis and the downstream effects of estrogen deficiency. Upregulation of RAAS may alter the bone microenvironment by altering the bone marrow inflammatory status by shifting the osteoprotegerin (OPG)/nuclear factor kappa-Β ligand (RANKL) ratio. The angiotensin-converting-enzyme/angiotensin II/Angiotensin II type 1 receptor (ACE/Ang II/AT1R) has been evidenced to promote osteoclastogenesis and decrease osteoblast formation and differentiation. ACE/Ang II/AT1R inhibits the wingless-related integration site (Wnt)/β-catenin pathway, which is integral in bone formation. While a lot of literature exists on the effects of RAAS and osteoporosis on T2D, the work is yet to be consolidated. Therefore, this review looks at RAAS activity in relation to osteoporosis and T2D. This review also highlights the relationship between RAAS activity, osteoporosis and estrogen deficiency in T2D.
Collapse
Affiliation(s)
- Bongeka Cassandra Mkhize
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Palesa Mosili
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Phikelelani Sethu Ngubane
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | | | - Andile Khathi
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| |
Collapse
|
2
|
Vadivalagan C, Krishnan A, Chen SJ, Hseu YC, Muthu S, Dhar R, Aljabali AAA, Tambuwala MM. The Warburg effect in osteoporosis: Cellular signaling and epigenetic regulation of energy metabolic events to targeting the osteocalcin for phenotypic alteration. Cell Signal 2022; 100:110488. [PMID: 36208706 DOI: 10.1016/j.cellsig.2022.110488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a silent disease of skeletal morphology that induces fragility and fracture risk in aged persons irrespective of gender. Juvenile secondary osteoporosis is rare and is influenced by familial genetic abnormalities. Despite the currently available therapeutic options, more-acute treatments are in need. Women suffer from osteoporosis after menopause, which is characterized by a decline in the secretion of sex hormones in the later phase of life. Several studies in the past two decades emphasized hormone-related pathways to combat osteoporosis. Some studies partially examined energy-related pathways, but achieving a more vivid picture of metabolism and bone remodeling in terms of the Warburg phenomenon is still warranted. Each cell requires sufficient energy for cellular propagation and growth; in particular, osteoporosis is an energy-dependent mechanism affected by a decreased cellular mass of the bone morphology. Energy utilization is the actual propagation of such diseases, and narrowing down these criteria will hopefully provide clues to formulate better therapeutic strategies. Oxidative glycolysis is a particular type of energy metabolic pathway in cancer cells that influences cellular proliferation. Therefore, the prospect of utilizing collective glucose metabolism by inducing the Warburg effect may improve cell propagation. The benefits of utilizing the energy from the Warburg effect may be a difficult task. However, it seems to improve their effectiveness in the osteoblast phenotype by connecting the selected pathways such as WNT, Notch, AKT, and Insulin signaling by targeting osteocalcin resulting in phenotypic alteration. Osteocalcin directs ATP utilization through the sclerostin SOST gene in the bone microenvironment. Thus, selective activation of ATP production involved in osteoblast maturation remains a prime strategy to fight osteoporosis.
Collapse
Affiliation(s)
- Chithravel Vadivalagan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan.
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul-624003, Tamil Nadu, India
| | - Rajib Dhar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, -603203, Tamilnadu, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
3
|
Chen Y, Liang L, Wu C, Cao Z, Xia L, Meng J, Wang Z. Epigenetic Control of Vascular Smooth Muscle Cell Function in Atherosclerosis: A Role for DNA Methylation. DNA Cell Biol 2022; 41:824-837. [PMID: 35900288 DOI: 10.1089/dna.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a complex vascular inflammatory disease in which multiple cell types are involved, including vascular smooth muscle cells (VSMCs). In response to vascular injury and inflammatory stimuli, VSMCs undergo a "phenotypic switching" characterized by extracellular matrix secretion, loss of contractility, and abnormal proliferation and migration, which play a key role in the progression of atherosclerosis. DNA methylation modification is an important epigenetic mechanism that plays an important role in atherosclerosis. Studies investigating abnormal DNA methylation in patients with atherosclerosis have determined a specific DNA methylation profile, and proposed multiple pathways and genes involved in the etiopathogenesis of atherosclerosis. Recent studies have also revealed that DNA methylation modification controls VSMC function by regulating gene expression involved in atherosclerosis. In this review, we summarize the recent advances regarding the epigenetic control of VSMC function by DNA methylation in atherosclerosis and provide insights into the development of VSMC-centered therapeutic strategies.
Collapse
Affiliation(s)
- Yanjun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingli Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunyan Wu
- The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Zitong Cao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Linzhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Antitumor Effect of Sclerostin against Osteosarcoma. Cancers (Basel) 2021; 13:cancers13236015. [PMID: 34885123 PMCID: PMC8656567 DOI: 10.3390/cancers13236015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Osteosarcoma is highly variable and heterogeneous, which is one of the reasons for its resistance to treatment. Because osteosarcoma is defined by abnormal bone formation, we hypothesize its suppression could lead to effective treatment for all types of osteosarcomas. Sclerostin is secreted by osteocytes and inhibits the canonical pathway by binding to LRP5/6, thereby suppressing bone formation. The resulting suppression of bone formation leads to bone loss and osteoporosis. Here, we investigated the antitumor effect of sclerostin against osteosarcoma and found that sclerostin suppressed the proliferative capacity and migratory ability of osteosarcoma cells. Abstract Various risk factors and causative genes of osteosarcoma have been reported in the literature; however, its etiology remains largely unknown. Bone formation is a shared phenomenon in all types of osteosarcomas, and sclerostin is an extracellular soluble factor secreted by osteocytes that prevents bone formation by inhibiting the Wnt signaling pathway. We aimed to investigate the antitumor effect of sclerostin against osteosarcoma. Osteosarcoma model mice were prepared by transplantation into the dorsal region of C3H/He and BALB/c-nu/nu mice using osteosarcoma cell lines LM8 (murine) and 143B (human), respectively. Cell proliferations were evaluated by using alamarBlue and scratch assays. The migratory ability of the cells was evaluated using a migration assay. Sclerostin was injected intraperitoneally for 7 days to examine the suppression of tumor size and extension of survival. The administration of sclerostin to osteosarcoma cells significantly inhibited the growth and migratory ability of osteosarcoma cells. Kaplan–Meier curves and survival data demonstrated that sclerostin significantly inhibited tumor growth and improved survival. Sclerostin suppressed the proliferative capacity and migratory ability of osteosarcoma cells. Osteosarcoma model mice inhibited tumor growth and prolonged survival periods by the administration of sclerostin. The effect of existing anticancer drugs such as doxorubicin should be investigated for future clinical applications.
Collapse
|
5
|
Ashifa N, Viswanathan K, Sundaram R, Srinivasan S. Sclerostin and its role as a bone modifying agent in periodontal disease. J Oral Biosci 2021; 63:104-110. [PMID: 33878470 DOI: 10.1016/j.job.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Periodontitis is a highly prevalent inflammatory disease affecting the periodontium that results from an imbalance between periodontopathogens and host mechanisms. Continuous progression of the disease may lead to tissue and bone destruction, eventually resulting in tooth loss. The extent of bone loss depends on the dysregulated host immune response. Various host-elicited molecules play a major role in disease progression. The discovery of the glycoprotein sclerostin and its role as a regulator of bone mass has led to a better understanding of bone metabolism. HIGHLIGHT Sclerostin, which is primarily expressed by osteocytes, is a negative regulator of bone formation. It is a potent antagonist of the canonical Wingless-related integration site (Wnt) pathway, which is actively involved in bone homeostasis. Sclerostin is known to stimulate bone resorption by altering the osteoprotegerin (OPG)/receptor activator of nuclear factor kappa- β ligand (RANKL) balance. Additionally, in periodontitis, activation of the inflammatory cascade also increases the synthesis of sclerostin. CONCLUSION The recently discovered sclerostin antibody has emerged as a positive therapeutic tool for the treatment of metabolic bone diseases. It has been reported to improve bone strength, bone formation, osseointegration around implants and lower the risk of bone fractures in various animal and human models. This review describes the properties and action of sclerostin, its role in periodontal diseases, and the advent and efficacy of sclerostin antibodies.
Collapse
Affiliation(s)
- Nisha Ashifa
- Department of Periodontology, Rajah Muthiah Dental College & Hospital, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India.
| | - Krishnan Viswanathan
- Department of Periodontology, Rajah Muthiah Dental College & Hospital, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India.
| | - Rajasekar Sundaram
- Department of Periodontology, Rajah Muthiah Dental College & Hospital, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India.
| | - Sivapragasam Srinivasan
- Department of Periodontology, Rajah Muthiah Dental College & Hospital, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India.
| |
Collapse
|
6
|
Furukawa M, Okuyama K, Kawano Y, Kikuchi K, Miyamoto T, Nakamura M, Matsumoto M. Femur Bone Mineral Density and Pentosidine Level Distinguish Ankylosing Spinal Disorder Patients with and without Sacroiliac Ankylosis. Spine Surg Relat Res 2020; 4:333-340. [PMID: 33195858 PMCID: PMC7661031 DOI: 10.22603/ssrr.2020-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction When spinal fracture occurred in ankylosing spinal disorder (ASD) patients, it is important to evaluate not only the long lever arm but also bone density and bone quality for the determination of treatment strategies. This case-controlled study examined bone mineral density (BMD), bone metabolism markers, and pentosidine levels in patients with ASD. Methods Subjects with bridging of minimum four contiguous vertebral bodies were classified into ASD group and the rest into non-ASD group. The former was further divided into two subgroups based on the presence/absence of sacroiliac joint ankylosis (SJA). We compared BMD, bone metabolism markers, and pentosidine levels in these groups. Results The BMD T and Z scores of the femur proximal extremity were lower in the ASD with SJA group than those in the ASD without SJA group. When groups were matched for age, weight, and eGFR, compared with the non-ASD group, the ASD with SJA group had lower BMD of the lumbar spine and femur proximal extremity and the ASD without SJA group had significantly higher BMDs of the lumbar spine and femur proximal extremity. After matching, the ASD without SJA group showed a significantly higher pentosidine level than the non-ASD group. Conclusions Patients with SJA have low femur proximal extremity BMD, whereas those with ASD without SJA have a higher BMD of the femur proximal extremity with high pentosidine level. Investigating the presence or absence of SJA is important for the determination of treatment strategies in fractured ASD patients.
Collapse
Affiliation(s)
- Mitsuru Furukawa
- Department of Orthopedic Surgery, Murayama medical center, Tokyo, Japan
| | - Kunimasa Okuyama
- Department of Orthopedic Surgery, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| | - Yusuke Kawano
- Department of Orthopedic Surgery, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| | - Kentaro Kikuchi
- Department of Orthopedic Surgery, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Kumamoto University, Kumamoto, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University, Tokyo, Japan
| |
Collapse
|
7
|
Kameo Y, Miya Y, Hayashi M, Nakashima T, Adachi T. In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. SCIENCE ADVANCES 2020; 6:eaax0938. [PMID: 32181336 PMCID: PMC7060067 DOI: 10.1126/sciadv.aax0938] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/13/2019] [Indexed: 05/05/2023]
Abstract
Bone structure and function are maintained by well-regulated bone metabolism and remodeling. Although the underlying molecular and cellular mechanisms are now being understood, physiological and pathological states of bone are still difficult to predict due to the complexity of intercellular signaling. We have now developed a novel in silico experimental platform, V-Bone, to integratively explore bone remodeling by linking complex microscopic molecular/cellular interactions to macroscopic tissue/organ adaptations. Mechano-biochemical couplings modeled in V-Bone relate bone adaptation to mechanical loading and reproduce metabolic bone diseases such as osteoporosis and osteopetrosis. V-Bone also enables in silico perturbation on a specific signaling molecule to observe bone metabolic dynamics over time. We also demonstrate that this platform provides a powerful way to predict in silico therapeutic effects of drugs against metabolic bone diseases. We anticipate that these in silico experiments will substantially accelerate research into bone metabolism and remodeling.
Collapse
Affiliation(s)
- Y. Kameo
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Y. Miya
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - M. Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - T. Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - T. Adachi
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
- Corresponding author.
| |
Collapse
|
8
|
Bone marrow niche crosses paths with BMPs: a road to protection and persistence in CML. Biochem Soc Trans 2020; 47:1307-1325. [PMID: 31551354 DOI: 10.1042/bst20190221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukaemia (CML) is a paradigm of precision medicine, being one of the first cancers to be treated with targeted therapy. This has revolutionised CML therapy and patient outcome, with high survival rates. However, this now means an ever-increasing number of patients are living with the disease on life-long tyrosine kinase inhibitor (TKI) therapy, with most patients anticipated to have near normal life expectancy. Unfortunately, in a significant number of patients, TKIs are not curative. This low-level disease persistence suggests that despite a molecularly targeted therapeutic approach, there are BCR-ABL1-independent mechanisms exploited to sustain the survival of a small cell population of leukaemic stem cells (LSCs). In CML, LSCs display many features akin to haemopoietic stem cells, namely quiescence, self-renewal and the ability to produce mature progeny, this all occurs through intrinsic and extrinsic signals within the specialised microenvironment of the bone marrow (BM) niche. One important avenue of investigation in CML is how the disease highjacks the BM, thereby remodelling this microenvironment to create a niche, which enables LSC persistence and resistance to TKI treatment. In this review, we explore how changes in growth factor levels, in particular, the bone morphogenetic proteins (BMPs) and pro-inflammatory cytokines, impact on cell behaviour, extracellular matrix deposition and bone remodelling in CML. We also discuss the challenges in targeting LSCs and the potential of dual targeting using combination therapies against BMP receptors and BCR-ABL1.
Collapse
|
9
|
Charoenngam N, Shirvani A, Holick MF. The ongoing D-lemma of vitamin D supplementation for nonskeletal health and bone health. Curr Opin Endocrinol Diabetes Obes 2019; 26:301-305. [PMID: 31644469 DOI: 10.1097/med.0000000000000508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to give some perspective on the results and conclusions of three recent randomized controlled vitamin D intervention studies that have challenged the health benefit of vitamin D supplementation for reducing risk for cardiovascular disease, cancer, all-cause mortality and type 2 diabetes and improving bone health. RECENT FINDINGS Vitamin D supplementation to adults who were vitamin D sufficient or insufficient did not reduce risk for developing cardiovascular disease, cancer, type 2 diabetes nor increases bone mineral density (BMD). Patients who were vitamin D deficient with cancer and received vitamin D reduced risk for mortality by 25% and prediabetic adults who were vitamin D deficient and received vitamin D reduced their risk of developing type 2 diabetes by 62%. Older adults receiving 4000 and 10 000 IUs of vitamin D3 daily for 3 years had reduced radial BMD but had no change in either total hip areal bone density or bone strength in the radius and tibia. SUMMARY Caution is needed when evaluating results and conclusions from randomized controlled trials that investigate health benefits of vitamin D; most studies suggest health benefits when vitamin D supplementation is provided to vitamin D deficient populations and little benefit when given to populations that are vitamin D sufficient/insufficient.
Collapse
Affiliation(s)
- Nipith Charoenngam
- Vitamin D, Skin and Bone Research Laboratory, Section of Endocrinology, Nutrition, and Diabetes, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arash Shirvani
- Vitamin D, Skin and Bone Research Laboratory, Section of Endocrinology, Nutrition, and Diabetes, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Michael F Holick
- Vitamin D, Skin and Bone Research Laboratory, Section of Endocrinology, Nutrition, and Diabetes, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Moghazy TF, Zaki MA, Kandil NS, Maharem DA, Matrawy KA, Zaki MA, El-Banna AMI. Serum sclerostin as a potential biomarker of vascular and valvular types of calcification in chronic kidney disease cases with and without maintenance hemodialysis. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1080/20905068.2019.1592930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
| | | | - Noha Said Kandil
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Dalia Aly Maharem
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Moataz Ahmad Zaki
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
11
|
Su N, Yang J, Xie Y, Du X, Chen H, Zhou H, Chen L. Bone function, dysfunction and its role in diseases including critical illness. Int J Biol Sci 2019; 15:776-787. [PMID: 30906209 PMCID: PMC6429025 DOI: 10.7150/ijbs.27063] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022] Open
Abstract
The skeleton is one of the largest organs in the human body. In addition to its conventional functions such as support, movement and protection, the skeleton also contributes to whole body homeostasis and maintenance of multiple important non-bone organs/systems (extraskeletal functions). Both conventional and extraskeletal functions of the skeleton are defined as bone function. Bone-derived factors (BDFs) are key players regulating bone function. In some pathophysiological situations, including diseases affecting bone and/or other organs/systems, the disorders of bone itself and the subsequently impaired functions of extraskeletal organs/systems caused by abnormal bone (impaired extraskeletal functions of bone) are defined as bone dysfunction. In critical illness, which is a health status characterized by the dysfunction or severe damage of one or multiple important organs or systems, the skeleton shows rapid bone loss resulting from bone hyper-resorption and impaired osteoblast function. In addition, the dysfunctions of the skeleton itself are also closely related to the severity and prognosis of critical illness. Therefore, we propose that there is bone dysfunction in critical illness. Some methods to inhibit osteoclast activity or promote osteoblast function by the treatment of bisphosphonates or PTH1-34 benefit the outcome of critical illness, which indicates that enhancing bone function may be a potential novel strategy to improve prognosis of diseases including critical illness.
Collapse
Affiliation(s)
- Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jing Yang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Hospital Road, Sydney, NSW 2139, Australia
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
12
|
Lu W, Zhang X, Firth F, Mei L, Yi J, Gong C, Li H, Zheng W, Li Y. Sclerostin injection enhances orthodontic tooth movement in rats. Arch Oral Biol 2018; 99:43-50. [PMID: 30605820 DOI: 10.1016/j.archoralbio.2018.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE It was aimed to investigate the in vivo effects of local injection of sclerostin protein on orthodontic tooth movement. DESIGN A total of 48 rats underwent orthodontic mesialization of the maxillary first molars on both sides. Local injection was given at the compression side in the alveolar bone on both maxillary sides, with sclerostin protein carried by hydrogel on one side, and the same volume of normal saline carried by hydrogel on the other side serving as the control. After two weeks, the tooth movement amount and effects on the periodontium were assessed through micro-computed tomography (μCT) analysis, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemistry (IHC) analysis. RESULTS After two weeks of intervention, tooth movement was significantly greater in the 4 μg/kg and 20 μg/kg sclerostin injection groups, compared to the control. Analysis of the furcation area of the maxillary first molar showed that the 20 μg/kg group had significantly decreased BV/TV. At the compression side, the number of TRAP-positive osteoclasts was significantly increased in 20 μg/kg group compared to the control. The expression of RANKL was statistically higher in all the sclerostin groups, while the expression of OPG was statistically lower in the 4 μg/kg and 20 μg/kg groups, compared to the control. At the tension side, the expression of RUNX2 and COL-1 was statistically higher in the 20 μg/kg group compared to the control. CONCLUSIONS Local injection of sclerostin protein in the alveolar bone at the compression side accelerates OTM in rats by promoting osteoclastogenesis.
Collapse
Affiliation(s)
- Wenxin Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Xuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China; 3E Dental Clinic, Chengdu, China
| | - Fiona Firth
- Discipline of Orthodontics, Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Li Mei
- Discipline of Orthodontics, Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Jianru Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Hanshi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
13
|
Wnt Signaling-Related Osteokines at Rest and Following Plyometric Exercise in Prepubertal and Early Pubertal Boys and Girls. Pediatr Exerc Sci 2018; 30:457-465. [PMID: 29683771 DOI: 10.1123/pes.2017-0259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE This study examined osteokines related to Wnt signaling at rest and in response to plyometric exercise in 12 boys [10.2 (0.4) y] and 12 girls [10.5 (0.4) y]. METHODS One resting (preexercise) and 3 postexercise (5 min, 1 h, and 24 h) blood samples were analyzed for sclerostin, dickkopf-related protein 1 (DKK-1), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-β ligand (RANKL). RESULTS Girls had higher resting sclerostin than boys [187.1 (40.1) vs 150.4 (36.4) pg·mL-1, respectively; P = .02]. However, boys had higher DKK-1 [427.7 (142.3) vs 292.8 (48.0) pg·mL-1, respectively; P = .02] and RANKL [3.9 (3.8) vs 1.0 (0.4) pg·mL-1, respectively; P < .01] than girls. In girls, sclerostin significantly decreased 5-minute and 1-hour postexercise (χ2 = 12.7, P = .01), and RANKL significantly decreased 5-minute postexercise (χ2 = 19.1, P < .01) and continued to decrease up to 24-hour postexercise, with large effect sizes. In boys, DKK-1 significantly decreased 1-hour postexercise and remained lower than preexercise 24-hour postexercise (χ2 = 13.0, P = .01). OPG increased in both boys (χ2 = 13.7, P < .01) and girls (χ2 = 11.4, P = .01), with boys having significantly higher OPG at 5-minute and 1-hour postexercise, whereas in girls, this increase was only seen 24-hour postexercise. CONCLUSION Plyometric exercise induces an overall anabolic osteokine response favoring osteoblastogenesis over osteoclastogenesis in both boys and girls although the timeline and mechanism(s) may be different.
Collapse
|
14
|
Response of Sclerostin and Bone Turnover Markers to High Intensity Interval Exercise in Young Women: Does Impact Matter? BIOMED RESEARCH INTERNATIONAL 2018; 2018:4864952. [PMID: 30515401 PMCID: PMC6236652 DOI: 10.1155/2018/4864952] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 11/28/2022]
Abstract
This study examined potential exercise-induced changes in sclerostin and in bone turnover markers in young women following two modes of high intensity interval exercise that involve impact (running) or no-impact (cycling). Healthy, recreationally active, females (n=20; 22.5±2.7 years) performed two exercise trials in random order: high intensity interval running (HIIR) on a treadmill and high intensity interval cycling (HIIC) on a cycle ergometer. Trials consisted of eight 1 min running or cycling intervals at ≥90% of maximal heart rate, separated by 1 min passive recovery intervals. Blood samples were collected at rest (pre-exercise) and 5 min, 1h, 24h, and 48h following each exercise trial. Serum was analyzed for sclerostin, cross linked telopeptide of type I collagen (CTXI), and procollagen type I amino-terminal propeptide (PINP). A significant time effect was found for sclerostin, which increased from pre-exercise to 5 min after exercise in both trials (100.2 to 131.6 pg/ml in HIIR; 102.3 to 135.8 pg/ml in HIIC, p<0.001) and returned to baseline levels by 1h, with no difference between exercise modes and no exercise mode-by-time interaction. CTXI did not significantly change following either trial. PINP showed an overall time effect following HIIR, but none of the post hoc pairwise comparisons were statistically significant. In young women, a single bout of high intensity exercise induces an increase in serum sclerostin, irrespective of exercise mode (impact versus no-impact), but this response is not accompanied by a response in either bone formation or resorption markers.
Collapse
|
15
|
The Bromodomain Inhibitor N-Methyl pyrrolidone Prevents Osteoporosis and BMP-Triggered Sclerostin Expression in Osteocytes. Int J Mol Sci 2018; 19:ijms19113332. [PMID: 30366476 PMCID: PMC6275050 DOI: 10.3390/ijms19113332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
(1) Background: In an adult skeleton, bone is constantly renewed in a cycle of bone resorption, followed by bone formation. This coupling process, called bone remodeling, adjusts the quality and quantity of bone to the local needs. It is generally accepted that osteoporosis develops when bone resorption surpasses bone formation. Osteoclasts and osteoblasts, bone resorbing and bone forming cells respectively, are the major target in osteoporosis treatment. Inside bone and forming a complex network, the third and most abundant cells, the osteocytes, have long remained a mystery. Osteocytes are responsible for mechano-sensation and -transduction. Increased expression of the osteocyte-derived bone inhibitor sclerostin has been linked to estrogen deficiency-induced osteoporosis and is therefore a promising target for osteoporosis management. (2) Methods: Recently we showed in vitro and in vivo that NMP (N-Methyl-2-pyrrolidone) is a bioactive drug enhancing the BMP-2 (Bone Morphogenetic Protein 2) induced effect on bone formation while blocking bone resorption. Here we tested the effect of NMP on the expression of osteocyte-derived sclerostin. (3) Results: We found that NMP significantly decreased sclerostin mRNA and protein levels. In an animal model of osteoporosis, NMP prevented the estrogen deficiency-induced increased expression of sclerostin. (4) Conclusions: These results support the potential of NMP as a novel therapeutic compound for osteoporosis management, since it preserves bone by a direct interference with osteoblasts and osteoclasts and an indirect one via a decrease in sclerostin expression by osteocytes.
Collapse
|
16
|
Vlot MC, den Heijer M, de Jongh RT, Vervloet MG, Lems WF, de Jonge R, Obermayer-Pietsch B, Heijboer AC. Clinical utility of bone markers in various diseases. Bone 2018; 114:215-225. [PMID: 29920402 DOI: 10.1016/j.bone.2018.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Measurements of bone markers (BMs) in peripheral blood or urine are a pivotal part of bone research within modern clinical medicine. In recent years the use of BMs increased substantially as they can be useful either to diagnose bone (related) disease and to follow its natural history, but also to monitor the effects of interventions. However, the use of BMs is still complicated mainly due to (pre)analytical variability of these substances, limited accessibility of assays, variable cut-off values in different countries and laboratories and heterogeneous results with regard to clinical implications of measuring BMs in several studies. This review will provide the clinician with a practical guide, based on current evidence, in which circumstances to test which bone markers for optimal diagnostic purposes, in order to improve patient care in different areas of bone diseases including Paget's disease, primary osteoporosis, tumor induced osteomalacia, hypophosphatemic rickets, van Buchem disease, chronic kidney disease, rheumatoid arthritis, neoplasma/multiple myeloma, type 2 diabetes mellitus and primary hyperparathyroidism. The clinician should consider fasting state, recent fractures, aging, menopausal status, concomitant liver and kidney disease when ordering and interpreting BM measurements as these factors might result in misleading BM concentrations. We found that BMs are clearly useful in the current diagnosis of tumor induced osteomalacia, van Buchem disease, Paget's disease and hypophosphatemic rickets. In addition, BMs are useful to monitor disease activity in chronic kidney disease, Paget's disease and are useful to monitor treatment adherence in osteoporosis.
Collapse
Affiliation(s)
- M C Vlot
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Internal Medicine, Endocrinology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - M den Heijer
- Department of Internal Medicine, Endocrinology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - R T de Jongh
- Department of Internal Medicine, Endocrinology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - M G Vervloet
- Department Nephrology, Amsterdam Cardiovascular Sciences (ACS) VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - W F Lems
- Department of Rheumatology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - R de Jonge
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - B Obermayer-Pietsch
- Department of Internal Medicine, Endocrinology and Diabetology, Medical University of Graz, Graz 8036, Austria
| | - A C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Responses to spaceflight of mouse mandibular bone and teeth. Arch Oral Biol 2018; 93:163-176. [DOI: 10.1016/j.archoralbio.2018.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
|
18
|
Guerriere KI, Hughes JM, Gaffney‐Stomberg E, Staab JS, Matheny RW. Circulating sclerostin is not suppressed following a single bout of exercise in young men. Physiol Rep 2018; 6:e13695. [PMID: 29845770 PMCID: PMC5974717 DOI: 10.14814/phy2.13695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to determine whether an acute bout of exercise reduces serum sclerostin under diet-controlled conditions that stabilize the parathyroid hormone (PTH)-1,alpha-hydroxylase axis. Fourteen male volunteers (age, 22.1 years ± 4.05; BMI, 27.3 kg/m2 ± 3.8) completed a randomized crossover study in which they performed 10 sets of 10 repetitions of plyometric jumps at 40% of their estimated one-repetition maximum leg press or a nonexercise control period. A calcium-controlled diet (1000 mg/day) was implemented prior to, and throughout each study period. Blood was drawn for analysis of serum sclerostin, Dickkopf-1, markers of bone metabolism (PTH, calcium), markers of bone formation (bone alkaline phosphatase, BAP; osteocalcin, OCN), and markers of bone resorption (tartrate-resistant acid phosphatase 5b, TRAP5b; C-telopeptide cross-links of type I collagen, CTX) at baseline and 12, 24, 48, and 72 h following exercise or rest. Changes in serum concentrations were expressed as percentage change from individual baselines. Data were analyzed using a repeated measured linear mixed model to assess effects of time, physical activity status (rest or exercise condition), and the time by activity status interaction. There was a significant effect of exercise on OCN (P = 0.005) and a significant interaction effect for CTX (P = 0.001). There was no effect of exercise on any other biochemical marker of bone metabolism. A single bout of plyometric exercise did not induce demonstrable changes in biochemical markers of bone metabolism under conditions where dietary effects on PTH were controlled.
Collapse
Affiliation(s)
- Katelyn I. Guerriere
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Julie M. Hughes
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Erin Gaffney‐Stomberg
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Jeffery S. Staab
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Ronald W. Matheny
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| |
Collapse
|
19
|
Ress C, Paulweber M, Goebel G, Willeit K, Rufinatscha K, Strobl A, Salzmann K, Kedenko L, Tschoner A, Staudacher G, Iglseder B, Tilg H, Paulweber B, Kaser S. Circulating Wnt inhibitory factor 1 levels are associated with development of cardiovascular disease. Atherosclerosis 2018; 273:1-7. [PMID: 29649633 DOI: 10.1016/j.atherosclerosis.2018.03.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 02/12/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Wnt signaling is involved in atherosclerotic plaque formation directly and indirectly by modulating cardiovascular risk factors. We investigated whether circulating concentrations of Wnt inhibitors are associated with cardiovascular events in subjects with intermediate cardiovascular risk. METHODS 904 non-diabetic subjects participating in the SAPHIR study were assessed. In the SAPHIR study, middle-aged women without overt atherosclerotic disease at study entry were followed up for 10 years. 88 patients of our study cohort developed cardiovascular disease at follow-up (CVD group). Subjects of the CVD group were 1:2 case-control matched for age, sex, BMI and smoking behavior with subjects without overt cardiovascular disease after a 10 year-follow-up (control group). 18 patients of the CVD group and 19 subjects of the control group were retrospectively excluded due to fulfilling exclusion criteria. Baseline circulating sclerostin, dickkopf (DKK)-1, secreted frizzled-related protein (SFRP)-1 and Wnt inhibitory factor (WIF)-1 levels were assessed by ELISA. RESULTS Baseline systemic SFRP-1 and WIF-1 levels were significantly higher in patients with cardiovascular events (n = 70) when compared to healthy controls (n = 157) while DKK-1 and sclerostin levels were similar in both groups. Logistic regression analysis revealed WIF-1 as a significant predictor of future cardiovascular events. CONCLUSIONS Our data suggest that increased SFRP-1 and WIF-1 levels precede the development of symptomatic atherosclerotic disease. Assessment of systemic WIF-1 levels, which turned out to be independently associated with CVD, might help to early identify patients at intermediate cardiovascular risk.
Collapse
Affiliation(s)
- Claudia Ress
- Department of Internal Medicine 1, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Innsbruck, Austria
| | - Mariya Paulweber
- Department of Internal Medicine 1, Paracelsus Private University Salzburg, Salzburg, Austria
| | - Georg Goebel
- Department of Medical Statistics, Informatics and Health Economics, Medical University Innsbruck, Innsbruck, Austria
| | - Karin Willeit
- Department of Internal Medicine 1, Paracelsus Private University Salzburg, Salzburg, Austria
| | - Kerstin Rufinatscha
- Department of Internal Medicine 1, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Innsbruck, Austria
| | - Anna Strobl
- Department of Internal Medicine 1, Medical University Innsbruck, Innsbruck, Austria
| | - Karin Salzmann
- Department of Internal Medicine 1, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Innsbruck, Austria
| | - Ludmilla Kedenko
- Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander Tschoner
- Department of Internal Medicine 1, Medical University Innsbruck, Innsbruck, Austria
| | - Gabriele Staudacher
- Department of Internal Medicine 1, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Iglseder
- Department of Geriatrics, Paracelsus Private University Salzburg, Salzburg, Austria
| | - Herbert Tilg
- Department of Internal Medicine 1, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine 1, Paracelsus Private University Salzburg, Salzburg, Austria
| | - Susanne Kaser
- Department of Internal Medicine 1, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
20
|
Giovanini AF, Göhringer I, Tavella R, Linzmeyer MC, Priesnitz TF, Bonetto LM, Resende RG, Scariot R, Zielak JC. Intermittent administration of PTH induces the expression of osteocalcin and BMP-2 on choroid plexus cells associated with suppression of sclerostin, TGF-β1, and Na +K +ATPase. Endocrine 2018; 59:685-689. [PMID: 29235067 DOI: 10.1007/s12020-017-1490-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Allan Fernando Giovanini
- Master Program in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil.
- Laboratory of Histopathology of Positivo University, Curitiba, Paraná, Brazil.
| | - Isabella Göhringer
- Master Program in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - Rosangela Tavella
- Master Program in Biotechnology, Positivo University, Curitiba, Paraná, Brazil
| | | | | | | | | | - Rafaela Scariot
- Master Program in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - João Cesar Zielak
- Master Program in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil
- Master Program in Biotechnology, Positivo University, Curitiba, Paraná, Brazil
| |
Collapse
|
21
|
Pinho RCM, Pimentel LB, Bandeira FAF, Dias RSAM, Cimões R. Levels of serum sclerostin, metabolic parameters, and periodontitis in -postmenopausal women with diabetes. SPECIAL CARE IN DENTISTRY 2017; 37:282-289. [PMID: 29194725 DOI: 10.1111/scd.12250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease defined by hyperglycemia, which is associated with periodontal disease and exerts an effect on bone metabolism. The aim of this study was to determine serum levels of sclerostin in postmenopausal women with diabetes and determine a possible association with periodontal disease. Sixty-one postmenopausal women (32 with diabetes and 29 without diabetes) were evaluated. Blood was collected for biochemical analysis and the determination of serum sclerostin. The participants were also submitted to a clinical examination for the evaluation of periodontal status. A total of 75.4% of the volunteers had periodontal disease and levels serum sclerostin were altered in 48.7% of the patients with diabetes. In the diabetic population, mean levels of LDL (p = 0.035) and urea (p = 0.032) were higher in the patients without periodontal disease and the plaque index was higher in those with periodontal disease (p = 0.039). The prevalence of periodontal disease and the levels serum sclerostin were high in the postmenopausal women analyzed, but the data do not allow the determination of whether periodontal disease is related to high levels of this peptide.
Collapse
|
22
|
Anagnostis P, Vakalopoulou S, Christoulas D, Paschou SA, Papatheodorou A, Garipidou V, Kokkoris P, Terpos E. The role of sclerostin/dickkopf-1 and receptor activator of nuclear factor kB ligand/osteoprotegerin signalling pathways in the development of osteoporosis in patients with haemophilia A and B: A cross-sectional study. Haemophilia 2017; 24:316-322. [PMID: 29194852 DOI: 10.1111/hae.13384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/19/2022]
Abstract
AIM Haemophilia A and B are associated with reduced bone mineral density (BMD). The aim of this study was to assess circulating sclerostin and dickkopf-1 (Dkk-1), (inhibitors of osteoblastic differentiation), as well as the receptor activator of nuclear factor kB ligand (RANKL)/osteoprotegerin (OPG) system (the major regulator of osteoclastogenesis), in patients with haemophilia (PWH), their possible correlations with clinical risk factors and the effect of ibandronate on these markers. METHODS Eighty-nine male PWH (mean age 45.9 ± 15.3 years) and 30 age-matched healthy male controls participated. BMD was assessed by DXA. Sclerostin, Dkk-1, RANKL and OPG were measured in serum of patients, controls, as well as in ten patients receiving oral ibandronate (150 mg/mo), at baseline and after 12 months. RESULTS Patients with haemophilia had lower circulating sclerostin (median ± IQR: 47.4 ± 26.93 vs 250 ± 250 pmol/L, P < .001), Dkk-1 (21.24 ± 17.18 vs 26.16 ± 15.32pg/mL, P = .04) and higher levels of RANKL (0.23 ± 0.03 vs 0.04 ± 0.03 pmol/L, P = .001), RANKL/OPG ratio (0.063 ± 0.25 vs 0.005 ± 0.11, P = .001) compared with controls. Patients with low BMD had higher OPG concentrations compared to those with normal BMD. Sclerostin and RANKL/OPG correlated positively with BMD. Patients with severe haemophilia had lower sclerostin concentrations compared with those with mild or moderate disease. The degree of arthropathy negatively correlated with sclerostin and Dkk-1 levels. PWH who received ibandronate showed a decrease in serum Dkk-1 without any significant effect on sclerostin and RANKL/OPG. CONCLUSIONS Patients with haemophilia present increased osteoclastic activity coupled with compensatory increased osteoblastic activity. Ibandronate did not affect RANKL/OPG ratio, but it decreased Dkk-1.
Collapse
Affiliation(s)
- P Anagnostis
- Haemophilia Centre of Northern Greece, 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - S Vakalopoulou
- Haemophilia Centre of Northern Greece, 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - D Christoulas
- Department of Haematology, 251 General Air Force Hospital, Athens, Greece
| | - S A Paschou
- Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - A Papatheodorou
- Department of Haematology, 251 General Air Force Hospital, Athens, Greece
| | - V Garipidou
- Haemophilia Centre of Northern Greece, 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - P Kokkoris
- Department of Endocrinology, 251 General Air Force Hospital, Athens, Greece
| | - E Terpos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to evaluate critically the literature published over the past 3 years regarding the Wnt signaling pathway. The Wnt pathway was found to be involved in bone biology in 2001-2002 with the discovery of a (G171V) mutation in the lipoprotein receptor-related protein 5 (LRP5) that resulted in high bone mass and another mutation that completely inactivated Lrp5 function and resulted in osteoporosis pseudoglioma syndrome (OPPG). The molecular biology has been complex, and very interesting. It has provided many opportunities for exploitation to develop new clinical treatments, particularly for osteoporosis. More clinical possibilities include: treatments for fracture healing, corticosteroid osteoporosis, osteogenesis imperfecta, and others. In addition, we wish to provide historical information coming from distant publications (~350 years ago) regarding bone biology that have been confirmed by study of Wnt signaling. RECENT FINDINGS A recent finding is the development of an antibody to sclerostin that is under study as a treatment for osteoporosis. Development of treatments for other forms of osteoporosis, such as corticosteroid osteoporosis, is also underway. The full range of the applications of the work is not yet been achieved.
Collapse
Affiliation(s)
- Mark L Johnson
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO, 64108, USA
| | - Robert R Recker
- Creighton University, 601 N 30th St., Ste 4841, Omaha, NE, 68131, USA.
| |
Collapse
|
24
|
Sebastian A, Loots GG. Transcriptional control of Sost in bone. Bone 2017; 96:76-84. [PMID: 27771382 DOI: 10.1016/j.bone.2016.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/15/2016] [Accepted: 10/10/2016] [Indexed: 01/07/2023]
Abstract
Sclerostin is an osteocyte derived negative regulator of bone formation. A highly specific expression pattern and the exclusive bone phenotype have made Sclerostin an attractive target for therapeutic intervention in treating metabolic bone diseases such as osteoporosis and in facilitating fracture repair. Understanding the molecular mechanisms that regulate Sclerostin transcription is of great interest as it may unveil new avenues for therapeutic approaches. Such studies may also elucidate how various signaling pathways intersect to modulate bone metabolism. Here we review the current understanding of the upstream molecular mechanisms that regulate Sost/SOST transcription, in bone.
Collapse
Affiliation(s)
- Aimy Sebastian
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
25
|
Krishna SM, Seto SW, Jose RJ, Li J, Morton SK, Biros E, Wang Y, Nsengiyumva V, Lindeman JHN, Loots GG, Rush CM, Craig JM, Golledge J. Wnt Signaling Pathway Inhibitor Sclerostin Inhibits Angiotensin II-Induced Aortic Aneurysm and Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 37:553-566. [PMID: 28062506 DOI: 10.1161/atvbaha.116.308723] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/07/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Sclerostin (SOST) has been identified as an important regulator of bone formation; however, it has not been previously implicated in arterial disease. The aim of this study was to assess the role of SOST in aortic aneurysm (AA) and atherosclerosis using human samples, a mouse model, and in vitro investigations. APPROACH AND RESULTS SOST protein was downregulated in human and mouse AA samples compared with controls. Transgenic introduction of human SOST in apolipoprotein E-deficient (ApoE-/-) mice (SOSTTg .ApoE-/-) and administration of recombinant mouse Sost inhibited angiotensin II-induced AA and atherosclerosis. Serum concentrations of several proinflammatory cytokines were significantly reduced in SOSTTg .ApoE-/- mice. Compared with controls, the aortas of mice receiving recombinant mouse Sost and SOSTTg .ApoE-/- mice showed reduced matrix degradation, reduced elastin breaks, and preserved collagen. Decreased inflammatory cell infiltration and a reduction in the expression of wingless-type mouse mammary virus integration site/β-catenin responsive genes, including matrix metalloproteinase-9, osteoprotegerin, and osteopontin, were observed in the aortas of SOSTTg .ApoE-/- mice. SOST expression was downregulated and the wingless-type mouse mammary virus integration site/β-catenin pathway was activated in human AA samples. The cytosine-phosphate-guanine islands in the SOST gene promoter showed significantly higher methylation in human AA samples compared with controls. Incubation of vascular smooth muscle cells with the demethylating agent 5-azacytidine resulted in upregulation of SOST, suggesting that SOST is epigenetically regulated. CONCLUSIONS This study identifies that SOST is expressed in the aorta and downregulated in human AA possibly because of epigenetic silencing. Upregulating SOST inhibits AA and atherosclerosis development, with potential important implications for treating these vascular diseases.
Collapse
Affiliation(s)
- Smriti Murali Krishna
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Sai-Wang Seto
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Roby J Jose
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Jiaze Li
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Susan K Morton
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Yutang Wang
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Vianne Nsengiyumva
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Jan H N Lindeman
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Gabriela G Loots
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Catherine M Rush
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Jeffrey M Craig
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.).
| |
Collapse
|
26
|
Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:831-40. [DOI: 10.1016/j.msec.2016.07.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 01/05/2023]
|
27
|
The role of bone biopsy for the diagnosis of renal osteodystrophy: a short overview and future perspectives. J Nephrol 2016; 29:617-26. [PMID: 27473148 DOI: 10.1007/s40620-016-0339-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/18/2016] [Indexed: 12/26/2022]
Abstract
Chronic kidney disease (CKD) patients present specific bone and mineral metabolism disturbances, which account for important morbidity and mortality. The term renal osteodystrophy, classically used for the nomination of CKD-associated bone disorder, has been limited to the histologic description of bone lesions, requiring the use of bone biopsy. Biochemical markers and imaging tools do not adequately predict the complex bone changes that are observed in renal osteodystrophy. Parathyroid hormone, which is a universally used biomarker of bone turnover in clinical practice, lacks specificity and sensitivity. Therefore, tetracycline double-labelled transiliac bone biopsy, with bone histology and histomorphometric evaluation, remains the best clinical tool to discriminate bone turnover and to evaluate the other dimensions of renal osteodystrophy. This review will focus on the value of classic bone histomorphometric analysis of trabecular bone in CKD patients and unfold new perspectives of this diagnostic tool, including cortical bone evaluation and bone tissue immunohistochemistry.
Collapse
|
28
|
Appelman-Dijkstra NM, Papapoulos SE. Sclerostin Inhibition in the Management of Osteoporosis. Calcif Tissue Int 2016; 98:370-80. [PMID: 27016922 PMCID: PMC4824823 DOI: 10.1007/s00223-016-0126-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/03/2016] [Indexed: 01/06/2023]
Abstract
The recognition of the importance of the Wnt-signaling pathway in bone metabolism and studies of patients with rare skeletal disorders characterized by high bone mass identified sclerostin as target for the development of new therapeutics for osteoporosis. Findings in animals and humans with sclerostin deficiency as well as results of preclinical and early clinical studies with sclerostin inhibitors demonstrated a new treatment paradigm with a bone building agent for the management of patients with osteoporosis, the antifracture efficacy, and long-term tolerability of which remain to be established in on-going phase III clinical studies. In this article we review the currently available preclinical and clinical evidence supporting the use of sclerostin inhibitors in osteoporosis.
Collapse
Affiliation(s)
| | - Socrates E Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
29
|
Ogura K, Iimura T, Makino Y, Sugie-Oya A, Takakura A, Takao-Kawabata R, Ishizuya T, Moriyama K, Yamaguchi A. Short-term intermittent administration of parathyroid hormone facilitates osteogenesis by different mechanisms in cancellous and cortical bone. Bone Rep 2016; 5:7-14. [PMID: 28326342 PMCID: PMC4926844 DOI: 10.1016/j.bonr.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/25/2015] [Accepted: 01/15/2016] [Indexed: 11/12/2022] Open
Abstract
Intermittent administration of human parathyroid hormone (1–34)[hPTH(1–34)] induces anabolic action on the bones. To understand the mechanism underlying the early phase of hPTH(1–34)-induced anabolic action, we investigated the expression profiles of osterix and sclerostin after short-term intermittent administration of hPTH(1–34) using immunohistochemistry in adult rats. In the cancellous bone, hPTH(1–34) administration greatly increased the number of osterix-positive cells in the bone marrow on day 1, but the cells gradually decreased on days 3 and 5. Injections of hPTH(1–34) induced no significant changes in the number of sclerostin-positive osteocytes in the cancellous bone. In the cortical bone, intermittent administration of hPTH(1–34) significantly reduced the number of sclerostin-positive osteocytes. The serum sclerostin level was downregulated and the osteocalcin level was upregulated on day 5 after intermittent administration of hPTH(1–34). Intermittent hPTH(1–34) injections increased osteoblast surface, osteoid thickness, and osteoid surface in cancellous bone, but not in cortical bone. This study suggested that the increase in osterix-positive osteoprogenitors in cancellous bone and the decrease in sclerostin-positive osteocytes in cortical bone play important roles in anabolic action on osteogenesis induced by short-term administration of hPTH(1–34). We analyzed the effects of hPTH(1–34) injection into rats at early phase. hPTH(1–34) injection increased the osterix-positive cells in bone marrow. hPTH(1–34) injection decreased sclerostin-positive cells in cortical bone. hPTH(1–34) exerts different effects in cancellous and cortical bone.
Collapse
Affiliation(s)
- Kenji Ogura
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime 791-0295, Japan
| | - Yuji Makino
- Department of Orthopedics, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan
| | - Ayano Sugie-Oya
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Aya Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Toshinori Ishizuya
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan
| |
Collapse
|
30
|
Wijenayaka AR, Yang D, Prideaux M, Ito N, Kogawa M, Anderson PH, Morris HA, Solomon LB, Loots GG, Findlay DM, Atkins GJ. 1α,25-dihydroxyvitamin D3 stimulates human SOST gene expression and sclerostin secretion. Mol Cell Endocrinol 2015; 413:157-67. [PMID: 26112182 DOI: 10.1016/j.mce.2015.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/04/2023]
Abstract
Sclerostin, the SOST gene product, is a negative regulator of bone formation and a positive regulator of bone resorption. In this study, treatment of human primary osteoblasts, including cells differentiated to an osteocyte-like stage, with 1α,25-dihydroxyvitaminD3 (1,25D) resulted in the dose-dependent increased expression of SOST mRNA. A similar effect was observed in human trabecular bone samples cultured ex vivo, and in osteocyte-like cultures of differentiated SAOS2 cells. Treatment of SAOS2 cells with 1,25D resulted in the production and secretion of sclerostin protein. In silico analysis of the human SOST gene revealed a single putative DR3-type vitamin D response element (VDRE) at position -6216 bp upstream of the transcription start site (TSS). This sequence was confirmed to have strong VDRE activity by luciferase reporter assays and electrophoretic mobility shift analysis (EMSA). Sequence substitution in the VDR/RXR half-sites abolished VDRE reporter activity and binding of nuclear proteins. A 6.3 kb fragment of the human proximal SOST promoter demonstrated responsiveness to 1,25D. The addition of the evolutionary conserved region 5 (ECR5), a known bone specific enhancer region, ahead of the 6.3 kb fragment increased basal promoter activity but did not increase 1,25D responsiveness. Site-specific mutagenesis abolished the responsiveness of the 6.3 kb promoter to 1,25D. We conclude that 1,25D is a direct regulator of human SOST gene and sclerostin protein expression, extending the pathways of control of sclerostin expression. At least some of this responsiveness is mediated by the identified classical VDRE however the nature of the transcriptional regulation by 1,25D warrants further investigation.
Collapse
Affiliation(s)
- Asiri R Wijenayaka
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dongqing Yang
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Matthew Prideaux
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Nobuaki Ito
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Masakazu Kogawa
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paul H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Howard A Morris
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gabriela G Loots
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, USA; University of California at Merced, School of Natural Sciences, Merced, CA, USA
| | - David M Findlay
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Despite the increased knowledge of osteocyte biology, the contribution of this most abundant bone cell to the development and progression of multiple myeloma in bone is practically unexplored. RECENT FINDINGS Multiple myeloma bone disease is characterized by exacerbated bone resorption and the presence of osteolytic lesions that do not heal because of a concomitant reduction in bone formation. Osteocytes produce molecules that regulate both bone formation and resorption. Recent findings suggest that the life span of osteocytes is compromised in multiple myeloma patients with bone lesions. In addition, multiple myeloma cells affect the transcriptional profile of osteocytes by upregulating the production of pro-osteoclastogenic cytokines, stimulating osteoclast formation and activity. Further, patients with active multiple myeloma have elevated circulating levels of sclerostin, a potent inhibitor of bone formation which is specifically expressed by osteocytes in bone. SUMMARY Understanding the contribution of osteocytes to the mechanisms underlying the skeletal consequences of multiple myeloma bone disease has the potential to provide important new therapeutic strategies that specifically target multiple myeloma-osteocyte interactions.
Collapse
|
32
|
Yorgan TA, Peters S, Jeschke A, Benisch P, Jakob F, Amling M, Schinke T. The Anti-Osteoanabolic Function of Sclerostin Is Blunted in Mice Carrying a High Bone Mass Mutation of Lrp5. J Bone Miner Res 2015; 30:1175-83. [PMID: 25640331 DOI: 10.1002/jbmr.2461] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/23/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022]
Abstract
Activating mutations of the putative Wnt co-receptor Lrp5 or inactivating mutations of the secreted molecule Sclerostin cause excessive bone formation in mice and humans. Previous studies have suggested that Sclerostin functions as an Lrp5 antagonist, yet clear in vivo evidence was still missing, and alternative mechanisms have been discussed. Moreover, because osteoblast-specific inactivation of β-catenin, the major intracellular mediator of canonical Wnt signaling, primarily affected bone resorption, it remained questionable, whether Sclerostin truly acts as a Wnt signaling antagonist by interacting with Lrp5. In an attempt to address this relevant question, we generated a mouse model (Col1a1-Sost) with transgenic overexpression of Sclerostin under the control of a 2.3-kb Col1a1 promoter fragment. These mice displayed the expected low bone mass phenotype as a consequence of reduced bone formation. The Col1a1-Sost mice were then crossed with two mouse lines carrying different high bone mass mutations of Lrp5 (Lrp5(A170V) and Lrp5(G213V)), both of them potentially interfering with Sclerostin binding. Using µCT-scanning and histomorphometry we found that the anti-osteoanabolic influence of Sclerostin overexpression was not observed in Lrp5(A213V/A213V) mice and strongly reduced in Lrp5(A170V/A170V) mice. As a control we applied the same strategy with mice overexpressing the transmembrane Wnt signaling antagonist Krm2 and found that the anti-osteoanabolic influence of the Col1a1-Krm2 transgene was not affected by either of the Lrp5 mutations. Taken together, our data support the concept that Sclerostin inhibits bone formation through Lrp5 interaction, yet their physiological relevance remains to be established.
Collapse
Affiliation(s)
- Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Peters
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peggy Benisch
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Johnson ML. Unlocking the sost gene. J Bone Miner Res 2015; 30:397-9. [PMID: 25588824 DOI: 10.1002/jbmr.2459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City (UMKC), Kansas City, MO, USA
| |
Collapse
|