1
|
Ranjan P, Devi C, Verma N, Bansal R, Srivastava VK, Das P. Understanding the Role of MicroRNAs in Congenital Tooth Agenesis: A Multi-omics Integration. Biochem Genet 2025:10.1007/s10528-025-11064-9. [PMID: 39985697 DOI: 10.1007/s10528-025-11064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
This study employs a comprehensive multi-omics approach to investigate the regulatory roles of specific microRNAs (miRNAs) in Congenital Tooth Agenesis (CTA). A total of 58 miRNAs associated with tooth diseases, cancer, and bone development were initially identified through a literature review and analyzed using bioinformatics. Based on target prediction and network analysis, eight miRNAs with strong connectivity and common target genes were shortlisted for further investigation. Blood samples from 10 CTA patients and 5 healthy controls were analyzed for miRNA expression using stem-loop RT-PCR. Four miRNAs-hsa-miR-218-5p, hsa-miR-15b-5p, hsa-miR-200b-3p, and hsa-let-7a-3p-were identified as significantly differentially expressed, marking their first reported involvement in CTA. Notably, hsa-miR-218-5p and hsa-let-7a-3p emerged as novel regulators with no prior associations with CTA or tooth development. To address the limitations of a small sample size, a multi-omics strategy was employed to validate these findings, integrating miRNA expression data with whole exome sequencing (WES), gene expression panels, and metabolomic profiling. The analysis confirmed the association of these four miRNAs with CTA and highlighted their involvement in critical biological pathways such as Wnt signaling, FGF signaling, and PI3 kinase pathways, which are essential for cellular proliferation, differentiation, and tissue morphogenesis. Importantly, the identification of these miRNAs in blood samples, rather than traditional dental tissues, highlights a minimally invasive approach that could aid in the early detection, therapeutic targeting, and personalized management of dental anomalies.
Collapse
Affiliation(s)
- Prashant Ranjan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Chandra Devi
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Neha Verma
- Dentistry Oral Surgery and Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
- Dr Bhimrao Ramji Ambedkar Government Medical College, Kannauj, UP, India
| | - Rajesh Bansal
- Dentistry Oral Surgery and Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vinay Kumar Srivastava
- Dentistry Oral Surgery and Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
2
|
Sun Y, Shang Q. Research hotspots and trends regarding microRNAs in hypertension: a bibliometric analysis. Clin Exp Hypertens 2024; 46:2304017. [PMID: 38230680 DOI: 10.1080/10641963.2024.2304017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
To investigate the research levels, hotspots, and development trends regarding microRNAs in hypertension, this study conducted a visual analysis of studies on miRNA in hypertension based on the Web of Science core collection database using CiteSpace and VOSviewer analysis software along with literature from 2005-2023 as information data. Using citation frequency, centrality, and starting year as metrics, this study analyzed the research objects. It revealed the main research bodies and hotspots and evaluated the sources of literature and the distribution of knowledge from journals and authors. Finally, the potential research directions for miRNAs in hypertension are discussed. The results showed that the research field is in a period of vigorous development, and scholars worldwide have shown strong interest in this research field. A comprehensive summary and analysis of the current research status and application trends will prove beneficial for the advancement of this field.
Collapse
Affiliation(s)
- Yu Sun
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingxin Shang
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Arya PN, Saranya I, Selvamurugan N. RUNX2 regulation in osteoblast differentiation: A possible therapeutic function of the lncRNA and miRNA-mediated network. Differentiation 2024; 140:100803. [PMID: 39089986 DOI: 10.1016/j.diff.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Osteogenic differentiation is a crucial process in the formation of the skeleton and the remodeling of bones. It relies on a complex system of signaling pathways and transcription factors, including Runt-related transcription factor 2 (RUNX2). Non-coding RNAs (ncRNAs) control the bone-specific transcription factor RUNX2 through post-transcriptional mechanisms to regulate osteogenic differentiation. The most research has focused on microRNAs (miRNAs) and long ncRNAs (lncRNAs) in studying how they regulate RUNX2 for osteogenesis in both normal and pathological situations. This article provides a concise overview of the recent advancements in understanding the critical roles of lncRNA/miRNA/axes in controlling the expression of RUNX2 during bone formation. The possible application of miRNAs and lncRNAs as therapeutic agents for the treatment of disorders involving the bones and bones itself is also covered.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Park JH, Koh EB, Seo YJ, Oh HS, Byun JH. BMP-9 Improves the Osteogenic Differentiation Ability over BMP-2 through p53 Signaling In Vitro in Human Periosteum-Derived Cells. Int J Mol Sci 2023; 24:15252. [PMID: 37894931 PMCID: PMC10607732 DOI: 10.3390/ijms242015252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) have tremendous therapeutic potential regarding the treatment of bone and musculoskeletal disorders due to their osteo-inductive ability. More than twenty BMPs have been identified in the human body with various functions, such as embryonic development, skeleton genesis, hematopoiesis, and neurogenesis. BMPs can induce the differentiation of MSCs into the osteoblast lineage and promote the proliferation of osteoblasts and chondrocytes. BMP signaling is also involved in tissue remodeling and regeneration processes to maintain homeostasis in adults. In particular, growth factors, such as BMP-2 and BMP-7, have already been approved and are being used as treatments, but it is unclear as to whether they are the most potent BMPs that induce bone formation. According to recent studies, BMP-9 is known to be the most potent inducer of the osteogenic differentiation of mesenchymal stem cells, both in vitro and in vivo. However, its exact role in the skeletal system is still unclear. In addition, research results suggest that the molecular mechanism of BMP-9-mediated bone formation is also different from the previously known BMP family, suggesting that research on signaling pathways related to BMP-9-mediated bone formation is actively being conducted. In this study, we performed a phosphorylation array to investigate the signaling mechanism of BMP-9 compared with BMP-2, another influential bone-forming growth factor, and we compared the downstream signaling system. We present a mechanism for the signal transduction of BMP-9, focusing on the previously known pathway and the p53 factor, which is relatively upregulated compared with BMP-2.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Nutritional Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Eun-Byeol Koh
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Young-Jin Seo
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hye-Seong Oh
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Dalle Carbonare L, Minoia A, Braggio M, Bertacco J, Piritore FC, Zouari S, Vareschi A, Elia R, Vedovi E, Scumà C, Carlucci M, Bhandary L, Mottes M, Romanelli MG, Valenti MT. Modulation of miR-146b Expression during Aging and the Impact of Physical Activity on Its Expression and Chondrogenic Progenitors. Int J Mol Sci 2023; 24:13163. [PMID: 37685971 PMCID: PMC10488278 DOI: 10.3390/ijms241713163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging. Therefore, the modulation of miR-146b-5p in the commitment and differentiation of mesenchymal cells as well as during maturation and aging in zebrafish model were analyzed. In addition, circulating miR-146b-5p was evaluated in human subjects at different age ranges. Thus, the role of physical activity in the modulation of miR-146b-5p was also investigated. To achieve these aims, RT (real-time)-PCR, Western blot, cell transfections, and three-dimensional (3D) culture techniques were applied. Our findings show that miR-146b-5p expression drives MSCs to adipogenic differentiation and increases during zebrafish maturation and aging. In addition, miR-146b-5p expression is higher in females compared to males and it is associated with the aging in humans. Interestingly, we also observed that the physical activity of walking downregulates circulating miR-146b-5p levels in human females and increases the number of chondroprogenitors. In conclusion, miR-146b-5p can be considered an age-related marker and can represent a useful marker for identifying strategies, such as physical activity, aimed at counteracting the degenerative processes of aging.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Michele Braggio
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Jessica Bertacco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Rossella Elia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Ermes Vedovi
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Cristina Scumà
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Matilde Carlucci
- Health Directorate, Integrated University Hospital of Verona, 37100 Verona, Italy;
| | | | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| |
Collapse
|
6
|
Avramets DS, Macewicz LL, Piven OO. Signaling Regulation of Human MSC Osteogenic Differentiation: Metanalysis and Bioinformatic Analysis of MicroRNA Impact. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
7
|
Azari Matin A, Fattah K, Saeidpour Masouleh S, Tavakoli R, Houshmandkia SA, Moliani A, Moghimimonfared R, Pakzad S, Dalir Abdolahinia E. Synthetic electrospun nanofibers as a supportive matrix in osteogenic differentiation of induced pluripotent stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1469-1493. [PMID: 35321624 DOI: 10.1080/09205063.2022.2056941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Continuous remodeling is not able to repair large bone defects. Bone tissue engineering is aimed to repair these defects by creating bone grafts. To do this, several technologies and biomaterials have been employed to fabricate an in vivo-like supportive matrix. Electrospinning is a versatile technique to fabricate porous matrices with interconnected pores and high surface area, replicating in vivo microenvironment. Electrospun scaffolds have been used in a large number of studies to provide a matrix for bone regeneration and osteogenic differentiation of stem cells such as induced pluripotent stem cells (iPSCs). Electrospinning uses both natural and synthetic polymers, either alone or in combination, to fabricate scaffolds. Among them, synthetic polymers have had a great promise in bone regeneration and repair. They allow the fabrication of biocompatible and biodegradable scaffolds with high mechanical properties, suitable for bone engineering. Furthermore, several attempts have done to increase the osteogenic properties of these scaffolds. This paper reviewed the potential of synthetic electrospun scaffolds in osteogenic differentiation of iPSCs. In addition, the approaches to improve the osteogenic differentiation of these scaffolds are addressed.
Collapse
Affiliation(s)
- Arash Azari Matin
- Department of Biology, California State University, Northridge, CA, USA
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Tavakoli
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Moghimimonfared
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sahar Pakzad
- Department of Oral and Maxillofacial Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Wang L, Gao Z, Liu C, Li J. Potential biomarkers of abnormal osseointegration of implants in type II diabetes mellitus. BMC Oral Health 2021; 21:583. [PMID: 34794414 PMCID: PMC8603511 DOI: 10.1186/s12903-021-01939-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/30/2021] [Indexed: 01/13/2023] Open
Abstract
Background Type II diabetes mellitus (T2DM) is an important risk factor for osseointegration of implants. The aim of this study was to explore key genes of T2DM affecting bone metabolism through bioinformatic analysis of published RNA sequencing data, identify potential biomarkers, and provide a reference for finding the molecular mechanism of abnormal osseointegration caused by T2DM. Methods We identified differentially expressed mRNAs and miRNAs from the Gene Expression Omnibus database using the R package ‘limma’ and analysed the predicted target genes using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene Ontology analysis. At the same time, miRNA–mRNA interactions were explored using miRWalk 2.0. Results We constructed an miRNA-gene regulatory network and a protein–protein interaction network. The enrichment pathways of differentially expressed mRNAs included extracellular matrix receptor interactions, protein digestion and absorption, the PI3K-Akt signalling pathway, cytokine–cytokine receptor interactions, chemokine signalling pathways, and haematopoietic cell lineage functions. We analysed the expression of these differentially expressed mRNAs and miRNAs in T2DM rats and normal rats with bone implants and identified Smpd3, Itga10, and rno-mir-207 as possible key players in osseointegration in T2DM. Conclusion Smpd3, Itga10, and rno-mir-207 are possible biomarkers of osseointegration in T2DM. This study sheds light on the possible molecular mechanism of abnormal osseointegration caused by bone metabolism disorder in T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01939-9.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Zhenhua Gao
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Changying Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, People's Republic of China.
| |
Collapse
|
9
|
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep 2021; 17:1570-1589. [PMID: 33686595 DOI: 10.1007/s12015-021-10142-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Proliferation of osteoblasts is essential for maturation and mineralization of bone matrix. Ossification, the natural phase of bone-forming and hardening is a carefully regulated phase where deregulation of this process may result in insufficient or excessive bone mineralization or ectopic calcification. Osteoblasts can also be differentiated into osteocytes, populating short interconnecting passages within the bone matrix. Over the past few decades, we have seen a significant improvement in awareness and techniques using photobiomodulation (PBM) to stimulate cell function. One of the applications of PBM is the promotion of osteoblast proliferation and maturation. PBM research results on osteoblasts showed increased mitochondrial ATP production, increased osteoblast activity and proliferation, increased and pro-osteoblast expression in the presence of red and NIR radiation. Osteocyte differentiation was also accomplished using blue and green light, showing that different light parameters have various signalling effects. The current review addresses osteoblast function and control, a new understanding of PBM on osteoblasts and its therapeutic impact using various parameters to optimize osteoblast function that may be clinically important. Graphical Abstract.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
10
|
Mesenchyme homeobox 1 mediated-promotion of osteoblastic differentiation is negatively regulated by mir-3064-5p. Differentiation 2021; 120:19-27. [PMID: 34130045 DOI: 10.1016/j.diff.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/16/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that can be differentiated into different cell types including osteoblasts. Herein we aimed to assess the regulation of transcription factor mesenchyme homeobox 1 (Meox1) in the osteogenic differentiation of hMSCs and to determine the microRNA which targets on Meox1. Total RNA was extracted from the isolated ligamentum flavum tissue samples and cultured hMSCs, and the expression of Meox1 was assessed by RT-PCR and Western blot assays. Cultured hMSCs were induced towards osteoblastic differentiation, and the osteoblast phenotype was determined by alkaline phosphatase activity and alizarin red staining. The microRNA targeting on the 3'-UTR of Meox1was predicted using bioinformatics tool, and the binding was validated by luciferase and RNA pulldown assays. The osteoblastic differentiation of hMSCs was checked with the knockdown of Meox1 and microRNA inhibitors. Higher expression of Meox1, and lower expression of miR-3064-5p in ossified ligamentum flavum (OLF) tissues were identified. In addition, increased expression along with the osteoblastic differentiation of hMSCs was found. Further research revealed that Meox was a direct target of miR-3064-5p, when the former promoted the differentiation of hMSCs into osteoblasts, the latter significantly suppressed the osteogenesis. The expression of Meox1 increased gradually with the osteoblastic differentiation of hMSCs, during which miR-3064-5p decreased. Meox1 is a direct target of miR-3064-5p, and they both play important roles in the osteogenesis. These findings provide potential target for the development of therapeutic drugs for skeletal system diseases.
Collapse
|
11
|
Khalid AB, Pence J, Suthon S, Lin J, Miranda-Carboni GA, Krum SA. GATA4 regulates mesenchymal stem cells via direct transcriptional regulation of the WNT signalosome. Bone 2021; 144:115819. [PMID: 33338666 PMCID: PMC7855755 DOI: 10.1016/j.bone.2020.115819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
GATA4 is a transcription factor that regulates osteoblast differentiation. However, GATA4 is expressed at a higher level in mesenchymal stem cells (MSCs) than in osteoblasts. Therefore, the role of GATA4 in limb bud mesenchyme differentiation was investigated in mice by knocking out Gata4 using Cre-recombinase controlled by the Prx1 promoter (herein called Gata4 Prx-cKO mice). μCT analysis of the Gata4 Prx-cKO mice showed a decrease in trabecular bone properties compared with wildtype (Gata4fl/fl) littermates. Gata4 Prx-cKO mice have fewer MSCs as measured by CFU-F assays, mesenchymal progenitor cells (MPC2) (flow cytometry of Sca1+/CD45-/CD34-/CD44hi) and nestin immunofluorescence. Gata4 Prx-cKO bone marrow-derived MSCs have a significant reduction in WNT ligands, including WNT10B, and WNT signalosome components compared to control cells. Chromatin immunoprecipitation demonstrates that GATA4 is recruited to enhancers near Wnt3a, Wnt10b, Fzd6 and Dkk1. GATA4 also directly represses YAP in wildtype cells, and the absence of Gata4 leads to increased YAP expression. Together, we show that the decrease in MSCs is due to loss of Gata4 and a WNT10B-dependent positive autoregulatory loop. This leads to a concurrent increase of YAP and less activated β-catenin. These results explain the decreased trabecular bone in Gata4 Prx-cKO mice. We suggest that WNT signalosome activity in MSCs requires Gata4 and Wnt10b expression for lineage specification.
Collapse
Affiliation(s)
- Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jacquelyn Pence
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jianjian Lin
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Gustavo A Miranda-Carboni
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| |
Collapse
|
12
|
Shah S, Pendleton E, Couture O, Broachwalla M, Kusper T, Alt LAC, Fay MJ, Chandar N. P53 regulation of osteoblast differentiation is mediated through specific microRNAs. Biochem Biophys Rep 2021; 25:100920. [PMID: 33553686 PMCID: PMC7859171 DOI: 10.1016/j.bbrep.2021.100920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
In order to understand the role of the p53 tumor suppressor gene in microRNA expression during osteoblast differentiation, we used a screen to identify microRNAs that were altered in a p53-dependent manner. MicroRNAs from MC3T3-E1 preosteoblasts were isolated from day 0 (undifferentiated) and day 4 (differentiating) and compared to a p53 deficient MC3T3-E1 line treated similarly. Overall, one fourth of all the microRNAs tested showed a reduction of 0.6 fold, and a similar number of them were increased 1.7 fold with differentiation. P53 deficiency caused 40% reduction in expression of microRNAs in differentiating cells, while a small percent (0.03%) showed an increase. Changes in microRNAs were validated using real-time PCR and two microRNAs were selected for further analysis (miR-34b and miR-140). These two microRNAs were increased significantly during differentiation but showed a dramatic reduction in expression in a p53 deficient state. Stable expression of miR-34b and miR-140 in MC3T3-E1 cells resulted in decreases in cell proliferation rates when compared to control cells. There was a 4-fold increase in p53 levels with miR-34b expression and a less dramatic increase with miR-140. Putative target binding sites for bone specific transcription factors, Runx2 and Osterix, were found for miR-34b, while Runx2, beta catenin and type 1 collagen were found to be miR-140 targets. Western blot analyses and functional assays for the transcription factors Runx2, Osterix and Beta-catenin confirmed microRNA specific interactions. These studies provide evidence that p53 mediated regulation of osteoblast differentiation can also occur through specific microRNAs such as miR-34b and miR-140 that also directly target important bone specific genes. The p53 tumor suppressor gene regulates microRNA expression during in vitro osteoblast differentiation. miR34b and miR140 targets include several bone specific markers such as runx2, beta catenin, type 1 collagen and osterix. miR34b and miR140 overexpression inhibits osteoblast cell proliferation.
Collapse
Affiliation(s)
- Shivang Shah
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Elisha Pendleton
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Oliver Couture
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Mustafa Broachwalla
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Teresa Kusper
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Lauren A C Alt
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Michael J Fay
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA.,Department of Pharmacology, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Nalini Chandar
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| |
Collapse
|
13
|
Wang YH, Li SY, Yuan SJ, Pan YX, Hua Y, Liu JY. MiR-375 promotes human periodontal ligament stem cells proliferation and osteogenic differentiation by targeting transducer of ERBB2, 2. Arch Oral Biol 2020; 117:104818. [DOI: 10.1016/j.archoralbio.2020.104818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/20/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
|
14
|
Potekhina Y, Filatova A, Tregubova E, Mokhov D. Mechanosensitivity of Cells and Its Role in the Regulation of Physiological Functions and the Implementation of Physiotherapeutic Effects (Review). Sovrem Tekhnologii Med 2020; 12:77-89. [PMID: 34795996 PMCID: PMC8596276 DOI: 10.17691/stm2020.12.4.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 01/11/2023] Open
Abstract
Regulatory signals in the body are not limited to chemical and electrical ones. There is another type of important signals for cells: those are mechanical signals (coming from the environment or arising from within the body), which have been less known in the literature. The review summarizes new information on the mechanosensitivity of various cells of connective tissue and nervous system. Participation of mechanical stimuli in the regulation of growth, development, differentiation, and functioning of tissues is described. The data focus on bone remodeling, wound healing, neurite growth, and the formation of neural networks. Mechanotransduction, cellular organelles, and mechanosensitive molecules involved in these processes are discussed as well as the role of the extracellular matrix. The importance of mechanical characteristics of cells in the pathogenesis of diseases is highlighted. Finally, the possible role of mechanosensitivity in mediating the physiotherapeutic effects is addressed.
Collapse
Affiliation(s)
- Yu.P. Potekhina
- Professor, Department of Normal Physiology named after N.Y. Belenkov; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.I. Filatova
- Student, Faculty of Pediatrics; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E.S. Tregubova
- Professor, Department of Osteopathy; North-Western State Medical University named after I.I. Mechnikov, 41 Kirochnaya St., Saint Petersburg, 191015, Russia; Associate Professor, Institute of Osteopathy; Saint Petersburg State University, 7/9 Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia
| | - D.E. Mokhov
- Head of the Department of Osteopathy; North-Western State Medical University named after I.I. Mechnikov, 41 Kirochnaya St., Saint Petersburg, 191015, Russia; Director of the Institute of Osteopathy Saint Petersburg State University, 7/9 Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia
| |
Collapse
|
15
|
Kocijan R, Weigl M, Skalicky S, Geiger E, Ferguson J, Leinfellner G, Heimel P, Pietschmann P, Grillari J, Redl H, Hackl M. MicroRNA levels in bone and blood change during bisphosphonate and teriparatide therapy in an animal model of postmenopausal osteoporosis. Bone 2020; 131:115104. [PMID: 31683019 DOI: 10.1016/j.bone.2019.115104] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/27/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs control the activity of a variety of genes that are pivotal to bone metabolism. Therefore, the clinical utility of miRNAs as biomarkers and drug targets for bone diseases certainly merits further investigation. This study describes the use of an animal model of postmenopausal osteoporosis to generate a comprehensive dataset on miRNA regulation in bone tissue and peripheral blood during bone loss and specifically anti-resorptive and osteo-anabolic treatment. Forty-two Sprague-Dawley rats were randomized to SHAM surgery (n=10) or ovariectomy (OVX, n=32). Eight weeks after surgery, OVX animals were further randomized to anti-resorptive treatment with zoledronate (n=11), osteo-anabolic treatment with teriparatide (n=11), or vehicle treatment (n=10). After 12 weeks of treatment, bone and serum samples were used for microRNA analysis using next-generation sequencing (NGS), mRNA levels using RT-qPCR, and bone microarchitecture analysis using nanoCT. Ovariectomy resulted in loss of trabecular bone, which was fully rescued using osteo-anabolic treatment, and partially rescued using anti-resorptive treatment. NGS revealed that both, anti-resorptive and anabolic treatment had a significant impact on miRNA levels in bone tissue and serum: out of 426 detected miRNAs, 46 miRNAs were regulated by teriparatide treatment an d 10 by zoledronate treatment (p-adj.<0.1). Interestingly, teriparatide and zoledronate treatment were able to revert miRNA changes in tissue and serum of untreated OVX animals, such as the up-regulation of miR-203a-3p, a known osteo-inhibitory miRNA. We confirmed previously established mechanisms of miR-203a by analyzing its direct target Dlx5 in femoral head. Our data reveal a significant effect of ovariectomy-induced bone loss, as well as the two major types of anti-osteoporotic treatment on miRNA transcription in femoral head tissue. These changes are associated with altered activity of target genes relevant to bone formation, such as Dlx5. The observed effects of bone loss and treatment response on miRNA levels in bone are also reflected in the peripheral blood, suggesting the possibility of minimally-invasive monitoring of bone-derived miRNAs using liquid biopsies.
Collapse
Affiliation(s)
- Roland Kocijan
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; Hanusch Hospital, 1st Medical Department, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - Moritz Weigl
- TAmiRNA GmbH, Leberstrasse 20, 1110 Vienna, Austria
| | | | | | - James Ferguson
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Gabriele Leinfellner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, University Clinic of Dentistry, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Matthias Hackl
- TAmiRNA GmbH, Leberstrasse 20, 1110 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria.
| |
Collapse
|
16
|
Tang Z, Xu T, Li Y, Fei W, Yang G, Hong Y. Inhibition of CRY2 by STAT3/miRNA-7-5p Promotes Osteoblast Differentiation through Upregulation of CLOCK/BMAL1/P300 Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:865-876. [PMID: 31982773 PMCID: PMC6994415 DOI: 10.1016/j.omtn.2019.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Accumulating evidence indicates that cryptochrome circadian regulatory (CRY) proteins have emerged as crucial regulators of osteogenic differentiation. However, the associated mechanisms are quite elusive. In this study, we show that knockdown of CRY2 downregulated the expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN) to facilitate osteoblast differentiation. Further study identified that CRY2 was directly targeted by microRNA (miR)-7-5p, which was highly induced during osteoblast differentiation. The expression of Runx2, ALP, collagen type I alpha 1 (Col1a1), and OCN was upregulated by overexpression of miR-7-5p and induction of osteoblast differentiation. Moreover, signal transducer and activator of transcription 3 (STAT3) transcriptionally activated miR-7-5p to significantly enhance the expression of above osteogenic marker genes and mineral formation. However, overexpression of CRY2 abolished the osteogenic differentiation induced by miR-7-5p overexpression. Silencing of CRY2 unraveled the binding of CRY2 with the circadian locomotor output cycles kaput (CLOCK)/brain and muscle ARNT-like 1 (BMAL1) complex to release CLOCK/BMAL1, which facilitated the binding of CLOCK/BMAL1 to the promoter region of the P300 E-box to stimulate the transcription of P300. P300 subsequently promoted the acetylation of histone 3 and the formation of a transcriptional complex with Runx2 to enhance osteogenesis. Taken together, our study revealed that CRY2 is repressed by STAT3/miR-7-5p to promote osteogenic differentiation through CLOCK/BMAL1/P300 signaling. The involved molecules may be potentially targeted for treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhenghui Tang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; School of Life Sciences, Shanghai University, Shanghai 200244, China
| | - Tianyuan Xu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Yinghua Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yang Hong
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China.
| |
Collapse
|
17
|
Wang D, Weng Y, Guo S, Qin W, Ni J, Yu L, Zhang Y, Zhao Q, Ben J, Ma J. microRNA-1 Regulates NCC Migration and Differentiation by Targeting sec63. Int J Biol Sci 2019; 15:2538-2547. [PMID: 31754327 PMCID: PMC6854364 DOI: 10.7150/ijbs.35357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background/Aims: Neural crest cells play a vital role in craniofacial development, microRNA-1 (miR-1) is essential in development and disease of the cardiac and skeletal muscle, the objective of our study is to investigate effects of miR-1 on neural crest cell in the craniofacial development and its molecular mechanism. Methods: We knocked down miR-1 in zebrafish by miR-1 morpholino (MO) microinjection and observed phenotype of neural crest derivatives. We detected neural crest cell migration by time-lapse. Whole-mount in situ hybridization was used to monitor the expressions of genes involved in neural crest cell induction, specification, migration and differentiation. We performed a quantitative proteomics study (iTRAQ) and bioinformatics prediction to identify the targets of miR-1 and validate the relationship between miR-1 and its target gene sec63. Results: We found defects in the tissues derived from neural crest cells: a severely reduced lower jaw and delayed appearance of pigment cells. miR-1 MO injection also disrupted neural crest cell migration. At 24 hours post fertilization (hpf), reduced expression of tfap2a, dlx2, dlx3b, ngn1 and crestin indicated that miR-1 deficiency affected neural crest cell differentiation. iTRAQ and luciferase reporter assay identified SEC63 as a direct target gene of miR-1. The defects of miR-1 deficiency could be reversed, at least in part, by specific suppression of sec63 expression. Conclusion: miR-1 is involved in the regulation of neural crest cell development, and that it acts, at least partially, by targeting sec63 expression.
Collapse
Affiliation(s)
- Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Wenhao Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Jieli Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Lei Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210029, China
| | - Jingjing Ben
- Department of Pathophysiology, Key laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| |
Collapse
|
18
|
Qin W, Liu L, Wang Y, Wang Z, Yang A, Wang T. Mir-494 inhibits osteoblast differentiation by regulating BMP signaling in simulated microgravity. Endocrine 2019; 65:426-439. [PMID: 31129811 DOI: 10.1007/s12020-019-01952-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/05/2019] [Indexed: 12/24/2022]
Abstract
Although the BMPR-SMAD-RUNX2 signaling pathway plays widely recognized roles in BMP-induced osteogenesis, factors regulating this pathway remain to be defined. In this study, we used simulated microgravity models, which represent mechanical unloading conditions, to detect miRNAs that function in osteoblast differentiation. We found that miR-494 was persistently increased in C2C12 cells subjected to clinorotation conditions and in osteoblasts isolated from tail-suspended rats. Experiments showed that the overexpression of miR-494 correlated with a marked reduction in osteoblast differentiation genes and a decrease in osteogenesis in BMP2-induced osteogenetic differentiation. In contrast, the inhibition of miR-494 promoted BMP2-induced osteogenesis and partially rescued osteoblast differentiation disorder under simulated microgravity conditions. Mechanism studies revealed that miR-494 directly targeted BMPR2 and RUNX2, both of which play vital roles in the BMPR-SMAD-RUNX2 signaling pathway. More importantly, we demonstrated a positive feedback loop between miR-494 and MYOD, a critical transcription factor for myogenesis, indicating that miR-494 may participate in deciding cell fate of the multipotent mesenchymal stem cells (MSCs). Collectively, our study reveals an important role for miR-494 in regulating osteogenesis, the identification of which not only clarifies a regulator of BMP2-induced osteoblast differentiation, but also offers a possible strategy for preventing bone loss under microgravity conditions.
Collapse
Affiliation(s)
- WeiWei Qin
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - YongChun Wang
- Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, 710032, Xi'an, China
| | - Zhe Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - AnGang Yang
- Department of Immunology, Fourth Military Medical University, 710032, Xi'an, China.
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
19
|
Physical Exercise Modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p Expression in Progenitor Cells Promoting Osteogenesis. Cells 2019; 8:cells8070742. [PMID: 31330975 PMCID: PMC6678390 DOI: 10.3390/cells8070742] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
Physical exercise is known to promote beneficial effects on overall health, counteracting risks related to degenerative diseases. MicroRNAs (miRNAs), short non-coding RNAs affecting the expression of a cell’s transcriptome, can be modulated by different stimuli. Yet, the molecular effects on osteogenic differentiation triggered by miRNAs upon physical exercise are not completely understood. In this study, we recruited 20 male amateur runners participating in a half marathon. Runners’ sera, collected before (PRE RUN) and after (POST RUN) the run, were added to cultured human mesenchymal stromal cells. We then investigated their effects on the modulation of selected miRNAs and the consequential effects on osteogenic differentiation. Our results showed an increased expression of miRNAs promoting osteogenic differentiation (miR-21-5p, miR-129-5p, and miR-378-5p) and a reduced expression of miRNAs involved in the adipogenic differentiation of progenitor cells (miR-188-5p). In addition, we observed the downregulation of PTEN and SMAD7 expression along with increased AKT/pAKT and SMAD4 protein levels in MSCs treated with POST RUN sera. The consequent upregulation of RUNX2 expression was also proven, highlighting the molecular mechanisms by which miR-21-5p promotes osteogenic differentiation. In conclusion, our work proposes novel data, which demonstrate how miRNAs may regulate the osteogenic commitment of progenitor cells in response to physical exercise.
Collapse
|
20
|
Su Y, Xu C, Liu Y, Hu Y, Wu H. Circular RNA hsa_circ_0001649 inhibits hepatocellular carcinoma progression via multiple miRNAs sponge. Aging (Albany NY) 2019; 11:3362-3375. [PMID: 31137016 PMCID: PMC6813922 DOI: 10.18632/aging.101988] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/20/2019] [Indexed: 04/14/2023]
Abstract
Circular RNA (circRNA) exerts an essential role in tumor development. Hsa_circ_0001649 (circ-0001649) was produced at the SHPRH gene locus containing exon 26-29. This study analyzed the specific mechanism of circ-0001649 in influencing the development of hepatocellular carcinoma (HCC). Relative levels of circ-0001649 in HCC cell lines and tissues were examined by qRT-PCR. The direct binding between circ-0001649 and miR-127-5p/miR-612/miR-4688 were verified through Dual-luciferase reporter gene assay, RNA Binding Protein Immunoprecipitation (RIP) assay and western blot detection. In vitro and in vivo regulatory roles of circ-0001649 in proliferative and migratory abilities of HCC were evaluated by EdU, Transwell and tumourigenicity assay, respectively. Results showed that circ-0001649 was markedly decreased in hepatocellular carcinoma cell lines and tumor tissues. Overexpression of circ-0001649 greatly inhibited proliferation and migration of HCC in vitro and in vivo. More importantly, we confirmed that circ-0001649 regulated cellular behaviors of HCC cells by targeting SHPRH. Furthermore, we determined that circ-0001649 served as a ceRNA to sponge miR-127-5p, miR-612 and miR-4688, thus activating SHPRH. In summary, our study showed that circ-0001649 was lowly expressed in HCC and inhibited HCC progression via multiple miRNAs sponge.
Collapse
Affiliation(s)
- Yang Su
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Yuting Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Yilin Hu
- Research Center of Clinical Medicine, Nantong University Affiliated Hospital, Nantong, China
| | - Haiyan Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
21
|
van Meurs JB, Boer CG, Lopez-Delgado L, Riancho JA. Role of Epigenomics in Bone and Cartilage Disease. J Bone Miner Res 2019; 34:215-230. [PMID: 30715766 DOI: 10.1002/jbmr.3662] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Phenotypic variation in skeletal traits and diseases is the product of genetic and environmental factors. Epigenetic mechanisms include information-containing factors, other than DNA sequence, that cause stable changes in gene expression and are maintained during cell divisions. They represent a link between environmental influences, genome features, and the resulting phenotype. The main epigenetic factors are DNA methylation, posttranslational changes of histones, and higher-order chromatin structure. Sometimes non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are also included in the broad term of epigenetic factors. There is rapidly expanding experimental evidence for a role of epigenetic factors in the differentiation of bone cells and the pathogenesis of skeletal disorders, such as osteoporosis and osteoarthritis. However, different from genetic factors, epigenetic signatures are cell- and tissue-specific and can change with time. Thus, elucidating their role has particular difficulties, especially in human studies. Nevertheless, epigenomewide association studies are beginning to disclose some disease-specific patterns that help to understand skeletal cell biology and may lead to development of new epigenetic-based biomarkers, as well as new drug targets useful for treating diffuse and localized disorders. Here we provide an overview and update of recent advances on the role of epigenomics in bone and cartilage diseases. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Lopez-Delgado
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
22
|
Janko M, Dietz K, Rachor J, Sahm J, Schroder K, Schaible A, Nau C, Seebach C, Marzi I, Henrich D. Improvement of Bone Healing by Neutralization of microRNA-335-5p, but not by Neutralization of microRNA-92A in Bone Marrow Mononuclear Cells Transplanted into a Large Femur Defect of the Rat. Tissue Eng Part A 2019; 25:55-68. [DOI: 10.1089/ten.tea.2017.0479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Maren Janko
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Konstantin Dietz
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Julia Rachor
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Julian Sahm
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Katrin Schroder
- Vascular Research Center, University Hospital Frankfurt, Frankfurt, Germany
| | - Alexander Schaible
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Nau
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Caroline Seebach
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
23
|
Hou P, Wang H, Zhao G, Hu G, Xia X, He H. MiR-3470b promotes bovine ephemeral fever virus replication via directly targeting mitochondrial antiviral signaling protein (MAVS) in baby hamster Syrian kidney cells. BMC Microbiol 2018; 18:224. [PMID: 30587113 PMCID: PMC6307158 DOI: 10.1186/s12866-018-1366-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bovine ephemeral fever virus (BEFV), the causative agent of bovine ephemeral fever, is an economically important pathogen of cattle and water buffalo. MicroRNAs (miRNAs) are endogenous 21-23 nt small non-coding RNA molecules that binding to a multiple of target mRNAs and functioning in the regulation of viral replication including the miRNA-mediated antiviral defense. However, the reciprocal interaction between bovine ephemeral fever virus replication and host miRNAs still remain poorly understood. The aim of our study herein was to investigate the exact function of miR-3470b and its molecular mechanisms during BEFV infection. RESULTS In this study, we found a set of microRNAs induced by BEFV infection using small RNA deep sequencing, and further identified BEFV infection could significantly up-regulate the miR-3470b expression in Baby Hamster Syrian Kidney cells (BHK-21) after 24 h and 48 h post-infection (pi) compared to normal BHK-21 cells without BEFV infection. Additionally, the target association between miR-3470b and mitochondrial antiviral signaling protein (MAVS) was predicted by target gene prediction tools and further validated using a dual-luciferase reporter assay, and the expression of MAVS mRNA and protein levels was negatively associated with miR-3470b levels. Furthermore, the miR-3470b mimic transfection significantly contributed to increase the BEFV N mRNA, G protein level and viral titer, respectively, whereas the miR-3470b inhibitor had the opposite effect on BEFV replication. Moreover, the overexpression of MAVS or silencing of miR-3470b by its inhibitors suppressed BEFV replication, and knockdown of MAVS by small interfering RNA also promoted the replication of BEFV. CONCLUSIONS Our findings is the first to reveal that miR-3470b as a novel host factor regulates BEFV replication via directly targeting the MAVS gene in BHK-21 cells and may provide a potential strategy for developing effective antiviral therapy.
Collapse
Affiliation(s)
- Peili Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Hongmei Wang
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Guimin Zhao
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People’s Republic of China
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| |
Collapse
|
24
|
Zheng H, Ramnaraign D, Anderson BA, Tycksen E, Nunley R, McAlinden A. MicroRNA-138 Inhibits Osteogenic Differentiation and Mineralization of Human Dedifferentiated Chondrocytes by Regulating RhoC and the Actin Cytoskeleton. JBMR Plus 2018; 3:e10071. [PMID: 30828688 PMCID: PMC6383697 DOI: 10.1002/jbm4.10071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are known to play critical roles in many cellular processes including those regulating skeletal development and homeostasis. A previous study from our group identified differentially expressed miRNAs in the developing human growth plate. Among those more highly expressed in hypertrophic chondrocytes compared to progenitor chondrocytes was miR‐138, therefore suggesting a possible role for this miRNA in regulating chondrogenesis and/or endochondral ossification. The goal of this study was to determine the function of miR‐ 138 in regulating osteogenesis by using human osteoarthritic dedifferentiated chondrocytes (DDCs) as source of inducible cells. We show that over‐expression of miR‐138 inhibited osteogenic differentiation of DDCs in vitro. Moreover, cell shape was altered and cell proliferation and possibly migration was also suppressed by miR‐138. Given alterations in cell shape, closer analysis revealed that F‐actin polymerization was also inhibited by miR‐138. Computational approaches showed that the small GTPase, RhoC, is a potential miR‐138 target gene. We pursued RhoC further given its function in regulating cell proliferation and migration in cancer cells. Indeed, miR‐138 over‐expression in DDCs resulted in decreased RhoC protein levels. A series of rescue experiments showed that RhoC over‐expression could attenuate the inhibitory actions of miR‐138 on DDC proliferation, F‐actin polymerization and osteogenic differentiation. Bone formation was also found to be enhanced within human demineralized bone scaffolds seeded with DDCs expressing both miR‐138 and RhoC. In conclusion, we have discovered a new mechanism in DDCs whereby miR‐138 functions to suppress RhoC which subsequently inhibits proliferation, F‐actin polymerization and osteogenic differentiation. To date, there are no published reports on the importance of RhoC in regulating osteogenesis. This opens up new avenues of research involving miR‐138 and RhoC pathways to better understand mechanisms regulating bone formation in addition to the potential use of DDCs as a cell source for bone tissue engineering. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | | | - Britta A Anderson
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Eric Tycksen
- Genome Technology Access CenterWashington University School of MedicineSt LouisMOUSA
| | - Ryan Nunley
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Audrey McAlinden
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
- Department of Cell BiologyWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
25
|
Silva AM, Almeida MI, Teixeira JH, Ivan C, Oliveira J, Vasconcelos D, Neves N, Ribeiro-Machado C, Cunha C, Barbosa MA, Calin GA, Santos SG. Profiling the circulating miRnome reveals a temporal regulation of the bone injury response. Theranostics 2018; 8:3902-3917. [PMID: 30083269 PMCID: PMC6071520 DOI: 10.7150/thno.24444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Bone injury healing is an orchestrated process that starts with an inflammatory phase followed by repair and remodelling of the bone defect. The initial inflammation is characterized by local changes in immune cell populations and molecular mediators, including microRNAs (miRNAs). However, the systemic response to bone injury remains largely uncharacterized. Thus, this study aimed to profile the changes in the plasma miRnome after bone injury and determine its biological implications. Methods: A rat model of femoral bone defect was used, and animals were evaluated at days 3 and 14 after injury. Non-operated (NO) and sham operated animals were used as controls. Blood and spleen were collected and peripheral blood mononuclear cells (PBMC) and plasma were separated. Plasma miRnome was determined by RT-qPCR array and bioinformatics Ingenuity pathway analysis (IPA) was performed. Proliferation of bone marrow mesenchymal stem/stromal cells (MSC) was evaluated by Ki67 staining and high-throughput cell imaging. Candidate miRNAs were evaluated in splenocytes by RT-qPCR, and proteins found in the IPA analysis were analysed in splenocytes and PBMC by Western blot. Results: Bone injury resulted in timely controlled changes to the miRNA expression profile in plasma. At day 3 there was a major down-regulation of miRNA levels, which was partially recovered by day 14 post-injury. Interestingly, bone injury led to a significant up-regulation of let-7a, let-7d and miR-21 in plasma and splenocytes at day 14 relative to day 3 after bone injury, but not in sham operated animals. IPA predicted that most miRNAs temporally affected were involved in cellular development, proliferation and movement. MSC proliferation was analysed and found significantly increased in response to plasma of animals days 3 and 14 post-injury, but not from NO animals. Moreover, IPA predicted that miRNA processing proteins Ago2 and Dicer were specifically inhibited at day 3 post-injury, with Ago2 becoming activated at day 14. Protein levels of Ago2 and Dicer in splenocytes were increased at day 14 relative to day 3 post-bone injury and NO animals, while in PBMC, levels were reduced at day 3 (albeit Dicer was not significant) and remained low at day 14. Ephrin receptor B6 followed the same tendency as Ago2 and Dicer, while Smad2/3 was significantly decreased in splenocytes from day 14 relative to NO and day 3 post-bone injury animals. Conclusion: Results show a systemic miRNA response to bone injury that is regulated in time and is related to inflammation resolution and the start of bone repair/regeneration, unravelling candidate miRNAs to be used as biomarkers in the monitoring of healthy bone healing and as therapeutic targets for the development of improved bone regeneration therapies.
Collapse
|
26
|
Jiang Y, Yang Y, Wang H, Darko GM, Sun D, Gao Y. Identification of miR-200c-3p as a major regulator of SaoS2 cells activation induced by fluoride. CHEMOSPHERE 2018; 199:694-701. [PMID: 29471239 DOI: 10.1016/j.chemosphere.2018.01.095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 06/08/2023]
Abstract
The skeletal lesion of fluoride has become a major concern in many countries due to its damage to bone and joints and even leading to disability. Skeletal fluorosis is characterized by disturbance of bone metabolism, aberrant proliferation and activation of osteoblasts is critical for the pathogenesis. However, the mechanism underlying the osteotoxicity of fluoride has not been clearly illustrated and there is still limited information on the role of miRNAs in skeletal fluorosis. In this study, we found that NaF promoted SaoS2 proliferation and activation by activating BMP4/Smad pathway. NaF increased expression of miR-200c-3p and miR-200c-3p inhibitor reduced activation of SaoS2 induced by NaF via targeting Noggin to repress BMP4/Smad. These findings suggested an important regulatory role of miR-200c-3p on BMP4/Smad pathway during skeletal fluorosis. MiR-200c-3p might be a novel therapeutic target for skeletal fluorosis.
Collapse
Affiliation(s)
- Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Hongge Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Gottfried M Darko
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Institution of Environmentally Related Diseases, Harbin Medical University, Harbin, Heilongjiang Province, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
27
|
Mechanosensitive miRNAs and Bone Formation. Int J Mol Sci 2017; 18:ijms18081684. [PMID: 28767056 PMCID: PMC5578074 DOI: 10.3390/ijms18081684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022] Open
Abstract
Mechanical stimuli are required for the maintenance of skeletal integrity and bone mass. An increasing amount of evidence indicates that multiple regulators (e.g., hormone, cytoskeleton proteins and signaling pathways) are involved in the mechanical stimuli modulating the activities of osteogenic cells and the process of bone formation. Significantly, recent studies have showed that several microRNAs (miRNAs) were sensitive to various mechanical stimuli and played a crucial role in osteogenic differentiation and bone formation. However, the functional roles and further mechanisms of mechanosensitive miRNAs in bone formation are not yet completely understood. This review highlights the roles of mechanosensitive miRNAs in osteogenic differentiation and bone formation and underlines their potential therapeutic application for bone loss induced by the altering of mechanical stimuli.
Collapse
|