1
|
Taseh A, Sirls E, Casey G, Hearns S, Doornberg JN, Lozano-Calderon SA, Harris MB, Ashkani-Esfahani S. Social vulnerability index enhances FRAX prediction of hip fractures in fall patients. Sci Rep 2025; 15:14704. [PMID: 40289226 PMCID: PMC12034780 DOI: 10.1038/s41598-025-99373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
The Fracture Risk Assessment Tool (FRAX), widely used for predicting the 10-year likelihood of hip fractures, does not incorporate factors like prior falls and sociodemographic characteristics, notably the Social Vulnerability Index (SVI). Recognizing these limitations, we aim to evaluate the predictive accuracy of FRAX by integrating fall frequency, fall energy, and SVI into the model for assessing the risk of fall-induced hip fractures. A retrospective case-control study was conducted, and patients aged ≥ 40 years with a documented diagnosis of a fall-induced hip fracture were age-matched with controls with a history of falls without an associated hip fracture. Basic demographic data, along with information about the number of prior falls and the energy of the current falls, were collected. The FRAX and SVI were calculated accordingly. Logistic regression analysis was employed to identify significant predictors. The performance of the models was evaluated and reported using appropriate metrics. Baseline characteristics of the dataset were presented as medians with interquartile ranges (IQR) or as percentages, where applicable. The significance of the identified variables was quantified using Odds Ratio (OR) along with their 95% Confidence Interval (CI). A p-value threshold of 0.05 was set for statistical significance. A total of 261 patients per group were included with a median age of 74 (IQR 67-80) and 72 (IQR 62-83) years. The FRAX score was significantly associated with the likelihood of experiencing a fall-induced hip fracture, as indicated by an OR of 1.06 (CI: 1.03-1.09). Participants with a one-time history of falls had an OR of 1.58 (CI: 1.02-2.37), compared to 1.84 (CI: 1.09-3.1) for those with multiple falls. The White participants, along with the Housing Type and Transportation domain of the SVI, also demonstrated to play a role (OR = 2.85 (CI: 1.56-5.2) and OR = 0.3 (CI: 0.12-0.8), respectively). This study underscored the significance of factors such as fall frequency, SVI, and race in predicting fall-induced hip fractures. It also highlighted the need for further refinement of the FRAX tool. We recommend that future research should be focused on validating the impact of these sociodemographic and fall characteristics on a broader scale, along with exploring the implications of clinical surrogates related to falls.
Collapse
Affiliation(s)
- Atta Taseh
- Department of Orthopaedic Surgery, Foot & Ankle Research and Innovation Lab (FARIL), Mass General Brigham, Harvard Medical School, Boston, MA, USA.
- Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA.
- Department of Orthopaedic Surgery Foot & Ankle Research and Innovation Lab (FARIL), Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, USA.
| | - Evan Sirls
- Department of Orthopaedic Surgery, Foot & Ankle Research and Innovation Lab (FARIL), Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - George Casey
- Department of Orthopaedic Surgery, Foot & Ankle Research and Innovation Lab (FARIL), Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Sarah Hearns
- Department of Orthopaedic Surgery, Foot & Ankle Research and Innovation Lab (FARIL), Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Job N Doornberg
- Department of Trauma Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Santiago A Lozano-Calderon
- Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Mitchel B Harris
- Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Soheil Ashkani-Esfahani
- Department of Orthopaedic Surgery, Foot & Ankle Research and Innovation Lab (FARIL), Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Xia Z, Sun X, Mu C, Wang K, Ma W, Yang W, Xu K. An Enhanced Osseointegration of Titanium Implants by H 2S Sustained-Release Coating via Promoting Osteogenesis and Inhibiting Osteoclastogenesis. Adv Healthc Mater 2025; 14:e2404940. [PMID: 39937163 DOI: 10.1002/adhm.202404940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/29/2025] [Indexed: 02/13/2025]
Abstract
The surfaces of titanium implants lack the ability of promoting osteogenesis and inhibiting osteoclastogenesis, which primarily contributes to their inadequate integration with surrounding bone tissue in osteoporotic environments. Developing a bioactive coating for the materials is regarded as a promising approach to address the challenge. In this study, a hydrogen sulfide (H2S) sustained-release coating is fabricated on the surfaces of titanium implants. The coating consists of bovine serum albumin nanoparticles encapsulating the H2S donor morpholin-4-ium(4-methoxyphenyl)-morpholin-4-ylsulfanylidenesulfido-λ5-phosphane (GYY4137), which is prepared with the participation of dopamine self-polymerization. The release rate of H2S could be precisely controlled by adjusting the crosslinking degree of the nanoparticles. The coating proves to have excellent biocompatibility and satisfactory hemocompatibility. In vitro, the coating could significantly promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and inhibit the osteoclastic differentiation of mouse monocytic macrophage leukemia cells (RAW264.7 cells). In vivo, this work successfully verifies the conclusion obtained in vitro experiments. The coating restores the bone homeostasis imbalance surrounding the functionalized titanium implants in the femurs of osteoporotic rats, thereby accelerating new bone formation and enhancing the osseointegration capability of the implants. This work provides a practical strategy for the development of titanium implants suitable for osteoporosis patients.
Collapse
Affiliation(s)
- Zuyan Xia
- College of Acumox and Tuina (College of Rehabilitation Medicine), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, P. R. China
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China
| | - Xinyu Sun
- College of Acumox and Tuina (College of Rehabilitation Medicine), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, P. R. China
| | - Caiyun Mu
- College of Acumox and Tuina (College of Rehabilitation Medicine), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, P. R. China
| | - Kai Wang
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China
| | - Wenyu Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, P. R. China
| | - Wei Yang
- Department of Critical Care Medicine, Longgang Central Hospital, Shenzhen, Guangdong, 518116, P. R. China
| | - Kui Xu
- College of Acumox and Tuina (College of Rehabilitation Medicine), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, P. R. China
- Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, P. R. China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
| |
Collapse
|
3
|
Xue P, Wang J, Fu Y, He H, Gan Q, Liu C. Material-Mediated Immunotherapy to Regulate Bone Aging and Promote Bone Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409886. [PMID: 39981851 DOI: 10.1002/smll.202409886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Indexed: 02/22/2025]
Abstract
As the global population ages, an increasing number of elderly people are experiencing weakened bone regenerative capabilities, resulting in slower bone repair processes and associated risks of various complications. This review outlines the research progress on biomaterials that promote bone repair through immunotherapy. This review examines how manufacturing technologies such as 3D printing, electrospinning, and microfluidic technology contribute to enhancing the therapeutic effects of these biomaterials. Following this, it provides detailed introductions to various anti-osteoporosis drug delivery systems, such as injectable hydrogels, nanoparticles, and engineered exosomes, as well as bone tissue engineering materials and coatings used in immunomodulation. Moreover, it critically analyzes the current limitations of biomaterial-mediated bone immunotherapy and explores future research directions for material-mediated bone immunotherapy. This review aims to inspire new approaches and broaden perspectives in addressing the challenges of bone repair and aging by exploring innovative biomaterial-mediated immunotherapy strategies.
Collapse
Affiliation(s)
- Pengfei Xue
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
4
|
Xu Y, Yan Z, Liu L. Association between advanced lung cancer inflammation index and osteoporosis in patients with type 2 diabetes mellitus: evidence from NHANES. Front Endocrinol (Lausanne) 2024; 15:1421696. [PMID: 39655346 PMCID: PMC11625538 DOI: 10.3389/fendo.2024.1421696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background Previous studies have shown a significantly increased prevalence of osteoporosis (OP) in patients with type 2 diabetes mellitus (T2DM), which is closely associated with inflammation and nutrition. This study aimed to investigate the relationship between the advanced lung cancer inflammation index (ALI) and OP in patients with T2DM. Methods This cross-sectional analysis was conducted based on data from middle-aged and older adults aged 50 years and older with T2DM from the National Health and Nutrition Examination Survey (NHANES).Weighted multivariable logistic regression and linear regression were utilized to investigate the correlation between the ALI and OP with femur bone mineral density (BMD) in individuals with T2DM. Restricted cubic splines (RCS) were employed to assess potential nonlinear relationships, and receiver operating characteristic (ROC) curves were used to evaluate diagnostic accuracy. Results A total of 1596 patients with T2DM were included in this study, among whom 736 had OP. After adjusting for covariates, the multivariable logistic regression model showed that compared to participants in the fourth quartile of log2-transformed ALI, those in the first quartile had an increased prevalence of OP in T2DM (OR = 1.95, 95% CI=1.28-2.96, p < 0.01). The multivariable linear regression model indicated that a low log2-transformed ALI is associated with a low femur BMD.RCS demonstrated a linear dose-response relationship between the ALI index and OP in T2DM (p = 0.686), with the area under the ROC curve being 0.57 (95% CI: 0.54-0.60, p < 0.001), and the optimal cutoff value was 6.04. Conclusion Our findings indicate that low levels of ALI are independently associated with an increased prevalence of OP in middle-aged and older adults with T2DM in the United States. ALI may serve as a potential biomarker for assessing the prevalence of OP in middle-aged and older adults with T2DM.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Zhang J, Xia L, Zhang X, Liu J, Tang J, Xia J, Liu Y, Zhang W, Liang Z, Tang G, Zhang L. Development and validation of a predictive model for vertebral fracture risk in osteoporosis patients. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:3242-3260. [PMID: 38955868 DOI: 10.1007/s00586-024-08235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE This study aimed to develop and validate a predictive model for osteoporotic vertebral fractures (OVFs) risk by integrating demographic, bone mineral density (BMD), CT imaging, and deep learning radiomics features from CT images. METHODS A total of 169 osteoporosis-diagnosed patients from three hospitals were randomly split into OVFs (n = 77) and Non-OVFs (n = 92) groups for training (n = 135) and test (n = 34). Demographic data, BMD, and CT imaging details were collected. Deep transfer learning (DTL) using ResNet-50 and radiomics features were fused, with the best model chosen via logistic regression. Cox proportional hazards models identified clinical factors. Three models were constructed: clinical, radiomics-DTL, and fusion (clinical-radiomics-DTL). Performance was assessed using AUC, C-index, Kaplan-Meier, and calibration curves. The best model was depicted as a nomogram, and clinical utility was evaluated using decision curve analysis (DCA). RESULTS BMD, CT values of paravertebral muscles (PVM), and paravertebral muscles' cross-sectional area (CSA) significantly differed between OVFs and Non-OVFs groups (P < 0.05). No significant differences were found between training and test cohort. Multivariate Cox models identified BMD, CT values of PVM, and CSAPS reduction as independent OVFs risk factors (P < 0.05). The fusion model exhibited the highest predictive performance (C-index: 0.839 in training, 0.795 in test). DCA confirmed the nomogram's utility in OVFs risk prediction. CONCLUSION This study presents a robust predictive model for OVFs risk, integrating BMD, CT data, and radiomics-DTL features, offering high sensitivity and specificity. The model's visualizations can inform OVFs prevention and treatment strategies.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Liang Xia
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China.
| | - Xueli Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Jiayi Liu
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Jun Tang
- Department of Radiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Jianguo Xia
- Department of Radiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, People's Republic of China.
| | - Yongkang Liu
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Weixiao Zhang
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Zhipeng Liang
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China.
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
6
|
Alam F, Alsaed O, Abdulla N, Abdulmomen I, Lutf A, Al Emadi S. Guidelines for fracture risk assessment and management of osteoporosis in postmenopausal women and men above the age of 50 in Qatar. Arch Osteoporos 2024; 19:34. [PMID: 38698101 PMCID: PMC11065783 DOI: 10.1007/s11657-024-01389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
We present comprehensive guidelines for osteoporosis management in Qatar. Formulated by the Qatar Osteoporosis Association, the guidelines recommend the age-dependent Qatar fracture risk assessment tool for screening, emphasizing risk-based treatment strategies and discouraging routine dual-energy X-ray scans. They offer a vital resource for physicians managing osteoporosis and fragility fractures nationwide. PURPOSE Osteoporosis and related fragility fractures are a growing public health issue with an impact on individuals and the healthcare system. We aimed to present guidelines providing unified guidance to all healthcare professionals in Qatar regarding the management of osteoporosis. METHODS The Qatar Osteoporosis Association formulated guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men above the age of 50. A panel of six local rheumatologists who are experts in the field of osteoporosis met together and conducted an extensive review of published articles and local and international guidelines to formulate guidance for the screening and management of postmenopausal women and men older than 50 years in Qatar. RESULTS The guidelines emphasize the use of the age-dependent hybrid model of the Qatar fracture risk assessment tool for screening osteoporosis and risk categorization. The guidelines include screening, risk stratification, investigations, treatment, and monitoring of patients with osteoporosis. The use of a dual-energy X-ray absorptiometry scan without any risk factors is discouraged. Treatment options are recommended based on risk stratification. CONCLUSION Guidance is provided to all physicians across the country who are involved in the care of patients with osteoporosis and fragility fractures.
Collapse
Affiliation(s)
- Fiaz Alam
- Rheumatology Section, Department of Medicine, Hamad Medical Corporation, Doha, Qatar.
| | - Omar Alsaed
- Rheumatology Section, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Nabeel Abdulla
- Rheumatology Section, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahim Abdulmomen
- Rheumatology Section, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Abdo Lutf
- Rheumatology Section, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Samar Al Emadi
- Rheumatology Section, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
7
|
Gao Y, Gao J, Wang Y, Gan H. Predicting Osteoporotic Fracture in Patients With Early-Stage Diabetic Kidney Disease Using a Radiomic Model: A Longitudinal Cohort Study. Endocr Pract 2024; 30:360-366. [PMID: 38185330 DOI: 10.1016/j.eprac.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE There is an urgent need for effective predictive strategies to accurately evaluate the risk of fragility fractures in elderly patients in the early stages of diabetic kidney disease (DKD). METHODS This longitudinal cohort study included 715 older patients in the early stages of DKD diagnosed between January 2015 and August 2019. Patients were randomly allocated to a training cohort (n = 499) and a validation cohort (n = 216). The least absolute shrinkage and selection operator method was used to select key features for dual-energy x-ray absorptiometry-based radiomic analysis. A radiomic model was constructed using Cox proportional hazards regression. The performance of the radiomic model was compared with that of traditional fracture assessment tools through a receiver operating characteristic curve, calibration curve, and decision curve analysis. RESULTS Over a mean follow-up period of 4.72 ± 1.60 years, 65 participants (9.09%) experienced incident fragility fractures. Seventeen features were ultimately selected to create the radiomic model. The calibration plots of this model demonstrated satisfactory agreement between the observed and predicted outcomes. Moreover, the radiomic model outperformed traditional fracture assessment tools in both the training and validation cohorts according to the area under the receiver operating characteristic curve and decision curve analysis. CONCLUSIONS The novel radiomic model has demonstrated a more effective prediction of fragility fracture in elderly patients in the early stages of DKDcompared to traditional fracture assessment tools.
Collapse
Affiliation(s)
- Youyuan Gao
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Nephrology, Chongqing University Fuling Hospital, Chongqing, China
| | - Jianya Gao
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunting Wang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Liao C, He D, Yin K, Lin Y, Chen Y, Zhang Z, Zhang J, Luo H, Chen X, Li Y. Effect of the Sr-Fe layered double hydroxide coating based on the microenvironment response on implant osseointegration in osteoporotic rats. J Mater Chem B 2024; 12:1592-1603. [PMID: 38265091 DOI: 10.1039/d3tb02410e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Osteoporosis is a disease that manifests itself as an abnormality of bone metabolism and is characterized by low bone mass and destruction of the bone microstructure. Since bone resorption occurs more rapidly than new bone formation, osteoporosis leads to reduced orthopedic implant stability. From a microenvironmental point of view, the rationale for this outcome is that osteoclasts are overactive in the bone tissue of patients with osteoporosis, and the large amount of H+ they produce leads to local chronic acidosis, which promotes bone mineral loss. Therefore, we designed a weakly alkaline layered double hydroxide (LDH) coating to modulate the pathologically acidic microenvironment and the osteogenic-osteoclastic coupling by releasing Sr2+. We prepared Sr-Fe LDH coatings on pure titanium implants using a hydrothermal method in this study and characterized the material using SEM, AFM, XRD, XPS, EDS, ICP, pH acidimeter, etc. We found that the coatings had good nanomorphology and were able to efficiently neutralize H+ as well as steadily release Sr2+ for up to 21 days. In vitro, the coating not only significantly promoted the adhesion, proliferation, and differentiation of osteoblasts, but also inhibited the differentiation of osteoclasts at the same time. In addition, in animal experiments, the coating significantly improved the mechanical stability of the implant in osteoporotic rats, increasing Sr-Fe LDH@Ti maximal push-out force by 72.2% compared to Ti. At the same time, the coating was effective in reversing the osteoporotic state, resulting in a 58.5% increase in BV/TV (%), and a 12.4% increase in Tb. N (1 mm-1), a 31.6% increase in Tb. Th (μm), and a 30.9% increase in BA (%). Our results suggest that this Sr-Fe LDH nanocoating material with acid-neutralizing, as well as long-term Sr2+-releasing capabilities, is a novel and effective orthopedic implant coating material under osteoporotic conditions.
Collapse
Affiliation(s)
- Chenyu Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Dongcai He
- College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Kaiwen Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yuhung Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yihan Chen
- Shanghai Institute of Ceramics, Chinese Academy of Science, Research Unit of Nanocatalytic Medicine iSpecific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ziqiang Zhang
- College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hongrong Luo
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Xianchun Chen
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Yunfeng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Kolomenskaya E, Butova V, Poltavskiy A, Soldatov A, Butakova M. Application of Artificial Intelligence at All Stages of Bone Tissue Engineering. Biomedicines 2023; 12:76. [PMID: 38255183 PMCID: PMC10813365 DOI: 10.3390/biomedicines12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The development of artificial intelligence (AI) has revolutionized medical care in recent years and plays a vital role in a number of areas, such as diagnostics and forecasting. In this review, we discuss the most promising areas of AI application to the field of bone tissue engineering and prosthetics, which can drastically benefit from AI-assisted optimization and patient personalization of implants and scaffolds in ways ranging from visualization and real-time monitoring to the implantation cases prediction, thereby leveraging the compromise between specific architecture decisions, material choice, and synthesis procedure. With the emphasized crucial role of accuracy and robustness of developed AI algorithms, especially in bone tissue engineering, it was shown that rigorous validation and testing, demanding large datasets and extensive clinical trials, are essential, and we discuss how through developing multidisciplinary cooperation among biology, chemistry with materials science, and AI, these challenges can be addressed.
Collapse
Affiliation(s)
- Ekaterina Kolomenskaya
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (V.B.); (A.P.); (A.S.); (M.B.)
| | - Vera Butova
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (V.B.); (A.P.); (A.S.); (M.B.)
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Artem Poltavskiy
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (V.B.); (A.P.); (A.S.); (M.B.)
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (V.B.); (A.P.); (A.S.); (M.B.)
| | - Maria Butakova
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (V.B.); (A.P.); (A.S.); (M.B.)
| |
Collapse
|
10
|
Grassi L, Väänänen SP, Jehpsson L, Ljunggren Ö, Rosengren BE, Karlsson MK, Isaksson H. 3D Finite Element Models Reconstructed From 2D Dual-Energy X-Ray Absorptiometry (DXA) Images Improve Hip Fracture Prediction Compared to Areal BMD in Osteoporotic Fractures in Men (MrOS) Sweden Cohort. J Bone Miner Res 2023; 38:1258-1267. [PMID: 37417707 DOI: 10.1002/jbmr.4878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Bone strength is an important contributor to fracture risk. Areal bone mineral density (aBMD) derived from dual-energy X-ray absorptiometry (DXA) is used as a surrogate for bone strength in fracture risk prediction tools. 3D finite element (FE) models predict bone strength better than aBMD, but their clinical use is limited by the need for 3D computed tomography and lack of automation. We have earlier developed a method to reconstruct the 3D hip anatomy from a 2D DXA image, followed by subject-specific FE-based prediction of proximal femoral strength. In the current study, we aim to evaluate the method's ability to predict incident hip fractures in a population-based cohort (Osteoporotic Fractures in Men [MrOS] Sweden). We defined two subcohorts: (i) hip fracture cases and controls cohort: 120 men with a hip fracture (<10 years from baseline) and two controls to each hip fracture case, matched by age, height, and body mass index; and (ii) fallers cohort: 86 men who had fallen the year before their hip DXA scan was acquired, 15 of which sustained a hip fracture during the following 10 years. For each participant, we reconstructed the 3D hip anatomy and predicted proximal femoral strength in 10 sideways fall configurations using FE analysis. The FE-predicted proximal femoral strength was a better predictor of incident hip fractures than aBMD for both hip fracture cases and controls (difference in area under the receiver operating characteristics curve, ΔAUROC = 0.06) and fallers (ΔAUROC = 0.22) cohorts. This is the first time that FE models outperformed aBMD in predicting incident hip fractures in a population-based prospectively followed cohort based on 3D FE models obtained from a 2D DXA scan. Our approach has potential to notably improve the accuracy of fracture risk predictions in a clinically feasible manner (only one single DXA image is needed) and without additional costs compared to the current clinical approach. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sami P Väänänen
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Eastern Finland, Finland
| | - Lars Jehpsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Östen Ljunggren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Björn E Rosengren
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Magnus K Karlsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Whittier DE, Samelson EJ, Hannan MT, Burt LA, Hanley DA, Biver E, Szulc P, Sornay-Rendu E, Merle B, Chapurlat R, Lespessailles E, Wong AKO, Goltzman D, Khosla S, Ferrari S, Bouxsein ML, Kiel DP, Boyd SK. A Fracture Risk Assessment Tool for High Resolution Peripheral Quantitative Computed Tomography. J Bone Miner Res 2023; 38:1234-1244. [PMID: 37132542 PMCID: PMC10523935 DOI: 10.1002/jbmr.4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 02/10/2023] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
Most fracture risk assessment tools use clinical risk factors combined with bone mineral density (BMD) to improve assessment of osteoporosis; however, stratifying fracture risk remains challenging. This study developed a fracture risk assessment tool that uses information about volumetric bone density and three-dimensional structure, obtained using high-resolution peripheral quantitative compute tomography (HR-pQCT), to provide an alternative approach for patient-specific assessment of fracture risk. Using an international prospective cohort of older adults (n = 6802) we developed a tool to predict osteoporotic fracture risk, called μFRAC. The model was constructed using random survival forests, and input predictors included HR-pQCT parameters summarizing BMD and microarchitecture alongside clinical risk factors (sex, age, height, weight, and prior adulthood fracture) and femoral neck areal BMD (FN aBMD). The performance of μFRAC was compared to the Fracture Risk Assessment Tool (FRAX) and a reference model built using FN aBMD and clinical covariates. μFRAC was predictive of osteoporotic fracture (c-index = 0.673, p < 0.001), modestly outperforming FRAX and FN aBMD models (c-index = 0.617 and 0.636, respectively). Removal of FN aBMD and all clinical risk factors, except age, from μFRAC did not significantly impact its performance when estimating 5-year and 10-year fracture risk. The performance of μFRAC improved when only major osteoporotic fractures were considered (c-index = 0.733, p < 0.001). We developed a personalized fracture risk assessment tool based on HR-pQCT that may provide an alternative approach to current clinical methods by leveraging direct measures of bone density and structure. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danielle E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elizabeth J Samelson
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marian T Hannan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lauren A Burt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David A Hanley
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pawel Szulc
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | | | - Blandine Merle
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Roland Chapurlat
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Eric Lespessailles
- Regional Hospital of Orleans, PRIMMO and EA 4708-I3MTO, University of Orleans, Orleans, France
| | - Andy Kin On Wong
- Joint Department of Medical Imaging, University Health Network, Dalla Lana School of Public Health, University of Toronto, Toronto, CA, USA
- Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, CA, USA
| | - David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, BIDMC, Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12020373. [PMID: 36829932 PMCID: PMC9952369 DOI: 10.3390/antiox12020373] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
This review reports in detail the cellular and molecular mechanisms which regulate the bone remodeling process in relation to oxidative stress (OS), inflammatory factors, and estrogen deficiency. OS is considered an important pathogenic factor of osteoporosis, inducing osteocyte apoptosis and varying levels of specific factors, such as receptor activator κB ligand (RANKL), sclerostin, and, according to recent evidence, fibroblast growth factor 23, with consequent impairment of bone remodeling and high bone resorption. Bone loss increases the risk of fragility fractures, and the most commonly used treatments are antiresorptive drugs, followed by anabolic drugs or those with a double effect. In addition, recent data show that natural antioxidants contained in the diet are efficient in preventing and reducing the negative effects of OS on bone remodeling and osteocytes through the involvement of sirtuin type 1 enzyme. Indeed, osteocytes and some of their molecular factors are considered potential biological targets on which antioxidants can act to prevent and reduce bone loss, as well as to promote bone anabolic and regenerative processes by restoring physiological bone remodeling. Several data suggest including antioxidants in novel therapeutic approaches to develop better management strategies for the prevention and treatment of osteoporosis and OS-related bone diseases. In particular, anthocyanins, as well as resveratrol, lycopene, oleuropein, some vitamins, and thiol antioxidants, could have protective and therapeutic anti-osteoporotic effects.
Collapse
Affiliation(s)
- Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Vladana Domazetovic
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Correspondence:
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | | |
Collapse
|
13
|
Camp K, Hartos J, Atanda A. Use of Clinical Practice Guidelines and Quality Metrics to Assess Primary Care Management of Osteoporosis. Gerontol Geriatr Med 2023; 9:23337214231202152. [PMID: 37786542 PMCID: PMC10541736 DOI: 10.1177/23337214231202152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Background: Clinical practice guidelines and quality measures provide recommendations for physicians addressing osteoporosis management. This study explored the alignment of osteoporosis clinical practice in a primary care geriatric clinic with recommended guidelines. Methods: This retrospective chart review included 388 patients 65 or older from a primary care geriatric clinic diagnosed with osteopenia or osteoporosis, with or without a fragility fracture. Data included history of falls and use of DXA scans, FRAX® fracture risk assessment tool, osteoporosis medication, and fall risk mitigation plans. Results: For age-related primary fracture prevention, 68% of women and 87% of men had documented DXA scans, and 45% of patients diagnosed with osteoporosis and 42% determined at high risk were prescribed osteoporosis medication. For secondary fracture prevention, 72% of women aged 67 to 85 had DXA scans and 21% were prescribed osteoporosis medication. Only 10% of patients with a history of falls had documented fall risk management plans. Conclusion: Although showing higher rates of primary and secondary prevention outcomes than did research results from general primary care, gaps were identified for high fracture risk patients and fall risk management documentation. Medical record review may not provide sufficient data to capture factors influencing decision-making for fracture prevention.
Collapse
Affiliation(s)
- Kathlene Camp
- University of North Texas Health Science Center, Fort Worth, USA
| | | | - Adenike Atanda
- University of North Texas Health Science Center, Fort Worth, USA
| |
Collapse
|
14
|
Ma Y, Qiu S, Zhou R. Osteoporosis in Patients With Respiratory Diseases. Front Physiol 2022; 13:939253. [PMID: 35903070 PMCID: PMC9315364 DOI: 10.3389/fphys.2022.939253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change, environmental pollution, and virus epidemics have sharply increased the number of patients suffering from respiratory diseases in recent years. Prolonged periods of illness and drug use increase the occurrence of complications in these patients. Osteoporosis is the common bone metabolism disease with respiratory disturbance, which affects prognosis and increases mortality of patients. The problem of osteoporosis in patients with respiratory diseases needs more attention. In this review, we concluded the characteristics of osteoporosis in some respiratory diseases including COPD, asthma, COVID-19, tuberculosis, and lung cancer. We revealed that hypoxia was the common pathogenesis of osteoporosis secondary to respiratory diseases, with malnutrition and corticosteroid abuse driving the progression of osteoporosis. Hypoxia-induced ROS accumulation and activated HIF-1α lead to attenuated osteogenesis and enhanced osteoclastogenesis in patients with respiratory diseases. Tuberculosis and cancer also invaded bone tissue and reduced bone strength by direct infiltration. For the treatment of osteoporosis in respiratory patients, oral-optimized bisphosphonates were the best treatment modality. Vitamin D was a necessary supplement, both for calcium absorption in osteogenesis and for improvement of respiratory lesions. Reasonable adjustment of the dose and course of corticosteroids according to the etiology and condition of patients is beneficial to prevent the occurrence and development of osteoporosis. Additionally, HIF-1α was a potential target for the treatment of osteoporosis in respiratory patients, which could be activated under hypoxia condition and involved in the process of bone remodeling.
Collapse
Affiliation(s)
- Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Renyi Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Renyi Zhou,
| |
Collapse
|
15
|
Hemoglobin level and osteoporosis in Chinese elders with type 2 diabetes mellitus. Nutr Diabetes 2022; 12:19. [PMID: 35414128 PMCID: PMC9005625 DOI: 10.1038/s41387-022-00198-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives Several studies demonstrated a positive relationship between hemoglobin level and bone mineral density (BMD). Thus, the association between hemoglobin concentration and osteoporosis in elders with type 2 diabetes mellitus (T2DM) was explored in this study. Methods Totally, 573 elders with T2DM were included in the study. BMD was measured by dual-energy X-ray absorptiometry. Hemoglobin levels were tested. The association between the hemoglobin level and osteoporosis was subjected to logistic regression analysis. Results For men, the hemoglobin levels were significantly lower in osteoporosis group than that in non-osteoporosis group (135.98 ± 16.20 vs. 142.84 ± 13.78 g/L, P = 0.002). Hemoglobin levels were positively related with BMD of total hip and femoral neck in men (r = 0.170, P = 0.004; r = 0.148, P = 0.012, respectively). After adjusting for age, body mass index (BMI), hemoglobin A1c (HbA1c), estimated glomerular filtration rate (eGFR) and 25-hydroxyvitamin D3 [25(OH) D3], the hemoglobin level was related with a 0.97-fold lower risk of osteoporosis (odds ratio (OR): 0.97; 95% confidence interval (CI): 0.95–0.99; P = 0.004) in men, but no such association was found in women. Conclusion Higher levels of hemoglobin play a protective role against osteoporosis in older men with T2DM.
Collapse
|
16
|
Ran B, Wei F, Gong J, Xu H. Application and prospect of trabecular bone score in differentiated thyroid cancer patients receiving thyrotropin suppression therapy. Front Endocrinol (Lausanne) 2022; 13:1004962. [PMID: 36313757 PMCID: PMC9596913 DOI: 10.3389/fendo.2022.1004962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid-stimulating hormone (TSH) suppression therapy is one of the common treatments for most patients with differentiated thyroid cancer (DTC). Unfortunately, its detrimental effects on bone health are receiving increasing attention. It may increase the risk of osteoporosis and osteoporotic fractures. The trabecular bone score (TBS) is a relatively new gray-scale texture measurement parameter that reflects bone microarchitecture and bone strength and has been shown to independently predict fracture risk. We reviewed for the first time the scientific literature on the use of TBS in DTC patients on TSH suppression therapy and aim to analyze and compare the utility of TBS with bone mass strength (BMD) in the management of skeletal health and prediction of fracture risk. We screened a total of seven relevant publications, four of which were for postmenopausal female patients and three for all female patients. Overall, postmenopausal female patients with DTC had lower TBS and a significant reduction in TBS after receiving TSH suppression therapy, but their BMD did not appear to change significantly. In addition, TBS was also found to be an independent predictor of osteoporotic fracture risk in postmenopausal women with DTC receiving TSH suppression therapy. However, due to limitations in the number of studies and study populations, this evidence is not sufficient to fully demonstrate the adverse effects of TSH suppression therapy on patients' TBS or BMD and the efficacy of TBS, and subsequent larger and more case-cohort studies are needed to further investigate the relationship and application of TBS to TSH suppression therapy in terms of skeletal health impairment and fracture risk in DTC patients.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW We re-evaluated clinical applications of image-to-FE models to understand if clinical advantages are already evident, which proposals are promising, and which questions are still open. RECENT FINDINGS CT-to-FE is useful in longitudinal treatment evaluation and groups discrimination. In metastatic lesions, CT-to-FE strength alone accurately predicts impending femoral fractures. In osteoporosis, strength from CT-to-FE or DXA-to-FE predicts incident fractures similarly to DXA-aBMD. Coupling loads and strength (possibly in dynamic models) may improve prediction. One promising MRI-to-FE workflow may now be tested on clinical data. Evidence of artificial intelligence usefulness is appearing. CT-to-FE is already clinical in opportunistic CT screening for osteoporosis, and risk of metastasis-related impending fractures. Short-term keys to improve image-to-FE in osteoporosis may be coupling FE with fall risk estimates, pool FE results with other parameters through robust artificial intelligence approaches, and increase reproducibility and cross-validation of models. Modeling bone modifications over time and bone fracture mechanics are still open issues.
Collapse
Affiliation(s)
- Enrico Schileo
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
18
|
Foessl I, Bassett JHD, Bjørnerem Å, Busse B, Calado Â, Chavassieux P, Christou M, Douni E, Fiedler IAK, Fonseca JE, Hassler E, Högler W, Kague E, Karasik D, Khashayar P, Langdahl BL, Leitch VD, Lopes P, Markozannes G, McGuigan FEA, Medina-Gomez C, Ntzani E, Oei L, Ohlsson C, Szulc P, Tobias JH, Trajanoska K, Tuzun Ş, Valjevac A, van Rietbergen B, Williams GR, Zekic T, Rivadeneira F, Obermayer-Pietsch B. Bone Phenotyping Approaches in Human, Mice and Zebrafish - Expert Overview of the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal traits TranslatiOnal NEtwork"). Front Endocrinol (Lausanne) 2021; 12:720728. [PMID: 34925226 PMCID: PMC8672201 DOI: 10.3389/fendo.2021.720728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".
Collapse
Affiliation(s)
- Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Research Centre for Women’s Health, Oslo University Hospital, Oslo, Norway
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | | | - Maria Christou
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - João Eurico Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Eva Hassler
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, Graz, Austria
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Erika Kague
- The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, Ghent, Belgium
| | - Bente L. Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Victoria D. Leitch
- Innovative Manufacturing Cooperative Research Centre, Royal Melbourne Institute of Technology, School of Engineering, Carlton, VIC, Australia
| | - Philippe Lopes
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
- Department of Health Services, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, United States
| | - Ling Oei
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pawel Szulc
- INSERM UMR 1033, University of Lyon, Lyon, France
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School, Bristol, University of Bristol, Bristol, United Kingdom
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Şansın Tuzun
- Physical Medicine & Rehabilitation Department, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Amina Valjevac
- Department of Human Physiology, School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Tatjana Zekic
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| |
Collapse
|
19
|
Albano D, Agnollitto PM, Petrini M, Biacca A, Ulivieri FM, Sconfienza LM, Messina C. Operator-Related Errors and Pitfalls in Dual Energy X-Ray Absorptiometry: How to Recognize and Avoid Them. Acad Radiol 2021; 28:1272-1286. [PMID: 32839098 DOI: 10.1016/j.acra.2020.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Dual-energy X-ray absorptiometry (DXA) is the most common modality for quantitative measurements of bone mineral density. Nevertheless, errors related to this exam are still very common, and may significantly impact on the final diagnosis and therapy. Operator-related errors may occur during each DXA step and can be related to wrong patient positioning, error in the acquisition process or in the scan analysis. The aim of this review is to provide a practical guide on how to recognize such errors in spine and hip DXA scan and how to avoid them, also presenting some of the most common artifacts encountered in clinical practice.
Collapse
Affiliation(s)
- Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy; Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 127, 90127 Palermo, Italy
| | - Paulo Moraes Agnollitto
- Radiology Division / CCIFM, Ribeirão Preto Medical School, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil
| | - Marcello Petrini
- Department of Radiology, Ospedale Guglielmo da Saliceto, via Taverna 49, Piacenza 29121, Italy
| | - Andrea Biacca
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy
| | - Fabio Massimo Ulivieri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UO Medicina Nucleare, Milano, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano 20122, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano 20122, Italy.
| |
Collapse
|
20
|
Lower Serum Irisin Levels Are Associated with Increased Osteoporosis and Oxidative Stress in Postmenopausal. Rep Biochem Mol Biol 2021; 10:13-19. [PMID: 34277864 DOI: 10.52547/rbmb.10.1.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 12/29/2022]
Abstract
Background Irisin as an exercise-induced myokine was proposed to improve bone health. This study investigated the role of serum irisin (s-irisin) in patients with osteoporosis (OP) through correlating to most biological bone markers and oxidative stress. Methods A cross-sectional study recruited an eligible 175 postmenopausal women at Al-Hussien Teaching Hospital, Iraq. They were scanned by DEXA and stratified into two groups based on T-score; the first 95 patients as control group (GI) with -1 ≤ T-score and the second 80 patients as cases group (GII) with T-score ≤ -2.5. Demographic criteria were age, bone mineral density (BMD, g/cm2) and T-score. Serum irisin, total serum calcium (s-calcium), serum inorganic phosphate (s-phosphate), serum alkaline phosphatase (s-ALP), serum 25 [OH] vitamin D, the serum parathyroid hormone (s-PTH), serum Carboxy terminal collagen crosslinks (CTx), serum procollagen type I C-termidnal peptide (s-PICP), serum malondialdehyde (s-MDA) and serum superoxide dismutase (s-SOD) were collected from blood samples. Results Serum irisin were 31.84 ± 2.65 vs. 20.88 ± 2.71 ng/mL for control and trial groups, respectively. Lower levels of BMD, T-score, 25 [OH] vitamin D, and s-irisin along with a higher serum levels of PTH, CTx, PICP, MDA and SOD were observed in patients with osteoporosis. All parameters were statistically meaningful upon correlation (p< 0.0001), except age and s-calcium (p= 0.0088 and p= 0.187, respectively). Conclusion The results showed that, a significantly lower serum irisin levels among osteoporosis women, was intimately correlated to most bone turnover markers and it can be considered as encouraging results for clinical application in prediction and treatment of osteoporosis.
Collapse
|
21
|
Messina C, Acquasanta M, Rinaudo L, Tortora S, Arena G, Albano D, Sconfienza LM, Ulivieri FM. Short-Term Precision Error of Bone Strain Index, a New DXA-Based Finite Element Analysis Software for Assessing Hip Strength. J Clin Densitom 2021; 24:330-337. [PMID: 33199190 DOI: 10.1016/j.jocd.2020.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Bone Strain Index (BSI) is a new finite element analysis tool applied to hip dual energy X-ray absorptiometry scans. The aim of this study was to assess the short-term precision error of BSI on the proximal femur, both on a phantom and patients. The International Society for Clinical Densitometry guidelines were followed for short-term precision error assessment. Dual energy X-ray absorptiometry measurements were performed on an anthropomorphic femur phantom that was scanned twice for 30 times, for a total of 60 scans. For the in vivo part, 30 subjects were scanned twice. BSI precision error was compared to that of bone mineral density (BMD). Both for the phantom and the in vivo study BSI reproducibility was lower compared to that of BMD, as the precision error of BSI resulted 3 times higher compared to that BMD. For phantom measurements, the highest precision value was that of total femur (TF) BMD (coefficient of variation [CoV] = 0.63%, reproducibility = 98.24%), while the lowest precision was the femoral neck (FN) BSI (CoV = 3.08%, reproducibility = 91.48%). Similarly, for the in vivo study, the highest precision was found at TF BMD (CoV = 1.36%, reproducibility = 96.22%), while the lowest value of precision was found for FN BSI (CoV = 4.17%, reproducibility = 88.46%). Reproducibility at TF was always better compared to that of the FN. BSI precision error was about 3 times higher compared to BMD, confirming previous results of lumbar spine BSI. The main source of variability of this new software is related to patient positioning.
Collapse
Affiliation(s)
- Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
| | | | | | - Silvia Tortora
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milano, Italy
| | | | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Fabio Massimo Ulivieri
- Former: Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UO Medicina Nucleare, Milano, Italy
| |
Collapse
|
22
|
Collins CJ, Yang B, Crenshaw TD, Ploeg HL. Evaluation of experimental, analytical, and computational methods to determine long-bone bending stiffness. J Mech Behav Biomed Mater 2020; 115:104253. [PMID: 33360160 DOI: 10.1016/j.jmbbm.2020.104253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/08/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Methods used to evaluate bone mechanical properties vary widely depending on the motivation and environment of individual researchers, clinicians, and industries. Further, the innate complexity of bone makes validation of each method difficult. Thus, the purpose of the present research was to quantify methodological error of the most common methods used to predict long-bone bending stiffness, more specifically, flexural rigidity (EI). Functional testing of a bi-material porcine bone surrogate, developed in a previous study, was conducted under four-point bending test conditions. The bone surrogate was imaged using computed tomography (CT) with an isotropic voxel resolution of 0.625 mm. Digital image correlation (DIC) of the bone surrogate was used to quantify the methodological error between experimental, analytical, and computational methods used to calculate EI. These methods include the application of Euler Bernoulli beam theory to mechanical testing and DIC data; the product of the bone surrogate composite bending modulus and second area moment of inertia; and finite element analysis (FEA) using computer-aided design (CAD) and CT-based geometric models. The methodological errors of each method were then compared. The results of this study determined that CAD-based FEA was the most accurate determinant of bone EI, with less than five percent difference in EI to that of the DIC and consistent reproducibility of the measured displacements for each load increment. CT-based FEA was most accurate for axial strains. Analytical calculations overestimated EI and mechanical testing was the least accurate, grossly underestimating flexural rigidity of long-bones.
Collapse
Affiliation(s)
- Caitlyn J Collins
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Baixuan Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| | - Thomas D Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi-Lynn Ploeg
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| |
Collapse
|
23
|
Teng Y, Teng Z, Xu S, Zhang X, Liu J, Yue Q, Zhu Y, Zeng Y. The Analysis for Anemia Increasing Fracture Risk. Med Sci Monit 2020; 26:e925707. [PMID: 32583812 PMCID: PMC7333512 DOI: 10.12659/msm.925707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Fractures are a major public health problem for elderly people throughout the world. Anemia is also a common, important health problem among elderly populations. The aim of this article was to estimate the association between anemia and fracture incidence via a systematic review and meta-analysis. Material/Methods The participant, intervention, observation, and study design (PICOS) reporting guidelines were followed, and databases were searched from their inception to May 2020 to identify relevant studies. When heterogeneity was significant, and a random-effects model was used. Subgroup analysis was conducted to explore the source of heterogeneity based on sex, study design, and region. Result We found that anemia significantly increased fracture risk [relative risk (RR)=1.26, 95% confidence interval (CI)=1.14–1.39, P<0.001], specifically, hip fracture (RR=1.44, 95% CI=1.29–1.61), spine fracture (RR=1.15, 95% CI=1.08–1.23), and nonspine fracture (RR=1.42, 95% CI=1.33–1.52). Males with anemia had a 1.51-fold higher fracture risk, females had a 1.09-fold higher fracture risk. And the association was stronger in Asian (RR=1.22, 95% CI=1.07–1.40), but not in American and European study populations. Conclusions In conclusion, a significantly increased fracture risk was observed, and anemia can be a predictor of fracture risk.
Collapse
Affiliation(s)
- Yirong Teng
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Zhaowei Teng
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Shuanglan Xu
- Graduate School, Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Xiguang Zhang
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Jie Liu
- Graduate School, Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Qiaoning Yue
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Yun Zhu
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Yong Zeng
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China (mainland)
| |
Collapse
|
24
|
Abstract
Since its development in 2008, FRAX has booked its place in the standard day to day management of osteoporosis. The FRAX tool has been appreciated for its simplicity and applicability for use in primary care, but criticised for the same reason, as it does not take into account exposure response. To address some of these limitations, relatively simple arithmetic procedures have been proposed to be applied to the conventional FRAX estimates of hip and major fracture probabilities aiming at adjustment of the probability assessment. However, as the list of these adjustments got longer, this has reflected on its implementation in the standard practice and gave FRAX a patchy look. Consequently, raises the need to re-think of the current FRAX and whether a second generation of the tool is required to address the perceived limitations of the original FRAX. This article will discuss both point of views of re-adjustment and re-thinking.
Collapse
Affiliation(s)
- Yasser El Miedany
- grid.13097.3c0000 0001 2322 6764King’s College London, London, England
| |
Collapse
|