1
|
Li W, Fang W, Zhang Y, Chen Q, Shentu W, Lai Q, Cheng L, Yan S, Kong Q, Qiao S. Research progress on resistance exercise therapy for improving cognitive function in patients with AD and muscle atrophy. Front Aging Neurosci 2025; 17:1552905. [PMID: 40271180 PMCID: PMC12016217 DOI: 10.3389/fnagi.2025.1552905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Alzheimer's disease (AD) significantly reduces the quality of life of patients and exacerbates the burden on their families and society. Resistance exercise significantly enhances the overall cognitive function of the elderly and patients with AD while positively improving memory, executive function, and muscle strength, reducing fall risks, and alleviating psychological symptoms. As AD is a neurodegenerative disorder, some nerve factors are readily activated and released during exercise. Therefore, several prior studies have concentrated on exploring the molecular mechanisms of resistance exercise and their impact on brain function and neural plasticity. Recent investigations have identified an intrinsic relationship between individuals with AD and the pathological mechanisms of skeletal muscle atrophy, establishing a correlation between patients with AD cognitive level and skeletal muscle content. Resistance exercise primarily targets the skeletal muscle, which improves cognitive impairment in patients with AD by reducing vascular and neuroinflammatory factors and further enhances cognitive function in patients with AD by restoring the structural function of skeletal muscle. Furthermore, the effects of resistance training vary among distinct subgroups of cognitive impairment. Individuals exhibiting lower cognitive function demonstrate more pronounced adaptive responses in physical performance over time. Consequently, further investigation is warranted to determine whether tailored guidelines-such as variations in the frequency and duration of resistance exercise-should be established for patients with varying levels of dementia, in order to optimize the benefits for those experiencing cognitive impairment. This study aimed to review the relationship between AD and skeletal muscle atrophy, the impact of skeletal muscle atrophy on AD cognition, the mechanism by which resistance exercise improves cognition through skeletal muscle improvement, and the optimal resistance exercise mode to elucidate the additional advantages of resistance exercise in treating cognitive function in patients with AD and skeletal muscle atrophy.
Collapse
Affiliation(s)
- Wenyao Li
- Department of Special Inspection, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Fang
- Department of Neurology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yier Zhang
- Zhejiang Chinese Medical University Hangzhou, Hangzhou, Zhejiang, China
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Qiulu Chen
- Department of Neurology, Zhejiang Medical and Health Group Hangzhou Hospital, Hangzhou, Zhejiang, China
| | - Wuyue Shentu
- Zhejiang Chinese Medical University Hangzhou, Hangzhou, Zhejiang, China
| | - Qilun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Lin Cheng
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Sicheng Yan
- Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Qi Kong
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Pianeta R, Deosthale P, Sanz N, Kohler R, Okpara C, Arnett M, Asad I, Rogers A, Gerbig M, Essex A, Liu Z, Wallace JM, Plotkin LI. Sex hormone deficiency in male and female mice expressing the Alzheimer's disease-associated risk-factor TREM2 R47H variant impacts the musculoskeletal system in a sex- and genotype-dependent manner. JBMR Plus 2025; 9:ziae144. [PMID: 39677924 PMCID: PMC11646090 DOI: 10.1093/jbmrpl/ziae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
The R47H variant of the triggering receptor expressed on myeloid cells 2 (TREM2) is a risk factor for Alzheimer's disease in humans and leads to lower bone mass accrual in female but not male 12-mo-old mice. To determine whether, as with aging, gonadectomy results in sex-specific musculoskeletal effects, gonad removal or SHAM surgery was performed in 4-mo-old TREM2R47H/+ mice and WT male and female littermates (n = 10-12/group), with sexes analyzed separately. Body weight was lower in males, but higher in females after gonadectomy, independently of their genotype. Gonadectomy also leads to decreased BMD in males at all sites and in the whole body (total) and spine in female mice for both genotypes. Total and femur BMD was lower in gonadectomized male mice 6-wk post-surgery, independently of the genotype. On the other hand, BMD was only lower in ovariectomized WT but not TREM2R47H/+ mice in all sites measured at this time point. Bone formation and resorption marker levels were not affected by orchiectomy, whereas CTX was higher 3 wk after surgery and P1NP showed a tendency toward lower values at the 6-wk time point only in ovariectomized WT mice. Micro-CT analyses showed no differences resulting from gonadectomy in structural parameters in femoral cortical bone for either sex, but lower tissue mineral density in males of either genotype 6-wk post-surgery. Nevertheless, biomechanical properties were overall lower in gonadectomized males of either genotype, and only for WT ovariectomized mice. Distal femur cancellous bone structure was also affected by gonadectomy in a genotype- and sex-dependent manner, with genotype-independent changes in males, and only in WT female mice. Thus, expression of the TREM2 R47H variant minimally alters the impact of gonadectomy in the musculoskeletal system in males, whereas it partially ameliorates the consequences of ovariectomy in female mice.
Collapse
Affiliation(s)
- Roquelina Pianeta
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, United States
| | - Padmini Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, United States
| | - Natasha Sanz
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario 2000, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires 9100, Argentina
| | - Rachel Kohler
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Chiebuka Okpara
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Matthew Arnett
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Iqra Asad
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Amber Rogers
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Madison Gerbig
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Alyson Essex
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Ziyue Liu
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Joseph M Wallace
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, United States
- Department of Biomechanical Engineering, Indiana University—Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, United States
| |
Collapse
|
3
|
Sanchez-Martinez Y, Lopez-Lopez JP, Gomez-Montoya I, Hernandez-Quiñones D, Ruiz-Uribe G, Rincón-Rueda Z, Garcia RG, Lopez-Jaramillo P. Muscular strength, endothelial function and cognitive disorders: state of the art. J Physiol 2024. [PMID: 39612371 DOI: 10.1113/jp285939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024] Open
Abstract
In recent years, the ageing population has increasingly grown. This process carries a range of pathophysiological changes involving alterations in the skeletal muscle, vascular endothelium and brain function, becoming an important risk factor for developing cognitive disorders and cardiovascular diseases. With ageing, there is a decrease in muscle mass and muscle strength, and a relationship between muscle strength decrease and cognitive decline has been shown. Lower handgrip strength has been linked to memory impairment, lower global cognitive function, decreased attention and reduced visuospatial abilities in the elderly, but understanding of the underlying mechanisms that explain the link between altered skeletal muscle function and structure, endothelial dysfunction, and the role of endothelial dysfunction in the onset of cognitive disorders has been scarcely explored. This review aims to detail the cellular and molecular mechanisms by which the progressive changes associated with ageing can alter healthy skeletal muscle and endothelial function, creating an environment of oxidative stress, inflammation and mitochondrial dysfunction. These changes can lead to reduced muscle strength, and the secretion of detrimental endothelial factors, resulting in endothelial dysfunction, blood-brain barrier disruption, and damage to neurons and microglia, ultimately accelerating the onset of cognitive disorders in the elderly. In addition, we aimed to describe the mechanisms that potentially explain how preserving muscular function with resistance training could prevent brain function deterioration, including the production of different factors that allow an improved endothelial function, haemodynamic parameters and brain plasticity, ultimately delaying the onset of cognitive impairment and chronic diseases.
Collapse
Affiliation(s)
| | - Jose P Lopez-Lopez
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
| | | | | | - Gabriela Ruiz-Uribe
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
| | - Zully Rincón-Rueda
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
| | - Ronald G Garcia
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Patricio Lopez-Jaramillo
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
4
|
Holland C, Dravecz N, Owens L, Benedetto A, Dias I, Gow A, Broughton S. Understanding exogenous factors and biological mechanisms for cognitive frailty: A multidisciplinary scoping review. Ageing Res Rev 2024; 101:102461. [PMID: 39278273 DOI: 10.1016/j.arr.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024]
Abstract
Cognitive frailty (CF) is the conjunction of cognitive impairment without dementia and physical frailty. While predictors of each element are well-researched, mechanisms of their co-occurrence have not been integrated, particularly in terms of relationships between social, psychological, and biological factors. This interdisciplinary scoping review set out to categorise a heterogenous multidisciplinary literature to identify potential pathways and mechanisms of CF, and research gaps. Studies were included if they used the definition of CF OR focused on conjunction of cognitive impairment and frailty (by any measure), AND excluded studies on specific disease populations, interventions, epidemiology or prediction of mortality. Searches used Web of Science, PubMed and Science Direct. Search terms included "cognitive frailty" OR (("cognitive decline" OR "cognitive impairment") AND (frail*)), with terms to elicit mechanisms, predictors, causes, pathways and risk factors. To ensure inclusion of animal and cell models, keywords such as "behavioural" or "cognitive decline" or "senescence", were added. 206 papers were included. Descriptive analysis provided high-level categorisation of determinants from social and environmental through psychological to biological. Patterns distinguishing CF from Alzheimer's disease were identified and social and psychological moderators and mediators of underlying biological and physiological changes and of trajectories of CF development were suggested as foci for further research.
Collapse
Affiliation(s)
- Carol Holland
- Division of Health Research, Health Innovation One, Sir John Fisher Drive, Lancaster University, Lancaster LA1 4YW, UK.
| | - Nikolett Dravecz
- Division of Health Research, Health Innovation One, Sir John Fisher Drive, Lancaster University, Lancaster LA1 4YW, UK.
| | - Lauren Owens
- Division of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG, UK.
| | - Alexandre Benedetto
- Division of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG, UK.
| | - Irundika Dias
- Aston University Medical School, Aston University, Birmingham B4 7ET, UK.
| | - Alan Gow
- Centre for Applied Behavioural Sciences, Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Susan Broughton
- Division of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG, UK.
| |
Collapse
|
5
|
Booranasuksakul U, Macdonald IA, Stephan BCM, Siervo M. Body Composition, Sarcopenic Obesity, and Cognitive Function in Older Adults: Findings From the National Health and Nutrition Examination Survey (NHANES) 1999-2002 and 2011-2014. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:539-552. [PMID: 38564377 DOI: 10.1080/27697061.2024.2333310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/16/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Sarcopenic-obesity (SO) is characterized by the concomitant presence of low muscle mass and high adiposity. This study explores the association of body composition and SO phenotypes with cognitive function in older adults. METHODS Cross-sectional data in older adults (≥60 years) from NHANES 1999-2002 and 2011-2014 were used. In the 1999-2002 cohort, phenotypes were derived from body mass index (BMI) and dual-X-ray-absorptiometry, and cognition was assessed the by Digit-Symbol-Substitution-Test (DSST). In the 2011-2014 cohort, phenotypes were derived from BMI, waist-circumference (WC), and hand-grip-strength (HGS). Cognition was assessed using four tests: DSST, Animal Fluency, the Consortium-to-Establish-a-Registry-for-Alzheimer's-Disease-Delayed-Recall, and Word Learning. Mediation analysis was conducted to evaluate the contribution of inflammation (C-reactive-protein, CRP) and insulin resistance (Homeostatic-Model-Assessment-for-Insulin-Resistance, HOMA-IR) to the association between body composition and cognitive outcomes. RESULTS The SO phenotype had the lowest DSST mean scores (p < 0.05) and was associated with a significant risk of cognitive impairment [Odds Ratio (OR) = 1.9; 95%CI 1.0-3.7, p = 0.027] in the 1999-2002 cohort. A higher ratio of fat mass and fat free mass (FM/FFM) also showed a greater risk of cognitive impairment (OR = 2.0; 95%CI 1.3-3.1, p = 0.004). In the 2011-2014 cohort, the high WC-Low HGS group showed significantly lower scores on all four cognitive tests (p < 0.05) and a higher risk of cognitive impairment. CRP and HOMA-IR were significant partial mediators of the association between FM/FFM and DSST in the 1999-2002 cohort. CONCLUSIONS The SO phenotype was associated with a higher risk of cognitive impairment in older adults. Insulin resistance and inflammation may represent key mechanisms linking SO to the development of cognitive impairment.
Collapse
Affiliation(s)
- Uraiporn Booranasuksakul
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Ian A Macdonald
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Blossom C M Stephan
- Institute of Mental Health, The University of Nottingham Medical School, Nottingham, UK
- Faculty of Health Sciences, Curtin enAble Institute, Curtin University, Perth, Australia
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
- Faculty of Health Sciences, Curtin enAble Institute, Curtin University, Perth, Australia
- School of Population Health, Curtin University, Perth, Australia
| |
Collapse
|
6
|
Svensson JE, Bolin M, Thor D, Williams PA, Brautaset R, Carlsson M, Sörensson P, Marlevi D, Spin-Neto R, Probst M, Hagman G, Morén AF, Kivipelto M, Plavén-Sigray P. Evaluating the effect of rapamycin treatment in Alzheimer's disease and aging using in vivo imaging: the ERAP phase IIa clinical study protocol. BMC Neurol 2024; 24:111. [PMID: 38575854 PMCID: PMC10993488 DOI: 10.1186/s12883-024-03596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Rapamycin is an inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase, and preclinical data demonstrate that it is a promising candidate for a general gero- and neuroprotective treatment in humans. Results from mouse models of Alzheimer's disease have shown beneficial effects of rapamycin, including preventing or reversing cognitive deficits, reducing amyloid oligomers and tauopathies and normalizing synaptic plasticity and cerebral glucose uptake. The "Evaluating Rapamycin Treatment in Alzheimer's Disease using Positron Emission Tomography" (ERAP) trial aims to test if these results translate to humans through evaluating the change in cerebral glucose uptake following six months of rapamycin treatment in participants with early-stage Alzheimer's disease. METHODS ERAP is a six-month-long, single-arm, open-label, phase IIa biomarker-driven study evaluating if the drug rapamycin can be repurposed to treat Alzheimer's disease. Fifteen patients will be included and treated with a weekly dose of 7 mg rapamycin for six months. The primary endpoint will be change in cerebral glucose uptake, measured using [18F]FDG positron emission tomography. Secondary endpoints include changes in cognitive measures, markers in cerebrospinal fluid as well as cerebral blood flow measured using magnetic resonance imaging. As exploratory outcomes, the study will assess change in multiple age-related pathological processes, such as periodontal inflammation, retinal degeneration, bone mineral density loss, atherosclerosis and decreased cardiac function. DISCUSSION The ERAP study is a clinical trial using in vivo imaging biomarkers to assess the repurposing of rapamycin for the treatment of Alzheimer's disease. If successful, the study would provide a strong rationale for large-scale evaluation of mTOR-inhibitors as a potential disease-modifying treatment in Alzheimer's disease. TRIAL REGISTRATION ClinicalTrials.gov ID NCT06022068, date of registration 2023-08-30.
Collapse
Affiliation(s)
- Jonas E Svensson
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Bolin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Daniel Thor
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Carlsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Peder Sörensson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Section for Oral Radiology, Aarhus University, Aarhus C, Denmark
| | - Monika Probst
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Göran Hagman
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Miia Kivipelto
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
7
|
Sciacchitano S, Carola V, Nicolais G, Sciacchitano S, Napoli C, Mancini R, Rocco M, Coluzzi F. To Be Frail or Not to Be Frail: This Is the Question-A Critical Narrative Review of Frailty. J Clin Med 2024; 13:721. [PMID: 38337415 PMCID: PMC10856357 DOI: 10.3390/jcm13030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Many factors have contributed to rendering frailty an emerging, relevant, and very popular concept. First, many pandemics that have affected humanity in history, including COVID-19, most recently, have had more severe effects on frail people compared to non-frail ones. Second, the increase in human life expectancy observed in many developed countries, including Italy has led to a rise in the percentage of the older population that is more likely to be frail, which is why frailty is much a more common concern among geriatricians compared to other the various health-care professionals. Third, the stratification of people according to the occurrence and the degree of frailty allows healthcare decision makers to adequately plan for the allocation of available human professional and economic resources. Since frailty is considered to be fully preventable, there are relevant consequences in terms of potential benefits both in terms of the clinical outcome and healthcare costs. Frailty is becoming a popular, pervasive, and almost omnipresent concept in many different contexts, including clinical medicine, physical health, lifestyle behavior, mental health, health policy, and socio-economic planning sciences. The emergence of the new "science of frailty" has been recently acknowledged. However, there is still debate on the exact definition of frailty, the pathogenic mechanisms involved, the most appropriate method to assess frailty, and consequently, who should be considered frail. This narrative review aims to analyze frailty from many different aspects and points of view, with a special focus on the proposed pathogenic mechanisms, the various factors that have been considered in the assessment of frailty, and the emerging role of biomarkers in the early recognition of frailty, particularly on the role of mitochondria. According to the extensive literature on this topic, it is clear that frailty is a very complex syndrome, involving many different domains and affecting multiple physiological systems. Therefore, its management should be directed towards a comprehensive and multifaceted holistic approach and a personalized intervention strategy to slow down its progression or even to completely reverse the course of this condition.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Giampaolo Nicolais
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Simona Sciacchitano
- Department of Psychiatry, La Princesa University Hospital, 28006 Madrid, Spain;
| | - Christian Napoli
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Monica Rocco
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Flaminia Coluzzi
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| |
Collapse
|
8
|
Chou YY, Lin CF, Lee YS, Weng SC, Kuo FH, Hsu CY, Lin SY. The associations of osteoporosis and possible sarcopenia with disability, nutrition, and cognition in community-dwelling older adults. BMC Geriatr 2023; 23:730. [PMID: 37950206 PMCID: PMC10638752 DOI: 10.1186/s12877-023-04431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Osteoporosis and sarcopenia, respectively, have detrimental impact on health, and combination of both conditions, termed osteosarcopenia, is becoming an increasingly important disorder in older adults as populations age. This study aimed to explore the relationship between osteoporosis and possible sarcopenia and their joint effect on physical performance, nutritional status, and cognition in community-dwelling older adults. METHODS This study was conducted at a medical center in Taiwan, which included the adjacent community care station. The participants were recruited through regular activities at the community care station between January 01, 2015 and February 28, 2022. During the study period, dual-energy X-ray absorptiometry and comprehensive geriatric assessment consisting of comorbidity burden, functional status, cognition, mood, and nutritional status were performed during the study period. Possible sarcopenia was identified utilizing the criteria set by the Asian Working Group on Sarcopenia in 2019 using the criteria of low muscle strength alone, and osteoporosis was defined by the World Health Organization criteria. Accordingly, the study subjects were divided into four groups: normal, only osteoporosis, only possible sarcopenia, and possible osteosarcopenia. RESULTS There were 337 participants (68.6% female) with a median age of 78.0 years (interquartile range: 71.0-85.0 y/o). According to the clinical definition of osteosarcopenia, 78 participants were normal, 69 participants showed possible sarcopenia, 61 participants had osteoporosis, and 129 had osteoporosis with possible sarcopenia. Among the four groups, the prevalence rates of chronic illness, functional capacity, physical performance, cognitive impairment, and malnutrition revealed statistically significant differences. Using logistic regression analysis after adjusting for the other covariates, osteoporosis with possible sarcopenia was associated with an increased odds ratio of cognitive impairment. CONCLUSIONS The findings suggest that compared to osteoporosis or possible sarcopenia alone, osteoporosis with possible sarcopenia was more likely to be associated with cognitive impairment. Early identification and targeted interventions for cognitive impairment in older adults with osteosarcopenia may be valuable in maintaining cognitive well-being and overall quality of life.
Collapse
Affiliation(s)
- Yin-Yi Chou
- Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Cheng-Fu Lin
- Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Division of Occupational Medicine, Department of Emergency, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Geriatrics and Gerontology Research Center, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan
| | - Yu-Shan Lee
- Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Division of Neurology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Shuo-Chun Weng
- Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Geriatrics and Gerontology Research Center, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Fu-Hsuan Kuo
- Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Geriatrics and Gerontology Research Center, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan
- Division of Neurology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Chiann-Yi Hsu
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.
- Geriatrics and Gerontology Research Center, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40200, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.
| |
Collapse
|
9
|
Londzin P, Trawczyński M, Cegieła U, Czuba ZP, Folwarczna J. Effects of Donepezil on the Musculoskeletal System in Female Rats. Int J Mol Sci 2023; 24:ijms24108991. [PMID: 37240337 DOI: 10.3390/ijms24108991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The extension of human life makes it more and more important to prevent and treat diseases of the elderly, including Alzheimer's disease (AD) and osteoporosis. Little is known about the effects of drugs used in the treatment of AD on the musculoskeletal system. The aim of the present study was to investigate the effects of donepezil, an acetylcholinesterase inhibitor, on the musculoskeletal system in rats with normal and reduced estrogen levels. The study was carried out on four groups of mature female rats: non-ovariectomized (NOVX) control rats, NOVX rats treated with donepezil, ovariectomized (OVX) control rats and OVX rats treated with donepezil. Donepezil (1 mg/kg p.o.) was administered for four weeks, starting one week after the ovariectomy. The serum concentrations of CTX-I, osteocalcin and other biochemical parameters, bone mass, density, mineralization, histomorphometric parameters and mechanical properties, and skeletal muscle mass and strength were examined. Estrogen deficiency increased bone resorption and formation and worsened cancellous bone mechanical properties and histomorphometric parameters. In NOVX rats, donepezil decreased bone volume to tissue volume ratio in the distal femoral metaphysis, increased the serum phosphorus concentration and tended to decrease skeletal muscle strength. No significant bone effects of donepezil were observed in OVX rats. The results of the present study indicate slightly unfavorable effects of donepezil on the musculoskeletal system in rats with normal estrogen levels.
Collapse
Affiliation(s)
- Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Marcin Trawczyński
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Urszula Cegieła
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
10
|
Liu C, Wong PY, Chow SKH, Cheung WH, Wong RMY. Does the regulation of skeletal muscle influence cognitive function? A scoping review of pre-clinical evidence. J Orthop Translat 2023; 38:76-83. [PMID: 36381246 PMCID: PMC9619139 DOI: 10.1016/j.jot.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cognitive impairment is a major challenge for elderlies, as it can progress in a rapid manner and effective treatments are limited. Sarcopenic elderlies have a higher risk of dementia. This scoping review aims to reveal whether muscle is a mediator of cognitive function from pre-clinical evidence. Methods PubMed, Embase, and Web of Science were searched to Feb 2nd, 2022, using the keywords (muscle) AND (cognition OR dementia OR Alzheimer) AND (mouse OR rat OR animal). The PRISMA guideline was used in this study. Results A total of 17 pre-clinical studies were selected from 7638 studies. 4 studies reported that muscle atrophy and injury harmed memory, functional factors, and neurons in the brain for rodents with or without Alzheimer's disease (AD). 3 studies observed exercise induced muscle to secrete factors, including lactate, fibronectin type III domain-containing protein 5 (FNDC5), and cathepsin B, which plays essential roles in the elevation of cognitive functions and brain-derived neurotrophic factor (BDNF) levels. Muscle-targeted treatments including electrical stimulation and intramuscular injections had effective remote effects on the hippocampus. 6 studies showed that muscle-specific overexpression of scFv59 and Neprilysin, or myostatin knockdown alleviated AD symptoms. 1 study showed that muscle insulin resistance also led to deficient hippocampal neurogenesis in MKR mice. Conclusions The skeletal muscle is involved in the mediation of cognitive function. The evidence was established by the response in the brain (altered number of neurons, functional factors, and other AD pathological characteristics) with muscle atrophy or injury, muscle secretory factors, and muscle-targeted treatments. The translational potential of this paper This study summarizes the current evidence in how muscle affects cognition in molecular levels, which supports muscle-specific treatments as potential clinical strategies to prevent cognitive dysfunction.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|