1
|
Baskol G, Yetkin MÖ, Sevim DG, Guclu K, Arda H, Saracoglu H, Gahramanov K, Evereklioglu C. Serum GAS6, sAXL, IL-10, NO, and BCL-2 levels are decreased in patients with Behçet's disease. Indian J Ophthalmol 2024; 72:S468-S472. [PMID: 38648454 PMCID: PMC467006 DOI: 10.4103/ijo.ijo_2829_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Behçet's disease (BD) is an autoimmune chronic systemic inflammatory disease characterized by a versatile clinical spectrum. Growth arrest specific protein 6 (GAS6)/soluble AXL (sAXL) signaling pathway draws attention in the resolution of inflammation, and its deficiency is associated with chronic inflammatory, autoimmune diseases, as well as clearance of apoptotic cells by phagocytes - efferocytosis. In this study, it was aimed to investigate whether GAS6/sAXL, interleukin (IL)-10, nitric oxide (NO), and BCL-2 levels were associated with inflammation and efferocytosis contributes to the pathogenesis of BD. METHODS A total of 37 Behçet patients with ocular involvement and 30 healthy control subjects were included in this study. GAS6, sAXL, IL-10, NO, and BCL-2 levels were quantified using enzyme-linked immunosorbent assay (ELISA) method. RESULTS Serum GAS6, sAXL, IL-10, NO, and BCL-2 levels were significantly lower in patients with BD compared to the controls (P < 0.005, P < 0.001, P < 0.001, P < 0.001, and P < 0.001, respectively). In correlation analysis, research parameters decreased in patients with BD was significantly correlated with each other: GAS6-IL-10 (r = 0.585, P < 0.001), GAS6-BCL-2 (r = 0.541, P < 0.001), sAXL-BCL-2 (r = 0.696, P < 0.001), IL-10-NO (r = 0.717, P < 0.001), IL-10-BCL-2 (r = 0.759, P < 0.001), and NO-BCL-2 (r = 0.541, P < 0.001). CONCLUSION In conclusion, decreased serum BCL-2 level may be an indicator of increased apoptosis in these patients and decreased levels of GAS6/sAXL, IL-10, and NO may indicate insufficient clearance of apoptotic bodies released as a result of increased apoptosis in BD patients.
Collapse
Affiliation(s)
- Gulden Baskol
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Merve Ö. Yetkin
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu G Sevim
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kenan Guclu
- Department of Biochemistry, Kayseri State Hospital, Kayseri, Turkey
| | - Hatice Arda
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hatice Saracoglu
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kamran Gahramanov
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cem Evereklioglu
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Taheri F, Taghizadeh E, Navashenaq JG, Rezaee M, Gheibihayat SM. The role of efferocytosis in neuro-degenerative diseases. Neurol Sci 2022; 43:1593-1603. [PMID: 35059903 DOI: 10.1007/s10072-021-05835-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023]
Abstract
Efferocytosis has a critical role in maintaining tissues and organs' homeostasis by removing apoptotic cells. It is essential for human health, and disturbances in efferocytosis may result indifferent illnesses. In case of inadequate clearance of the dead cells, the content in the cells would be released. In fact, it induces some damages to the tissue and leads to the prolonged inflammation, so unsuitable phagocytosis of the apoptotic cells is involved in occurrence as well as expansion of numerous human chronic inflammatory diseases. Studies have shown age dependence of the neuro-degenerative diseases, which are largely due to the neuro-inflammation and the loss of neurons and thus cause the brain's functional disorders. Efferocytosis is coupled to anti-inflammatory responses that contribute to the elimination of the dying neurons in neuro-degenerative diseases, so its disruption may make a risk factor in numerous human chronic inflammatory diseases such as multiple sclerosis, Alzheimer's disease, glioblastoma, and Rett syndrome. This study is a review of the efferocytosis molecular pathways and their role in neuro-degenerative diseases in order to discover a new treatment option to cure patients.
Collapse
Affiliation(s)
- Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Eskandar Taghizadeh
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, Iran.
| |
Collapse
|
3
|
Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F. Cell Death in the Kidney. Int J Mol Sci 2019; 20:E3598. [PMID: 31340541 PMCID: PMC6679187 DOI: 10.3390/ijms20143598] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Apoptotic cell death is usually a response to the cell's microenvironment. In the kidney, apoptosis contributes to parenchymal cell loss in the course of acute and chronic renal injury, but does not trigger an inflammatory response. What distinguishes necrosis from apoptosis is the rupture of the plasma membrane, so necrotic cell death is accompanied by the release of unprocessed intracellular content, including cellular organelles, which are highly immunogenic proteins. The relative contribution of apoptosis and necrosis to injury varies, depending on the severity of the insult. Regulated cell death may result from immunologically silent apoptosis or from immunogenic necrosis. Recent advances have enhanced the most revolutionary concept of regulated necrosis. Several modalities of regulated necrosis have been described, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial permeability transition-dependent regulated necrosis. We review the different modalities of apoptosis, necrosis, and regulated necrosis in kidney injury, focusing particularly on evidence implicating cell death in ectopic renal calcification. We also review the evidence for the role of cell death in kidney injury, which may pave the way for new therapeutic opportunities.
Collapse
Affiliation(s)
- Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy.
| | - Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
4
|
Günther C. Nucleic Acid Immunity in the Pathogenesis of Cutaneous Lupus Erythematosus. Front Immunol 2019; 10:1636. [PMID: 31379837 PMCID: PMC6646723 DOI: 10.3389/fimmu.2019.01636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cutaneous lupus erythematosus can be a devastating painful and mutilating disease that is associated with an inflammatory response in the skin driven by type I interferon activation. Clearance defects in the extra- and intracellular space lead to an enhanced prevalence of nucleic acids that represent danger signals for the innate immune system. Self nucleic acids can stimulate DNA and RNA sensors that have originally evolved to ensure viral defense. Their activation can induce a type I interferon dominated response in resident skin cells, macrophages and dendritic cells that subsequently progresses to adaptive immune stimulation. The genetic exploration of rare monogenic type I interferon driven diseases helped to identify these pathogenic concepts. Based on a genetic susceptibility lupus patients are more vulnerable to environmental trigger factors such as UV-irradiation that can provoke inflammation with local tissue destruction and eventually systemic disease. Understanding of these pathogenic concepts is a prerequisite for development of targeted therapies.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Dermatology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
5
|
Abdolmaleki F, Farahani N, Gheibi Hayat SM, Pirro M, Bianconi V, Barreto GE, Sahebkar A. The Role of Efferocytosis in Autoimmune Diseases. Front Immunol 2018; 9:1645. [PMID: 30083153 PMCID: PMC6064952 DOI: 10.3389/fimmu.2018.01645] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022] Open
Abstract
Apoptosis happens continuously for millions of cells along with the active removal of apoptotic debris in order to maintain tissue homeostasis. In this respect, efferocytosis, i.e., the process of dead cell clearance, is orchestrated through cell exposure of a set of "find me," "eat me," and "tolerate me" signals facilitating the engulfment of dying cells through phagocytosis by macrophages and dendritic cells. The clearance of dead cells via phagocytes is of utmost importance to maintain the immune system tolerance to self-antigens. Accordingly, this biological activity prevents the release of autoantigens by dead cells, thus potentially suppressing the undesirable autoreactivity of immune cells and the appearance of inflammatory autoimmune disorders as systemic lupus erythematous and rheumatoid arthritis. In the present study, the apoptosis pathways and their immune regulation were reviewed. Moreover, efferocytosis process and its impairment in association with some autoimmune diseases were discussed.
Collapse
Affiliation(s)
- Fereshte Abdolmaleki
- Cellular and Molecular Research Center, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Liu B, Liu W, Wang R, Shu Q, Zhang X, Fan X, Zhang Q, Liang X, Ma C, Gao L. Promoter polymorphisms of the TIM-4 gene are correlated with disease activity in patients with systemic lupus erythematosus. Int J Immunogenet 2017; 44:122-128. [PMID: 28371471 DOI: 10.1111/iji.12316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/17/2016] [Accepted: 02/28/2017] [Indexed: 01/13/2023]
Abstract
Although the TIM gene family plays important roles in immune responses, little is known about TIM regulation in the development of systemic lupus erythematosus (SLE). This study aimed to investigate the association of two TIM-4 single nucleotide polymorphisms (SNPs) rs6874202 (-1419G>A) and rs62382402 (-1609G>A) with SLE susceptibility in a Chinese Han population. The results showed no significant differences between patients with SLE and control group for rs6874202 and rs62382402 (p = .72, .53 respectively). However, the anti-dsDNA levels in serum from SLE patients with GG genotype of TIM-4 gene at -1419 site were significantly higher than those with GA and AA genotype (p = .0335), and C3 levels of SLE patients with GG and GA genotype were much lower than those with AA genotypes (p = .0187). Moreover, the apoptotic cell levels of SLE patients with AA and GG genotypes were significantly higher than those with GA genotypes in patients with SLE (p = .0393). In addition, the C3 concentration of SLE patients with the GG genotype of TIM-4 gene at -1609 site was found to be significantly higher than those with the GA genotype (p = .0129). The results imply that GG genotype of the TIM-4 gene at -1419 site might be associated with the disease activity of SLE.
Collapse
Affiliation(s)
- B Liu
- Department of Immunology, Shandong University School of Medicine, Jinan, China.,Internal Medicine department ward 19, Fuding Hospital, Fuding, China
| | - W Liu
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - R Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Q Shu
- Department of Rheumatism, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - X Zhang
- Department of Quality Control, Jinan Blood Centre of Shandong Province, Jinan, China
| | - X Fan
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital affiliated to Shandong University, Jinan, China
| | - Q Zhang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - X Liang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - C Ma
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - L Gao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
7
|
Increased expression of Mer tyrosine kinase in circulating dendritic cells and monocytes of lupus patients: correlations with plasma interferon activity and steroid therapy. Arthritis Res Ther 2014; 16:R76. [PMID: 24650765 PMCID: PMC4060208 DOI: 10.1186/ar4517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/06/2014] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The requirement for the immunoregulatory Mer tyrosine kinase (Mer) for optimal removal of apoptotic cells prompted us to look at its expression in systemic lupus erythematosus (SLE), in which apoptotic cell clearance is abnormal. We compared the levels of expression of Mer in normal human subjects and in patients with SLE. METHODS We used flow cytometry of isolated peripheral blood mononuclear cells to compare the levels of Mer on leukocyte subsets. We used a Mer-specific enzyme-linked immunosorbent assay (ELISA) to quantify soluble Mer (sMer) in plasmas. RESULTS Monocytes, CD1c⁺ myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) from both normal individuals and from SLE patients expressed Mer. In both normal and SLE patients, the CD14⁺⁺CD16⁺ subpopulation of monocytes expressed the highest levels of Mer, with somewhat lower levels on the CD14(int)CD16⁺ population. Mer levels on CD1c⁺ mDCs and pDCs, and sMer levels in blood were increased in SLE patients compared with controls. In patients, Mer levels on CD14(int)CD16⁺, CD14⁺⁺CD16⁻ monocytes, and CD1c⁺ dendritic cells correlated positively with type I interferon (IFN-I) activity detected in blood. In SLE patients treated with corticosteroids, Mer expression on monocytes correlated with prednisone dose, CD1c⁺ myeloid dendritic cells in patients treated with prednisone had higher levels of Mer expression than those in patients not receiving prednisone. CONCLUSIONS We found no global defect in Mer expression in lupus blood. In contrast, we observed increased levels of Mer expression in DC populations, which could represent a response to increased IFN-I in SLE patients. Enhanced Mer expression induced by corticosteroids may contribute to its beneficial effects in SLE.
Collapse
|
8
|
Epigenetic modulation of RFC1, MHC2TA and HLA-DR in systemic lupus erythematosus: association with serological markers and six functional polymorphisms of one-carbon metabolic pathway. Gene 2013; 536:45-52. [PMID: 24333266 DOI: 10.1016/j.gene.2013.11.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/30/2013] [Indexed: 11/20/2022]
Abstract
The current study was conducted to elucidate the effect of genetic variations in one-carbon metabolism on the epigenetic regulation of major histocompatibility complex II transactivator (MHC2TA), reduced folate carrier 1 (RFC1/SLC19A1) and human leukocyte antigen (HLA)-DR in systemic lupus erythematosus (SLE). PCR-RFLP/AFLP, bisulfite-sequencing and real-time PCR approaches were used for genetic, epigenetic and expression analysis respectively. SLE cases exhibited elevated plasma homocysteine levels compared to healthy controls (24.93 ± 1.3 vs. 11.67 ± 0.48 μmol/l), while plasma folate levels showed no association (7.10 ± 2.49 vs. 7.64 ± 2.09 ng/ml). The RFC1 80G>A polymorphism showed 1.32-fold risk (95% CI: 1.02-1.72) for SLE, while glutamate carboxypeptidase II (GCPII) 1561C>T showed reduced risk (OR: 0.47, 95% CI: 0.24-0.90). The expression of RFC1 (0.37 ± 0.09 vs. 0.60 ± 0.17) and HLA-DR (0.68 ± 0.17 vs. 0.98 ± 0.02) was down regulated in the SLE cases. The hypermethylation of RFC1 as observed in the current study may contribute for its down regulation. Plasma folate and thymidylate synthase (TYMS) 5'-UTR 28 bp tandem repeat showed an inverse association with methylation of RFC1 and MHC2TA. SLE cases with hypocomplementemia showed hypermethylation of RFC1, hypomethylation/up regulation of MHC2TA and down regulation of HLA-DR. The hypermethylation of MHC2TA and down regulation of RFC1, MHC2TA and HLA-DR were observed in anti-cardiolipin antibody positive SLE cases. The up regulation of RFC1 and HLA-DR was observed in anti-dsDNA antibody positive SLE cases. The hypomethylation/upregulation of RFC1 and MHC2TA was observed in anti-RNP antibody positive cases. To conclude, one-carbon genetic variants influence epigenetic of MHC2TA and RFC1, thus contributing to phenotypic heterogeneity of SLE.
Collapse
|
9
|
Biermann M, Maueröder C, Brauner JM, Chaurio R, Janko C, Herrmann M, Muñoz LE. Surface code--biophysical signals for apoptotic cell clearance. Phys Biol 2013; 10:065007. [PMID: 24305041 DOI: 10.1088/1478-3975/10/6/065007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called 'find-me', 'eat me' and 'tolerate me' signals. Mononuclear phagocytes are attracted by various 'find-me' signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via 'stay away' signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main 'eat me' signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as 'tolerate me' signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.
Collapse
Affiliation(s)
- Mona Biermann
- Friedrich-Alexander Universität, Department of Internal Medicine 3-Rheumatology and Immunology, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
AlFadhli S, AlTamimy B, AlSaeid K, Haider MZ. Endothelial nitric oxide synthase gene haplotype association with systemic lupus erythematosus. Lupus 2011; 20:700-8. [DOI: 10.1177/0961203310395980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- S AlFadhli
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | - B AlTamimy
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | - K AlSaeid
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait
| | - MZ Haider
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
11
|
Muñoz LE, Janko C, Schulze C, Schorn C, Sarter K, Schett G, Herrmann M. Autoimmunity and chronic inflammation - two clearance-related steps in the etiopathogenesis of SLE. Autoimmun Rev 2010; 10:38-42. [PMID: 20817127 DOI: 10.1016/j.autrev.2010.08.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with very prominent chronic inflammatory aspects that render into multiple symptoms and clinical signs. The precise etiology of SLE remains elusive; however, it is known that its etiopathogenesis is of multifactorial nature. The production of autoantibodies (AAb) targeting double stranded DNA (dsDNA) and other nuclear autoantigens is the main characteristic of this disease. These target antigens are often modified and/or translocated when apoptotic cells undergo secondary necrosis as a consequence of the clearance deficiency in patients with SLE. In healthy individuals, dead and dying cells are rapidly removed by macrophages in an anti-inflammatory context; this does not elicit immune responses. In SLE, apoptotic cells are often not properly cleared; autoantigens leak out, and are subsequently presented to B cells by follicular dendritic cells (FDC) in secondary lymphoid tissues. This defect challenges the peripheral self-tolerance. Autoreactive B cell activation and production of anti-nuclear AAb result as the first step in the etiopathogenesis of SLE. The second step is the formation of immune complexes (IC) with apoptotic cell-derived nuclear remnants either in situ or deposited in various tissues. Nucleic acid-containing IC may also be ingested by phagocytes, which subsequently produce pro-inflammatory cytokines. Both processes result in chronic organ and tissue damage, development and maintenance of the systemic autoimmune disease. In conclusion, clearance deficiency may contribute to SLE in two ways: first, in germinal centres it enables the affinity maturation of autoreactive B cells and second, in peripheral tissues it leads to the accumulation of accessible nuclear autoantigens. Chronic inflammation in SLE is consequently promoted by the persistently binding of AAb with their cognate autoantigens forming a binary weapon: the nucleic acid-containing IC.
Collapse
Affiliation(s)
- Luis E Muñoz
- Department for Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Zykova SN, Tveita AA, Rekvig OP. Renal Dnase1 enzyme activity and protein expression is selectively shut down in murine and human membranoproliferative lupus nephritis. PLoS One 2010; 5. [PMID: 20856893 PMCID: PMC2938370 DOI: 10.1371/journal.pone.0012096] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 07/13/2010] [Indexed: 11/18/2022] Open
Abstract
Background Deposition of chromatin-IgG complexes within glomerular membranes is a key event in the pathogenesis of lupus nephritis. We recently reported an acquired loss of renal Dnase1 expression linked to transformation from mild to severe membranoproliferative lupus nephritis in (NZBxNZW)F1 mice. As this may represent a basic mechanism in the progression of lupus nephritis, several aspects of Dnase1 expression in lupus nephritis were analyzed. Methodology/Principal Findings Total nuclease activity and Dnase1 expression and activity was evaluated using in situ and in vitro analyses of kidneys and sera from (NZBxNZW)F1 mice of different ages, and from age-matched healthy controls. Immunofluorescence staining for Dnase1 was performed on kidney biopsies from (NZBxNZW)F1 mice as well as from human SLE patients and controls. Reduced serum Dnase1 activity was observed in both mesangial and end-stage lupus nephritis. A selective reduction in renal Dnase1 activity was seen in mice with massive deposition of chromatin-containing immune complexes in glomerular capillary walls. Mice with mild mesangial nephritis showed normal renal Dnase1 activity. Similar differences were seen when comparing human kidneys with severe and mild lupus nephritis. Dnase1 was diffusely expressed within the kidney in normal and mildly affected kidneys, whereas upon progression towards end-stage renal disease, Dnase1 was down-regulated in all renal compartments. This demonstrates that the changes associated with development of severe nephritis in the murine model are also relevant to human lupus nephritis. Conclusions/Significance Reduction in renal Dnase1 expression and activity is limited to mice and SLE patients with signs of membranoproliferative nephritis, and may be a critical event in the development of severe forms of lupus nephritis. Reduced Dnase1 activity reflects loss in the expression of the protein and not inhibition of enzyme activity.
Collapse
Affiliation(s)
- Svetlana N. Zykova
- Department of Biochemistry, Institute of Medical Biology, Medical Faculty, University of Tromsø, Tromsø, Norway
| | - Anders A. Tveita
- Department of Biochemistry, Institute of Medical Biology, Medical Faculty, University of Tromsø, Tromsø, Norway
| | - Ole Petter Rekvig
- Department of Biochemistry, Institute of Medical Biology, Medical Faculty, University of Tromsø, Tromsø, Norway
- Department of Rheumatology, University Hospital of Northern Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
13
|
Seredkina N, Zykova SN, Rekvig OP. Progression of murine lupus nephritis is linked to acquired renal Dnase1 deficiency and not to up-regulated apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:97-106. [PMID: 19528352 DOI: 10.2353/ajpath.2009.080943] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The accumulation of apoptotic cells has been suggested as a possible mechanism of nucleosome conversion into self-antigens that may both initiate autoimmune responses and participate in immune complex deposition in lupus nephritis. In this study, we analyzed both the rate of transcription of apoptosis-related genes and the presence of activated apoptotic factors within kidneys of lupus-prone (NZBxNZW) F1 mice during disease progression. The results of this study demonstrated no activation of apoptotic pathways in kidneys of these lupus-prone mice at the time of appearance of anti-double standard DNA antibodies in serum, as well as the formation of mesangial immune deposits in glomeruli. In contrast, the transition of mesangial into membranoproliferative lupus nephritis coincided with an accumulation of activated caspase 3-positive cells in kidneys, in addition to a dramatic decrease in Dnase1 gene transcription. Highly reduced expression levels of the Dnase1 gene may be responsible for the accumulation of large chromatin-containing immune complexes in glomerular capillary membranes. Thus, the initiation of lupus nephritis is not linked to increased apoptotic activity in kidneys. The combined down-regulation of Dnase1 and the increased number of apoptotic cells, which is possibly due to their reduced clearance in affected kidneys, may together be responsible for the transformation of mild mesangial lupus nephritis into severe membranoproliferative, end-stage organ disease.
Collapse
Affiliation(s)
- Natalya Seredkina
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | |
Collapse
|
14
|
Mortensen ES, Rekvig OP. Nephritogenic Potential of Anti-DNA Antibodies against Necrotic Nucleosomes. J Am Soc Nephrol 2009; 20:696-704. [DOI: 10.1681/asn.2008010112] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
15
|
Fas expression on peripheral blood lymphocytes in systemic lupus erythematosus: relation to the organ damage and lymphocytes apoptosis. Mol Biol Rep 2008; 36:2047-52. [DOI: 10.1007/s11033-008-9415-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/29/2008] [Indexed: 12/19/2022]
|
16
|
Munoz LE, van Bavel C, Franz S, Berden J, Herrmann M, van der Vlag J. Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 2008; 17:371-5. [PMID: 18490410 DOI: 10.1177/0961203308089990] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototype inflammatory autoimmune disease resulting from autoimmune responses against nuclear autoantigens. During apoptosis many lupus autoantigens congregate inside the cells and are susceptible to modifications. Modified nuclear constituents are considered foreign and dangerous. Therefore, apoptotic cells have to has to be efficiently removed to avoid the accumulation of apoptotic debris and the subsequently development of autoimmune responses. Hence, apoptosis and clearance of apoptotic cells/material are considered key processes in the aetiology of SLE. Clearance deficiencies may account for the development of autoimmunity by inducing a loss of tolerance in lymphoid tissues. Furthermore, phagocytosis of apoptotic cells may lead to a pro-inflammatory response in the presence of autoantibodies. This may sustain inflammatory conditions and the pathology found in overt lupus.
Collapse
Affiliation(s)
- L E Munoz
- Department of Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Mortensen ES, Fenton KA, Rekvig OP. Lupus nephritis: the central role of nucleosomes revealed. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:275-83. [PMID: 18187568 DOI: 10.2353/ajpath.2008.070563] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune syndrome characterized by autoantibodies to nuclear constituents. Some of these antibodies are diagnostically important, whereas others act as disease-modifying factors. One clinically important factor is autoantibodies against dsDNA and nucleosomes, which have overlapping diagnostic and nephritogenic impact in SLE. Although a scientific focus for 5 decades, the molecular and cellular origin of these antibodies, and why they are associated with lupus nephritis, is still not fully understood. A consensus has, however, evolved that antibodies to dsDNA and nucleosomes are central pathogenic factors in the development of lupus nephritis. In contrast, no agreement has been reached as to which glomerular structures are bound by nephritogenic anti-nucleosome antibodies in vivo. Mutually contradictory paradigms and models have evolved simply because we still lack precise and conclusive data to provide definitive insight into how autoantibodies induce lupus nephritis and which specificity is critical in the nephritic process(es). In this review, data demonstrating the central role of nucleosomes in inducing and binding potentially nephritogenic antibodies to DNA and nucleosomes are presented and discussed. These autoimmune-inducing processes are discussed in the context of Matzinger's danger model (Matzinger P: Friendly and dangerous signals: is the tissue in control? Nat Immunol 2007, 8:11-13; Matzinger P: The danger model: a renewed sense of self. Science 2002, 296:301-305; Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 1994, 12:991-1045) and Medzhitov's and Janeway's (Medzhitov R, Janeway CA Jr: Decoding the patterns of self and nonself by the innate immune system. Science 2002, 296:298-300; Medzhitov R, Janeway CA Jr: How does the immune system distinguish self from nonself? Semin Immunol 2000, 12:185-188; Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 2002, 20:197-216) distinction of noninfectious self (NIS) and infectious nonself (INS). The mechanisms leading to production of potentially nephritogenic anti-nucleosome antibodies and to overt lupus nephritis are interpreted in the context of these paradigms.
Collapse
Affiliation(s)
- Elin S Mortensen
- Department of Pathology, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | |
Collapse
|
18
|
Zykova SN, Seredkina N, Benjaminsen J, Rekvig OP. Reduced fragmentation of apoptotic chromatin is associated with nephritis in lupus-prone (NZB × NZW)F1 mice. ACTA ACUST UNITED AC 2008; 58:813-25. [DOI: 10.1002/art.23276] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Grossmayer GE, Munoz LE, Gaipl US, Franz S, Sheriff A, Voll RE, Kalden JR, Herrmann M. Removal of dying cells and systemic lupus erythematosus. Mod Rheumatol 2007; 15:383-90. [PMID: 17029100 DOI: 10.1007/s10165-005-0430-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a very heterogeneous systemic autoimmune disease, in which autoantibody synthesis against nuclear constituents is the main immunological characteristic. These autoantibodies underwent affinity maturation and isotype switching. Additionally, T-cell tolerance against nuclear autoantigens should be affected in these autoimmune patients. Nuclear material derived from apoptotic and/or necrotic cells may serve as an important source of autoantigens. However, dead and dying cells as well as cellular debris are rapidly removed from tissues by phagocytes without eliciting inflammation or immune responses under healthy conditions. During apoptosis nuclear components are strongly modified through enzymatic reactions. If these cells are not timely cleared, those autoantigens may be released, taken up, and presented by dendritic cells in tissues or presented by follicular dendritic cells in lymph nodes to T and B cells, respectively. This could be a mechanism for breaking the peripheral self-tolerance. In this article we focus on the deficient clearance of apoptotic cells in SLE patients and its importance in development of this autoimmune disease.
Collapse
Affiliation(s)
- Gerhard E Grossmayer
- Institute for Clinical Immunology, Department of Medicine 3, Friedrich-Alexander University of Erlangen-Nuremberg, Glückstrasse 4a, 91054, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gaipl US, Munoz LE, Grossmayer G, Lauber K, Franz S, Sarter K, Voll RE, Winkler T, Kuhn A, Kalden J, Kern P, Herrmann M. Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun 2007; 28:114-21. [PMID: 17368845 DOI: 10.1016/j.jaut.2007.02.005] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Systemic lupus erythematosus (SLE) is a fairly heterogeneous autoimmune disease. Impaired clearance functions for dying cells may explain accumulation of nuclear autoantigens in various tissues of SLE patients. Our data show that in a subgroup of patients with SLE, apoptotic cells accumulated in the germinal centres of the lymph nodes. Apoptotic material was attached to the surfaces of follicular dendritic cells. Furthermore, we found an accumulation of apoptotic cells in the skin of patients with cutaneous lupus after UV exposure. Granulocytes and monocytes in whole blood of SLE patients showed a reduced uptake of albumin- and polyglobin-coated beads. Furthermore, we analysed sera from SLE patients in migration assays and observed that the attraction signals for macrophages were reduced by sera of approximately 25% of the SLE patients. Analyses of high-affinity DNA binding IgG autoantibodies of SLE patients revealed that those antibodies had gained their DNA reactivity in a germinal centre reaction. We suggest a stepwise maturation from a non-anti-DNA reactive B cell to an anti-dsDNA autoreactive B cell. We conclude that impaired clearance in early phases of apoptosis leads to a secondary necrotic status of the cells. Danger signals are released; modified autoantigens are accessible, favouring an autoimmune reaction.
Collapse
Affiliation(s)
- Udo S Gaipl
- Institute for Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University of Erlangen-Nuremberg, Glückstrasse 4a, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tas SW, Quartier P, Botto M, Fossati-Jimack L. Macrophages from patients with SLE and rheumatoid arthritis have defective adhesion in vitro, while only SLE macrophages have impaired uptake of apoptotic cells. Ann Rheum Dis 2006; 65:216-21. [PMID: 16014673 PMCID: PMC1798004 DOI: 10.1136/ard.2005.037143] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2005] [Indexed: 11/04/2022]
Abstract
BACKGROUND It has been suggested that defective handling of apoptotic cells by macrophages plays a key role in the development of systemic lupus erythematosus (SLE). The relative contribution of intrinsic defects and serum factors remains controversial. OBJECTIVE To compare monocytes from SLE patients, patients with rheumatoid arthritis, and healthy controls for their ability to differentiate in vitro into macrophages and to bind/engulf apoptotic cells. METHODS Peripheral blood derived monocytes from healthy donors or from patients with SLE or rheumatoid arthritis were allowed to differentiate into macrophages. The in vitro uptake of apoptotic cells by macrophages was evaluated by a flow cytometry assay that allowed discrimination between binding and internalisation. RESULTS Monocytes from SLE and rheumatoid patients showed a striking defect in adherence to plastic compared with healthy donors. Absence or heat inactivation of serum resulted in a reduction in the binding and engulfment of apoptotic cells by macrophages. Macrophages from rheumatoid and SLE patients had similar percentages of apoptotic cells bound to their surface compared with normal controls. However, macrophages from SLE patients showed a significant defect in the internalisation of apoptotic cells compared with those from healthy controls, even in the presence of normal human serum. CONCLUSIONS Monocytes from patients with SLE and rheumatoid arthritis have a similar defect in their capacity to adhere to plastic. However, only macrophages from SLE patients showed an impaired ability to engulf apoptotic cells, which indicates that an intrinsic cellular defect may be responsible for this phenomenon.
Collapse
Affiliation(s)
- S W Tas
- Rheumatology Section, Division of Medicine, Faculty of Medicine, Hammersmith Campus, Imperial College, Du Cane Road, London W12 0NN, UK
| | | | | | | |
Collapse
|
22
|
Munoz LE, Gaipl US, Franz S, Sheriff A, Voll RE, Kalden JR, Herrmann M. SLE—a disease of clearance deficiency? Rheumatology (Oxford) 2005; 44:1101-7. [PMID: 15928001 DOI: 10.1093/rheumatology/keh693] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial disease and its pathogenesis and precise aetiology remain unknown. Under physiological conditions, neither apoptotic nor necrotic cell material is easily found in tissues because of its quick removal by a highly efficient scavenger system. Autoantigens are found in apoptotic and necrotic material and they are recognized by autoimmune sera from SLE patients. The clearance of dying cells is finely regulated by a highly redundant system of receptors on phagocytic cells and bridging molecules, which detect molecules specific for dying cells. Changes on apoptotic and necrotic cell surfaces are extremely important for their recognition and further disposal. Some SLE patients seem to have an impaired ability to clear such apoptotic material from tissues, and this could cause the breakdown of central and peripheral mechanisms of tolerance against self-antigens. In this article, we address the cells, receptors and molecules involved in the clearance process and show how deficiencies in this process may contribute to the aetiopathogenesis of SLE.
Collapse
Affiliation(s)
- L E Munoz
- Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | |
Collapse
|