1
|
Skinner MK. Epigenetic biomarkers for disease susceptibility and preventative medicine. Cell Metab 2024; 36:263-277. [PMID: 38176413 DOI: 10.1016/j.cmet.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
The development of molecular biomarkers for disease makes it possible for preventative medicine approaches to be considered. Therefore, therapeutics, treatments, or clinical management can be used to delay or prevent disease development. The problem with genetic mutations as biomarkers is the low frequency with genome-wide association studies (GWASs), generally at best a 1% association of the patients with the disease. In contrast, epigenetic alterations have a high-frequency association of greater than 90%-95% of individuals with pathology in epigenome-wide association studies (EWASs). A wide variety of human diseases have been shown to have epigenetic biomarkers that are disease specific and that detect pathology susceptibility. This review is focused on the epigenetic biomarkers for disease susceptibility, and it distinct from the large literature on epigenetics of disease etiology or progression. The development of efficient epigenetic biomarkers for disease susceptibility will facilitate a paradigm shift from reactionary medicine to preventative medicine.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|
2
|
Kim M, Lee HH, Won SD, Jang Y, Kim BG, Cho NH, Choi YD, Chung JS, Han HH. Deciphering the Role of ERBB3 Isoforms in Renal Cell Carcinoma: A Comprehensive Genomic and Transcriptomic Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:181. [PMID: 38276060 PMCID: PMC10820170 DOI: 10.3390/medicina60010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
ERBB3, a key member of the receptor tyrosine kinase family, is implicated in the progression and development of various human cancers, affecting cellular proliferation and survival. This study investigated the expression of ERBB3 isoforms in renal clear cell carcinoma (RCC), utilizing data from 538 patients from The Cancer Genome Atlas (TCGA) Firehose Legacy dataset. Employing the SUPPA2 tool, the activity of 10 ERBB3 isoforms was examined, revealing distinct expression patterns in RCC. Isoforms uc001sjg.3 and uc001sjh.3 were found to have reduced activity in tumor tissues, while uc010sqb.2 and uc001sjl.3 demonstrated increased activity. These variations in isoform expression correlate with patient survival and tumor aggressiveness, indicating their complex role in RCC. The study, further, utilizes CIBERSORTx to analyze the association between ERBB3 isoforms and immune cell profiles in the tumor microenvironment. Concurrently, Gene Set Enrichment Analysis (GSEA) was applied, establishing a strong link between elevated levels of ERBB3 isoforms and critical oncogenic pathways, including DNA repair and androgen response. RT-PCR analysis targeting the exon 21-23 and exon 23 regions of ERBB3 confirmed its heightened expression in tumor tissues, underscoring the significance of alternative splicing and exon utilization in cancer development. These findings elucidate the diverse impacts of ERBB3 isoforms on RCC, suggesting their potential as diagnostic markers and therapeutic targets. This study emphasizes the need for further exploration into the specific roles of these isoforms, which could inform more personalized and effective treatment modalities for renal clear cell carcinoma.
Collapse
Affiliation(s)
- Mingyu Kim
- Center for Urologic Cancer, National Cancer Center, 323, Ilsan-Ro, Ilsandong-Gu, Goyang-Si 10408, Gyeonggi-Do, Republic of Korea; (M.K.); (H.H.L.); (S.D.W.)
| | - Hyung Ho Lee
- Center for Urologic Cancer, National Cancer Center, 323, Ilsan-Ro, Ilsandong-Gu, Goyang-Si 10408, Gyeonggi-Do, Republic of Korea; (M.K.); (H.H.L.); (S.D.W.)
| | - So Dam Won
- Center for Urologic Cancer, National Cancer Center, 323, Ilsan-Ro, Ilsandong-Gu, Goyang-Si 10408, Gyeonggi-Do, Republic of Korea; (M.K.); (H.H.L.); (S.D.W.)
| | - YeonSue Jang
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.); (B.G.K.)
| | - Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.); (B.G.K.)
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.); (B.G.K.)
| | - Young Deuk Choi
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea;
| | - Jin Soo Chung
- Center for Urologic Cancer, National Cancer Center, 323, Ilsan-Ro, Ilsandong-Gu, Goyang-Si 10408, Gyeonggi-Do, Republic of Korea; (M.K.); (H.H.L.); (S.D.W.)
| | - Hyun Ho Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
3
|
Huaqi Y, Bingqi D, Yanhui Z, Yongkang M, Shiming Z, Zhenghui S, Zheng D, Jiangshan P, Tiejun Y. Hyperthermia inhibits cellular function and induces immunogenic cell death in renal cell carcinoma. BMC Cancer 2023; 23:972. [PMID: 37828458 PMCID: PMC10568811 DOI: 10.1186/s12885-023-11106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/23/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND In recent years, hyperthermia has been widely applied as a novel strategy for cancer treatment due to its multiple antitumour effects. In particular, the potential influences of hyperthermia on the tumour immune microenvironment may improve the efficacy of immunotherapies. However, the effect of hyperthermia on renal cell carcinoma (RCC) has not been well characterized until now. METHODS In the present study, we primarily evaluated the effects of hyperthermia on cellular function via cellular proliferation, migration, invasion and apoptosis assays. In addition, the influence of hyperthermia on the immunogenicity of RCC cells was analysed using flow cytometry analysis, enzyme-linked immunosorbent assays, and immunofluorescent (IF) staining. RESULTS Our results demonstrate that hyperthermia significantly inhibits RCC cell proliferation, migration, and invasion and promotes cell apoptosis. In addition, we verified that hyperthermia improves the immunogenicity of RCC cells by inducing immunogenic cell death. CONCLUSION Our findings suggest that hyperthermia is a promising therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Yin Huaqi
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dong Ming Road, Zhengzhou, 450000, China
| | - Dong Bingqi
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dong Ming Road, Zhengzhou, 450000, China
| | - Zhao Yanhui
- Department of Urology, Qingdao Central Hospital, No. 127, Si Liu Nan Road, Qingdao, 266042, China
| | - Ma Yongkang
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dong Ming Road, Zhengzhou, 450000, China
| | - Zhao Shiming
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dong Ming Road, Zhengzhou, 450000, China
| | - Sun Zhenghui
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dong Ming Road, Zhengzhou, 450000, China
| | - Du Zheng
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dong Ming Road, Zhengzhou, 450000, China
| | - Peng Jiangshan
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dong Ming Road, Zhengzhou, 450000, China
| | - Yang Tiejun
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dong Ming Road, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Kolesova EP, Egorova VS, Syrocheva AO, Frolova AS, Kostyushev D, Kostyusheva A, Brezgin S, Trushina DB, Fatkhutdinova L, Zyuzin M, Demina PA, Khaydukov EV, Zamyatnin AA, Parodi A. Proteolytic Resistance Determines Albumin Nanoparticle Drug Delivery Properties and Increases Cathepsin B, D, and G Expression. Int J Mol Sci 2023; 24:10245. [PMID: 37373389 DOI: 10.3390/ijms241210245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Proteolytic activity is pivotal in maintaining cell homeostasis and function. In pathological conditions such as cancer, it covers a key role in tumor cell viability, spreading to distant organs, and response to the treatment. Endosomes represent one of the major sites of cellular proteolytic activity and very often represent the final destination of internalized nanoformulations. However, little information about nanoparticle impact on the biology of these organelles is available even though they represent the major location of drug release. In this work, we generated albumin nanoparticles with a different resistance to proteolysis by finely tuning the amount of cross-linker used to stabilize the carriers. After careful characterization of the particles and measurement of their degradation in proteolytic conditions, we determined a relationship between their sensitivity to proteases and their drug delivery properties. These phenomena were characterized by an overall increase in the expression of cathepsin proteases regardless of the different sensitivity of the particles to proteolytic degradation.
Collapse
Affiliation(s)
- Ekaterina P Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vera S Egorova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiia O Syrocheva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiia S Frolova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry Kostyushev
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasiia Kostyusheva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey Brezgin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria B Trushina
- Department of Biomedical Engineering, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 119333 Moscow, Russia
| | | | - Mikhail Zyuzin
- School of Physics, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Polina A Demina
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Evgeny V Khaydukov
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey A Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Mao H, Zhao Y, Lei L, Hu Y, Zhu H, Wang R, Ni D, Liu J, Xu L, Xia H, Zhang Z, Ma M, Pan Z, Zhou Q, Xie Y. Selenoprotein S regulates tumorigenesis of clear cell renal cell carcinoma through AKT/ GSK3β/NF-κB signaling pathway. Gene 2022; 832:146559. [PMID: 35569765 DOI: 10.1016/j.gene.2022.146559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/04/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most lethal genitourinary tumors with rapid progression and metastasis. Selenoprotein S (SELS), which is broadly expressed in human tissues, has been reported to be involved in ER homeostasis and inflammation. However, the biological roles of SELS in ccRCC remain unclear. In this study, we found that SELS expression was significantly higher in ccRCC and correlated with multiple clinicopathological features. Overexpression of SELS could promote cell proliferation and inhibit apoptosis in 786-O cells, whereas silence of SELS elicited opposite effect. Further mechanistic studies revealed that SELS enhanced cell proliferation and inhibited apoptosis through activating AKT/GSK3β/NF-κB signaling pathway. Besides, SELS could stabilize c-Myc by preventing ubiquitin-proteasome-mediated degradation. Interestingly, we found that SELS could also inhibit migration of ccRCC cell likely through repressing epithelial-mesenchymal transition (EMT). Collectively, our findings suggested that SELS promoted tumor progression, and inhibited apoptosis and migration through AKT/GSK3β/NF-κB signaling pathway and EMT in ccRCC.
Collapse
Affiliation(s)
- Huajie Mao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, the First Hospital of Xi'an, Xi'an 710002, China
| | - Ya Zhao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, the First Hospital of Xi'an, Xi'an 710002, China
| | - Li Lei
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanxia Hu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hangrui Zhu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Runzhi Wang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dongsheng Ni
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianing Liu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lei Xu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hua Xia
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zaikuan Zhang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Meng Ma
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qin Zhou
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Zhang J, Fan J, Wang P, Ge G, Li J, Qi J, Kong W, Gong Y, He S, Ci W, Li X, Zhou L. Construction of diagnostic and subtyping models for renal cell carcinoma by genome-wide DNA methylation profiles. Transl Androl Urol 2022; 10:4161-4172. [PMID: 34984182 PMCID: PMC8661251 DOI: 10.21037/tau-21-674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is one of the most common urological cancers and has a poor prognosis. RCC is classified into several subtypes, among which kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) are the two most common subtypes. Due to the lack of adequate screening and comparative analysis of RCC subtypes, effective diagnosis and treatment strategies have not yet been achieved. Methods In this study, 450K methylation array data were collected from The Cancer Genome Atlas (TCGA). The ‘limma moderated t-test’ and LASSO were used to construct diagnostic and subtyping models, and survival analysis was conducted online by GEPIA. Results We built a model with 15 methylation sites, which showed high diagnostic and subtyping performance in specificity and sensitivity. At the same time, for potential clinical usability, we calculated the diagnostic and subtyping scores to classify RCC from normal tissue and distinguish the different RCC subtypes. Additionally, the CpG sites were mapped to their corresponding genes, which could also be used to predict the prognosis of RCC. Conclusions Different methylation sites can be used as diagnostic and subtyping markers that are specific to RCC and RCC subtypes (KIRC and KIRP) with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, China
| | - Jian Fan
- Department of Urology, Peking University First Hospital, Beijing, China.,Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, China
| | - Ping Wang
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guangzhe Ge
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jie Qi
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Kong
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, China
| | - Weimin Ci
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, China
| |
Collapse
|
7
|
Rudzinska M, Czarnecka-Chrebelska KH, Kuznetsova EB, Maryanchik SV, Parodi A, Korolev DO, Potoldykova N, Svetikova Y, Vinarov AZ, Nemtsova MV, Zamyatnin AA. Long Non-Coding PROX1-AS1 Expression Correlates with Renal Cell Carcinoma Metastasis and Aggressiveness. Noncoding RNA 2021; 7:25. [PMID: 33920185 PMCID: PMC8167775 DOI: 10.3390/ncrna7020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can be specifically expressed in different tissues and cancers. By controlling the gene expression at the transcriptional and translational levels, lncRNAs have been reported to be involved in tumor growth and metastasis. Recent data demonstrated that multiple lncRNAs have a crucial role in renal cell carcinoma (RCC) progression-the most common malignant urogenital tumor. In the present study, we found a trend towards increased PROX1 antisense RNA 1 (PROX1-AS1) expression in RCC specimens compared to non-tumoral margins. Next, we found a positive correlation between PROX1-AS1 expression and the occurrence of distant and lymph node metastasis, higher tumor stage (pT1 vs. pT2 vs. pT3-T4) and high-grade (G1/G2 vs. G3/G4) clear RCC. Furthermore, global demethylation in RCC-derived cell lines (769-P and A498) and human embryonic kidney 293 (HEK293) cells induced a significant increase of PROX1-AS1 expression level, with the most remarkable change in HEK293 cells. In line with this evidence, bisulfite sequencing analysis confirmed the specific demethylation of bioinformatically selected CpG islands on the PROX1-AS1 promoter sequence in the HEK293 cell line but not in the tumor cells. Additionally, the human specimen analysis showed the hemimethylated state of CG dinucleotides in non-tumor kidney tissues, whereas the tumor samples presented the complete, partial, or no demethylation of CpG-islands. In conclusion, our study indicated that PROX1-AS1 could be associated with RCC progression, and further investigations may define its role as a new diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Magdalena Rudzinska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
| | | | - Ekaterina B. Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia
| | - Sofya V. Maryanchik
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
| | - Dmitry O. Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.P.); (Y.S.); (A.Z.V.)
| | - Nataliya Potoldykova
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.P.); (Y.S.); (A.Z.V.)
| | - Yulia Svetikova
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.P.); (Y.S.); (A.Z.V.)
| | - Andrey Z. Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.P.); (Y.S.); (A.Z.V.)
| | - Marina V. Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| |
Collapse
|
8
|
Wang YL, Zhang YY. cg04448376, cg24387542, cg08548498, and cg14621323 as a Novel Signature to Predict Prognosis in Kidney Renal Papillary Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4854390. [PMID: 33381555 PMCID: PMC7759405 DOI: 10.1155/2020/4854390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 11/28/2020] [Indexed: 10/26/2022]
Abstract
INTRODUCTION DNA methylation plays a vital role in prognosis prediction of cancers. In this study, we aimed to identify novel DNA methylation site biomarkers and create an efficient methylated site model for predicting survival in kidney renal papillary cell carcinoma (KIRP). METHODS DNA methylation and gene expression profile data were downloaded from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Differential methylated genes (DMGs) and differential expression genes (DEGs) were identified and then searched for the hub genes. Cox proportional hazards regression was applied to identify DNA methylated site biomarkers from the hub genes. Kaplan-Meier survival and ROC analyses were used to validate the effective prognostic ability of the methylation gene site biomarker. The biomarker sites were validated in the GEO cohorts. The GO and KEGG annotation was done to explore the biological function of DNA methylated site signature. RESULTS Nine DMGs with opposite expression patterns containing 47 methylated sites were identified. Finally, four methylated sites were identified using the hazard regression model (cg04448376, cg24387542, cg08548498, and cg14621323) located in UTY, LGALS9B, SLPI, and PFN3, respectively. These sites classified patients into high- and low-risk groups in the training cohort. The 5-year survival rates for patients with low-risk and high-risk scores were 97.5% and 75.9% (P < 0.001). The prognostic accuracy and signature methylation sites were validated in the test (TCGA, n = 87) and GEO cohorts (n = 14). Multivariate regression analysis showed that the signature was an independent prediction prognostic factor for KIRP. Based on this analysis, we developed methylated site signature nomogram that predicts an individual's risk of survival. Functional analysis suggested that these signature genes are involved in the biological processes of protein binding. CONCLUSIONS Our study demonstrated that the methylated gene site signature might be a powerful prognostic tool for evaluating survival rate and guiding tailored therapy for KIRP patients.
Collapse
Affiliation(s)
- Ying-Lei Wang
- Department of Urinary Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Ying-Ying Zhang
- Out-patient Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| |
Collapse
|
9
|
Liu XP, Ju L, Chen C, Liu T, Li S, Wang X. DNA Methylation-Based Panel Predicts Survival of Patients With Clear Cell Renal Cell Carcinoma and Its Correlations With Genomic Metrics and Tumor Immune Cell Infiltration. Front Cell Dev Biol 2020; 8:572628. [PMID: 33178689 PMCID: PMC7593608 DOI: 10.3389/fcell.2020.572628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
DNA methylation based prognostic factor for patients with clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, we identified survival-related DNA methylation sites based on the differentially methylated DNA CpG sites between normal renal tissue and ccRCC. Then, these survival-related DNA methylation sites were included into an elastic net regularized Cox proportional hazards regression (CoxPH) model to build a DNA methylation-based panel, which could stratify patients into different survival groups with excellent accuracies in the training set and test set. External validation suggested that the DNA methylation-based panel could effectively distinguish normal controls from tumor samples and classify patients into metastasis group and non-metastasis group. The nomogram containing DNA methylation-based panel was reliable in clinical settings. Higher total mutation number, SCNA level, and MATH score were associated with higher methylation risk. The innate immune, ratio between CD8+T cell versus Treg cell as well as Th17 cell versus Th2 cell were significantly decreased in high methylation risk group. In inclusion, we developed a DNA methylation-based panel which might be independent prognostic factor in ccRCC. Patients with higher methylation risk were associated genomic alteration and poor immune microenvironment.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Rudzińska M, Parodi A, Maslova VD, Efremov YM, Gorokhovets NV, Makarov VA, Popkov VA, Golovin AV, Zernii EY, Zamyatnin AA. Cysteine Cathepsins Inhibition Affects Their Expression and Human Renal Cancer Cell Phenotype. Cancers (Basel) 2020; 12:cancers12051310. [PMID: 32455715 PMCID: PMC7281206 DOI: 10.3390/cancers12051310] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Renal cancer would greatly benefit from new therapeutic strategies since, in advanced stages, it is refractory to classical chemotherapeutic approaches. In this context, lysosomal protease cysteine cathepsins may represent new pharmacological targets. In renal cancer, they are characterized by a higher expression, and they were shown to play a role in its aggressiveness and spreading. Traditional studies in the field were focused on understanding the therapeutic potentialities of cysteine cathepsin inhibition, while the direct impact of such therapeutics on the expression of these enzymes was often overlooked. In this work, we engineered two fluoromethyl ketone-based peptides with inhibitory activity against cathepsins to evaluate their potential anticancer activity and impact on the lysosomal compartment in human renal cancer. Molecular modeling and biochemical assays confirmed the inhibitory properties of the peptides against cysteine cathepsin B and L. Different cell biology experiments demonstrated that the peptides could affect renal cancer cell migration and organization in colonies and spheroids, while increasing their adhesion to biological substrates. Finally, these peptide inhibitors modulated the expression of LAMP1, enhanced the expression of E-cadherin, and altered cathepsin expression. In conclusion, the inhibition of cysteine cathepsins by the peptides was beneficial in terms of cancer aggressiveness; however, they could affect the overall expression of these proteases.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Valentina D. Maslova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia;
| | - Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia;
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Vasily A. Popkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey V. Golovin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Evgeni Y. Zernii
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: ; Tel.: +74-95-622-9843
| |
Collapse
|
11
|
Lv Y, Lin SY, Hu FF, Ye Z, Zhang Q, Wang Y, Guo AY. Landscape of cancer diagnostic biomarkers from specifically expressed genes. Brief Bioinform 2019; 21:2175-2184. [PMID: 31814027 DOI: 10.1093/bib/bbz131] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/25/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022] Open
Abstract
Although there has been great progress in cancer treatment, cancer remains a serious health threat to humans because of the lack of biomarkers for diagnosis, especially for early-stage diagnosis. In this study, we comprehensively surveyed the specifically expressed genes (SEGs) using the SEGtool based on the big data of gene expression from the The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) projects. In 15 solid tumors, we identified 233 cancer-specific SEGs (cSEGs), which were specifically expressed in only one cancer and showed great potential to be diagnostic biomarkers. Among them, three cSEGs (OGDH, MUDENG and ACO2) had a sample frequency >80% in kidney cancer, suggesting their high sensitivity. Furthermore, we identified 254 cSEGs as early-stage diagnostic biomarkers across 17 cancers. A two-gene combination strategy was applied to improve the sensitivity of diagnostic biomarkers, and hundreds of two-gene combinations were identified with high frequency. We also observed that 13 SEGs were targets of various drugs and nearly half of these drugs may be repurposed to treat cancers with SEGs as their targets. Several SEGs were regulated by specific transcription factors in the corresponding cancer, and 39 cSEGs were prognosis-related genes in 7 cancers. This work provides a survey of cancer biomarkers for diagnosis and early diagnosis and new insights to drug repurposing. These biomarkers may have great potential in cancer research and application.
Collapse
Affiliation(s)
- Yao Lv
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Sheng-Yan Lin
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Fei-Fei Hu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zheng Ye
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.,Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Spine and Spinal Cord, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yan Wang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
12
|
Wang C, Ding M, Zhu YY, Hu J, Zhang C, Lu X, Ge J, Wang JJ, Zhang C. Circulating miR-200a is a novel molecular biomarker for early-stage renal cell carcinoma. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0023-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Jiang H, Shi QQ, Ge LY, Zhuang QF, Xue D, Xu HY, He XZ. Selenoprotein M stimulates the proliferative and metastatic capacities of renal cell carcinoma through activating the PI3K/AKT/mTOR pathway. Cancer Med 2019; 8:4836-4844. [PMID: 31274247 PMCID: PMC6712446 DOI: 10.1002/cam4.2403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 01/02/2023] Open
Abstract
High-throughput sequencing methods have facilitated the identification of novel selenoproteins, which exert a vital role in the development and progression of tumor diseases. Recently, Selenoprotein M (SELM) is upregulated in several types of cancer. However, the biological roles of SELM in renal cell carcinoma (RCC) remain unclear. In this paper, quantitative reverse transcription PCR (qRT-PCR) and Western blot were used to measure relative levels of SELM in a cohort of RCC tissues with matched normal tissues as well as human RCC cell lines. SELM expression was found to be upregulated in RCC. High level of SELM was related to poor prognosis of RCC. Furthermore, silence of SELM could inhibit the in vitro proliferative, migratory, and invasive capacities of RCC. In addition, downregulated SELM could impede in vivo tumorigenesis of RCC. SELM could activate the PI3K/Akt/mTOR pathway and mediate expressions of matrix metallopeptidase 2 and 9 (MMP2, MMP9). In conclusion, our study reveals the oncogenic function of SELM in RCC, and SELM may be a therapeutic and prognostic target for RCC.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Qian-Qian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Li-Yuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Qian-Feng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Hai-Yan Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
14
|
Baldin AV, Zamyatnin AA, Bazhin AV, Xu WH, Savvateeva LV. Advances in the Development of Anticancer HSP-based Vaccines. Curr Med Chem 2019; 26:427-445. [PMID: 29376489 DOI: 10.2174/0929867325666180129100015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 01/01/2018] [Indexed: 01/01/2023]
Abstract
Current advances in cancer treatment are based on the recent discoveries of molecular mechanisms of tumour maintenance. It was shown that heat shock proteins (HSPs) play a crucial role in the development of immune response against tumours. Thus, HSPs represent multifunctional agents not only with chaperone functions, but also possessing immunomodulatory properties. These properties are exploited for the development of HSP-based anticancer vaccines aimed to induce cytotoxic responses against tumours. To date, a number of strategies have been suggested to facilitate HSP-based vaccine production and to increase its effectiveness. The present review focuses on the current trend for the development of HSPbased vaccines aimed at inducing strong immunological tumour-specific responses against cancer cells of distinct etiology and localization.
Collapse
Affiliation(s)
- Alexey V Baldin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russian Federation.,Lomonosov Moscow State University, Department of Cell Signaling, Belozersky Institute of Physico- Chemical Biology, 119991, Moscow, Russian Federation
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Wan-Hai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lyudmila V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russian Federation
| |
Collapse
|
15
|
Baldin AV, Grishina AN, Korolev DO, Kuznetsova EB, Golovastova MO, Kalpinskiy AS, Alekseev BY, Kaprin AD, Zinchenko DV, Savvateeva LV, Varshavsky VA, Zernii EY, Vinarov AZ, Bazhin AV, Philippov PP, Zamyatnin AA. Autoantibody against arrestin-1 as a potential biomarker of renal cell carcinoma. Biochimie 2018; 157:26-37. [PMID: 30389514 DOI: 10.1016/j.biochi.2018.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022]
Abstract
Renal cell carcinoma (RCC) is the second-most common uronephrological cancer. In the absence of specific symptoms, early diagnosis of RCC is challenging. Monitoring of the aberrant expression of tumour-associated antigens (TAAs) and related autoantibody response is considered as a novel approach of RCC diagnostics. The aim of this study was to examine the aberrant expression of arrestin-1 in renal tumours, to investigate the possible epigenetic mechanism underlying arrestin-1 expression, and to assess the frequency of anti-arrestin-1 autoantibody response. Immunohistochemistry was used to assess the presence of arrestin-1 in primary tumours and metastases of 39 patients with RCC and renal oncocytoma. Bisulfite sequencing was employed to analyse the methylation status of the promoter of the SAG gene encoding arrestin-1. Western blot analysis was performed to detect autoantibodies against arrestin-1 in serum samples of 36 RCC and oncocytoma patients. Arrestin-1 was found to be expressed in RCC (58.7% of cases) and renal oncocytoma (90% of cases) cells, while being absent in healthy kidney. The expression of arrestin-1 in RCC metastases was more prominent than in primary tumours. Hypomethylation of the SAG gene promoter is unlikely to be the mechanism for the aberrant expression of arrestin-1. Autoantibodies against arrestin-1 were detected in sera of 75% of RCC patients. Taken together, our findings suggest employment of autoantibody against arrestin-1 as biomarker of RCC.
Collapse
Affiliation(s)
- Alexey V Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Alena N Grishina
- Anatomic Pathology Department, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Dmitry O Korolev
- Institute of Uronephrology and Human Reproductive Health, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Ekaterina B Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia; Research Centre for Medical Genetics, 115522, Moscow, Russia.
| | - Marina O Golovastova
- Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Alexey S Kalpinskiy
- P.A. Hertzen Moscow Oncology Research Center, National Medical Research Center of Radiology, 125284, Moscow, Russia
| | - Boris Y Alekseev
- P.A. Hertzen Moscow Oncology Research Center, National Medical Research Center of Radiology, 125284, Moscow, Russia
| | - Andrey D Kaprin
- P.A. Hertzen Moscow Oncology Research Center, National Medical Research Center of Radiology, 125284, Moscow, Russia.
| | - Dmitry V Zinchenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia.
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Vladimir A Varshavsky
- Anatomic Pathology Department, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Evgeni Yu Zernii
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia; Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| | - Andrey Z Vinarov
- Institute of Uronephrology and Human Reproductive Health, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Pavel P Philippov
- Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia; Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
16
|
Peng D, Ge G, Xu Z, Ma Q, Shi Y, Zhou Y, Gong Y, Xiong G, Zhang C, He S, He Z, Li X, Ci W, Zhou L. Diagnostic and prognostic biomarkers of common urological cancers based on aberrant DNA methylation. Epigenomics 2018; 10:1189-1199. [PMID: 30182734 DOI: 10.2217/epi-2018-0017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM We intended to construct DNA methylation-based models for the diagnosis and prognosis of three common urological cancers including prostate adenocarcinoma, renal clear cell carcinoma and bladder urothelial carcinoma. MATERIALS & METHODS Total 450K methylation array data from the cancer genome atlas and gene expression omnibus datasets were downloaded. Moderated t-statistics and least absolute shrinkage and selection operator method were used to build diagnosis and prognosis models. RESULTS Our diagnostic panels including 128 CpG sites had high sensitivity and accuracy in distinguishing samples and could identify lymphatic metastases in prostate adenocarcinoma patients. The prognostic models with 19 CpG sites for renal clear cell carcinoma and 21 CpG sites for bladder urothelial carcinoma were able to distinguish high- and low-risk patients and improve the predictive ability of the tumor node metastasis staging system. CONCLUSION DNA methylation may afford reliable biomarkers in the diagnosis and prognosis of common urological cancers.
Collapse
Affiliation(s)
- Ding Peng
- Department of Urology, Peking University First Hospital, Beijing, PR China.,Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,Institute of Urology, Peking University, Beijing, PR China.,National Urological Cancer Center, Beijing, PR China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, PR China
| | - Guangzhe Ge
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhengzheng Xu
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qin Ma
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yue Shi
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuanyuan Zhou
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, PR China.,Institute of Urology, Peking University, Beijing, PR China.,National Urological Cancer Center, Beijing, PR China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, PR China
| | - Gengyan Xiong
- Department of Urology, Peking University First Hospital, Beijing, PR China.,Institute of Urology, Peking University, Beijing, PR China.,National Urological Cancer Center, Beijing, PR China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, PR China
| | - Cuijian Zhang
- Department of Urology, Peking University First Hospital, Beijing, PR China.,Institute of Urology, Peking University, Beijing, PR China.,National Urological Cancer Center, Beijing, PR China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, PR China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, PR China.,Institute of Urology, Peking University, Beijing, PR China.,National Urological Cancer Center, Beijing, PR China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, PR China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Beijing, PR China.,Institute of Urology, Peking University, Beijing, PR China.,National Urological Cancer Center, Beijing, PR China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, PR China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, PR China.,Institute of Urology, Peking University, Beijing, PR China.,National Urological Cancer Center, Beijing, PR China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, PR China
| | - Weimin Ci
- Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, PR China.,Institute of Urology, Peking University, Beijing, PR China.,National Urological Cancer Center, Beijing, PR China.,Urogenital Diseases (Male) Molecular Diagnosis & Treatment Centre, Peking University, Beijing, PR China
| |
Collapse
|
17
|
Ding M, Sun X, Zhong J, Zhang C, Tian Y, Ge J, Zhang C, Zen K, Wang J, Zhang C, Wang C. Decreased miR‐200a‐3p is a key regulator of renal carcinoma growth and migration by directly targeting CBL. J Cell Biochem 2018; 119:9974-9985. [DOI: 10.1002/jcb.27326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/28/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Meng Ding
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Life Sciences Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| | - Xinlei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| | - Jinsha Zhong
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Life Sciences Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| | - Cuiping Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Life Sciences Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| | - Yaping Tian
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Life Sciences Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Nanjing University School of Medicine Nanjing University Nanjing China
| | - Chen‐Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| | - Jun‐Jun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Life Sciences Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Life Sciences Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Life Sciences Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences Nanjing University Nanjing China
| |
Collapse
|
18
|
Bao X, Duan J, Yan Y, Ma X, Zhang Y, Wang H, Ni D, Wu S, Peng C, Fan Y, Gao Y, Li X, Chen J, Du Q, Zhang F, Zhang X. Upregulation of long noncoding RNA PVT1 predicts unfavorable prognosis in patients with clear cell renal cell carcinoma. Cancer Biomark 2018; 21:55-63. [PMID: 29081406 DOI: 10.3233/cbm-170251] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the most malignant genitourinary diseases worldwide. Long noncoding RNAs (lncRNAs) are a class of noncoding RNAs in the human genome that are involved in RCC initiation and progression. OBJECTIVE To investigate the expression of PVT1 in ccRCC and evaluate its correlation with clinicopathologic characteristics and patients' survival. METHODS Quantitative real-time PCR was performed to examine PVT1 expression in 129 ccRCC tissue samples and matched adjacent normal tissue samples. The relationship of PVT1 expression with clinicopathologic characteristics and clinical outcome was evaluated. RESULTS We identified the lncRNA PVT1, which was upregulated in clear cell renal cell carcinoma (ccRCC) tissues when compared with corresponding controls. Furthermore, PVT1 expression was positively associated with gender, tumor size, pT stage, TNM stage, and Fuhrman grade. Kaplan-Meier survival analysis showed that patients with high PVT1 expression had shorter disease-free survival (DFS) and overall-survival (OS) than those with low PVT1 expression, and multivariate analysis identified PVT1 as an independent prognostic factor in ccRCC. CONCLUSIONS PVT1 may be an oncogene as well as may promote metastasis in ccRCC and could serve as a potential biomarker to predict the prognosis of ccRCC patients.
Collapse
Affiliation(s)
- Xu Bao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Junyao Duan
- Department of Urology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Yongji Yan
- Department of Urology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xin Ma
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Yu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Hanfeng Wang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Dong Ni
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Shengpan Wu
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Cheng Peng
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Yang Fan
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Yu Gao
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Xintao Li
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Jianwen Chen
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Qingshan Du
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Fan Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, China
| |
Collapse
|
19
|
Abstract
Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and histological subtypes with different clinical characteristics. While survival rates are high if RCC is diagnosed when still confined to the kidney and treated definitively, there are no specific diagnostic screening tests available and symptoms are rare in early stages of the disease. Management of advanced RCC has changed significantly with the advent of targeted therapies, yet survival is usually increased by months due to acquired resistance to these therapies. DNA methylation, the covalent addition of a methyl group to a cytosine, is essential for normal development and transcriptional regulation, but becomes altered commonly in cancer. These alterations result in broad transcriptional changes, including in tumor suppressor genes. Because DNA methylation is one of the earliest molecular changes in cancer and is both widespread and stable, its role in cancer biology, including RCC, has been extensively studied. In this review, we examine the role of DNA methylation in RCC disease etiology and progression, the preclinical use of DNA methylation alterations as diagnostic, prognostic and predictive biomarkers, and the potential for DNA methylation-directed therapies.
Collapse
Affiliation(s)
- Brittany N Lasseigne
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806-2908, USA.
| | - James D Brooks
- Department of Urology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA, 94305-5118, USA
| |
Collapse
|
20
|
Kassouf W, Monteiro LL, Drachenberg DE, Fairey AS, Finelli A, Kapoor A, Lattouf JB, Leveridge MJ, Power NE, Pouliot F, Rendon RA, Sabbagh R, So AI, Tanguay S, Breau RH. Canadian Urological Association guideline for followup of patients after treatment of non-metastatic renal cell carcinoma. Can Urol Assoc J 2018; 12:231-238. [PMID: 30139427 DOI: 10.5489/cuaj.5462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wassim Kassouf
- Division of Urology, McGill University Health Centre, Montreal, QC, Canada
| | | | | | - Adrian S Fairey
- Division of Urology, University of Alberta, Edmonton, AB, Canada
| | - Antonio Finelli
- Division of Urology, University of Toronto, Toronto, ON, Canada
| | - Anil Kapoor
- Division of Urology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | - Ricardo A Rendon
- Department of Urology, Dalhousie University, Halifax, NS, Canada
| | - Robert Sabbagh
- Division of Urology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Alan I So
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Simon Tanguay
- Division of Urology, McGill University Health Centre, Montreal, QC, Canada
| | - Rodney H Breau
- Division of Urology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Zucca LE, Morini Matushita MA, da Silva Oliveira RJ, Scapulatempo-Neto C, de Lima MA, Ribeiro GG, Viana CR, Cárcano FM, Reis RM. Expression of tyrosine kinase receptor AXL is associated with worse outcome of metastatic renal cell carcinomas treated with sunitinib. Urol Oncol 2017; 36:11.e13-11.e21. [PMID: 28986088 DOI: 10.1016/j.urolonc.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) represents 2%-3% of all cancers of the Western countries. Currently, sunitinib, a receptor tyrosine kinase inhibitor, particularly of PDGF and VEGF receptors, is the first-line therapy for metastatic RCC (mRCC), with significant improvement in clinical outcome. However, there is a lack of predictive biomarkers of sunitinib response. Recently, others and our group suggested that the receptor tyrosine kinase AXL may modify the response to sunitinib. OBJECTIVE To study the expression of AXL in a series patients with of mRCC treated with sunitinib and to correlate it with patient's clinic-pathological features and therapeutic response. MATERIAL AND METHODS Sixty-four patients with mRCC (51 clear cell carcinomas (CCCs) and 13 non-CCCs) were evaluated for AXL expression by immunohistochemistry in the primary tumor. RESULTS AXL positivity was observed in 47% (30/64) of cases, namely in 43% (22/51) of CCCs and 61% (8/13) of non-CCC. Considering only the clear cell subtype, the univariate analysis showed that AXL expression was statistically associated with a poor prognosis, with a median overall survival of 13 months vs. 43 months in patients with negative AXL. In this subtype, along with the AXL positivity, other prognostic factors were absence of nephrectomy, Karnofsky performance status, more than 1 site of metastasis and liver metastasis. Moreover, AXL expression was associated with shorter progression to sunitinib. Overall, the multivariate survival analysis showed that absence of nephrectomy (HR = 4.85, P = 0.001), more than 1 site of metastasis (HR = 2.99, P = 0.002), bone metastasis (HR = 2.95, P = 0.001), together with AXL expression (HR = 2.01, P = 0.048) were independent poor prognostic factor in patients with mRCC. CONCLUSION AXL expression was associated with worse clinical outcome and may be an important prognostic biomarker in sunitinib-treated patients with metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Luís Eduardo Zucca
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Department of Medical Oncology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | | | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Department of Pathology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Marcos Alves de Lima
- Nucleous of Epidemiology and Statistics, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | | | - Flavio Mavignier Cárcano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Department of Medical Oncology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
22
|
Marcelin C, Ambrosetti D, Bernhard J, Roy C, Grenier N, Cornelis F. Percutaneous image-guided biopsies of small renal tumors: Current practice and perspectives. Diagn Interv Imaging 2017; 98:589-599. [DOI: 10.1016/j.diii.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
23
|
Tong S, Si Y, Yu H, Zhang L, Xie P, Jiang W. MLN4924 (Pevonedistat), a protein neddylation inhibitor, suppresses proliferation and migration of human clear cell renal cell carcinoma. Sci Rep 2017; 7:5599. [PMID: 28717191 PMCID: PMC5514088 DOI: 10.1038/s41598-017-06098-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/26/2017] [Indexed: 11/15/2022] Open
Abstract
Neddylation is a post-translational protein modification associated with cancer development. MLN4924 is a neddylation inhibitor currently under investigation in multiple phase I studies on various malignancies, and its clincal name is Pevonedistat. It has been documented that MLN4924 blocks Cullins neddylation and inactivates CRLs and, in turn, triggers cell-cycle arrest, apoptosis, senescence and autophagy in many cancer cells. In this study, we investigated the anti-tumor effect of MLN4924 in human clear cell renal carcinoma (ccRCC). Levels of both Nedd8 activating enzyme E1 and Nedd8-conjugating enzyme E2 were higher in ccRCC tissues and RCC cancer cells than in normal. Moreover, MLN4924 treatment led to rapid inhibition of Cullin1 neddylation and notably suppressed growth and survival as well as migration in a dose-and time-dependent manner. Mechanistic studies revealed that MLN4924 induced the accumulation of a number of CRL substrates, including p21, p27 and Wee1 to trigger DNA damage and induce growth arrest at the G2/M phase. MLN4924 also induced anti-migration and anti-invasion by activating E-cadherin and repressing Vimentin. Taken together, this study provides the first evidence that neddylation pathway is overactive in ccRCC and that MLN4924 induces dose-dependent anti-proliferation, anti-migration, anti-invasion in ccRCC cells. The study thus indicates that MLN4924 has potential therapeutic value for the clinical treatment of renal cancer.
Collapse
Affiliation(s)
- Shuai Tong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Yang Si
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, 100850, China
| | - Ping Xie
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China.
| | - Wenguo Jiang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China. .,Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
24
|
Tang J, Qin Z, Han P, Wang W, Yang C, Xu Z, Li R, Liu B, Qin C, Wang Z, Tang M, Zhang W. High Annexin A5 expression promotes tumor progression and poor prognosis in renal cell carcinoma. Int J Oncol 2017; 50:1839-1847. [PMID: 28393205 DOI: 10.3892/ijo.2017.3942] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 11/06/2022] Open
Abstract
Annexin A5 has been found to act as an oncogenic protein in a variety of cancers. However, its specific biological role and mechanism in renal cell cancer (RCC) remains unknown. Quantitative Real-time PCR and western blotting were used to evaluate the mRNA and protein expression level of Annexin A5 in human RCC cell lines and tissues. Immunohistochemistry was adopted to measure the Annexin A5 expression in 123 cases of RCC tissues. Survival analysis was performed to explore the association between Annexin A5 expression and the prognosis of RCC. The effect of Annexin A5 on RCC growth and metastasis was studied in vitro and in vivo. Annexin A5 was frequently highly expressed in both human RCC cells and tissues. High Annexin A5 expression was associated with higher clinical stage and histological grade. In addition, Annexin A5 might be used as a predictive factor for the prognosis of RCC. Further research suggested that upregulated Annexin A5 in RCC cells could significantly promote tumor cell proliferation, migration and invasion in vitro. Subcutaneous xenograft tumor model displayed that knockdown of Annexin A5 could impede tumorigenesis in vivo. Moreover, mechanism study exhibited that Annexin A5 could activate PI3K/Akt/mTOR signaling pathway, promote epithelial-mesenchymal transition (EMT) and the expression of MMP2 and MMP9. Annexin A5 may be a potential prognostic biomarker in RCC and promotes proliferation, migration and invasion of RCC cells via activating PI3K/Akt/mTOR signaling pathway and regulating EMT process and MMP expression.
Collapse
Affiliation(s)
- Jingyuan Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhiqiang Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Peng Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Chengdi Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhen Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Ran Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|