1
|
Singh S, Ahmed AI, Almansoori S, Alameri S, Adlan A, Odivilas G, Chattaway MA, Salem SB, Brudecki G, Elamin W. A narrative review of wastewater surveillance: pathogens of concern, applications, detection methods, and challenges. Front Public Health 2024; 12:1445961. [PMID: 39139672 PMCID: PMC11319304 DOI: 10.3389/fpubh.2024.1445961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The emergence and resurgence of pathogens have led to significant global health challenges. Wastewater surveillance has historically been used to track water-borne or fecal-orally transmitted pathogens, providing a sensitive means of monitoring pathogens within a community. This technique offers a comprehensive, real-time, and cost-effective approach to disease surveillance, especially for diseases that are difficult to monitor through individual clinical screenings. Methods This narrative review examines the current state of knowledge on wastewater surveillance, emphasizing important findings and techniques used to detect potential pathogens from wastewater. It includes a review of literature on the detection methods, the pathogens of concern, and the challenges faced in the surveillance process. Results Wastewater surveillance has proven to be a powerful tool for early warning and timely intervention of infectious diseases. It can detect pathogens shed by asymptomatic and pre-symptomatic individuals, providing an accurate population-level view of disease transmission. The review highlights the applications of wastewater surveillance in tracking key pathogens of concern, such as gastrointestinal pathogens, respiratory pathogens, and viruses like SARS-CoV-2. Discussion The review discusses the benefits of wastewater surveillance in public health, particularly its role in enhancing existing systems for infectious disease surveillance. It also addresses the challenges faced, such as the need for improved detection methods and the management of antimicrobial resistance. The potential for wastewater surveillance to inform public health mitigation strategies and outbreak response protocols is emphasized. Conclusion Wastewater surveillance is a valuable tool in the fight against infectious diseases. It offers a unique perspective on the spread and evolution of pathogens, aiding in the prevention and control of disease epidemics. This review underscores the importance of continued research and development in this field to overcome current challenges and maximize the potential of wastewater surveillance in public health.
Collapse
Affiliation(s)
- Surabhi Singh
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Amina Ismail Ahmed
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Sumayya Almansoori
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Shaikha Alameri
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Ashraf Adlan
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Giovanni Odivilas
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Marie Anne Chattaway
- United Kingdom Health Security Agency, Gastrointestinal Bacteria Reference Laboratory, London, United Kingdom
| | - Samara Bin Salem
- Central Testing Laboratory, Abu Dhabi Quality and Conformity Council, Abu Dhabi, United Arab Emirates
| | - Grzegorz Brudecki
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Wael Elamin
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Molecular Methods for Identification and Quantification of Foodborne Pathogens. Molecules 2022; 27:molecules27238262. [PMID: 36500353 PMCID: PMC9737419 DOI: 10.3390/molecules27238262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Foodborne pathogens that enter the human food chain are a significant threat worldwide to human health. Timely and cost-effective detection of them became challenging for many countries that want to improve their detection and control of foodborne illness. We summarize simple, rapid, specific, and highly effective molecular technology that is used to detect and identify foodborne pathogens, including polymerase chain reaction, isothermal amplification, loop-mediated isothermal amplification, nucleic acid sequence-based amplification, as well as gene chip and gene probe technology. The principles of their operation, the research supporting their application, and the advantages and disadvantages of each technology are summarized.
Collapse
|
3
|
Ebrahim AE, Abd El-Aziz NK, Elariny EYT, Shindia A, Osman A, Hozzein WN, Alkhalifah DHM, El-Hossary D. Antibacterial activity of bioactive compounds extracted from red kidney bean (Phaseolus vulgaris L.) seeds against multidrug-resistant Enterobacterales. Front Microbiol 2022; 13:1035586. [PMID: 36419436 PMCID: PMC9676267 DOI: 10.3389/fmicb.2022.1035586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
In the present study, biologically active compounds such as phenolic-rich extract (PRE), 7S globulin (vicilin), and 11S globulin (legumin) from red kidney bean (Phaseolus vulgaris L.) seeds were extracted and evaluated as antibacterial agents against multidrug-resistant (MDR) Enterobacterales isolated from both animal and human sources. The overall occurrence rate of Enterobacterales was 43.6%, which significantly differed between animal (38.75%) and human (56.67%) sources. Antimicrobial susceptibility testing revealed that Enterobacterales isolates exhibited full resistance (100%) to amoxicillin-clavulanic acid, followed by ampicillin (75.44%), erythromycin (71.93%), cefoxitin (70.18%), amoxicillin (66.66%), ceftriaxone (64.91%), and trimethoprim/sulfamethoxazole (56.14%). Worthy of note, 97.92% of Enterobacterales isolates were MDR. The total phenolic contents (TPC; 53 ± 2 mg GAE g-1) and total flavonoid contents (TFC; 26 ± 1 mg QE g-1) were recorded. The major phenolic and flavonoid components were catechol (17.63 μg/mL) and hesperidin (11.37 μg/mL), respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to detect the 7S and 11S globulin‘s molecular mass. The data revealed that red kidney bean protein isolate (KPI) includes two major portions: 7S and 11S globulins. The bioactive compounds of Phaseolus vulgaris were investigated for their antibacterial activities against Enterobacterales for the first time. The protein component (MIC = 0.125 – 2 μg/mL; 53.85%) and its 7S and 11S globulin subunits (MIC = 0.5 – 2 μg/mL; 30.77% each) were the most potent extracts, whereas the methanolic extract was the least effective one (MIC = 2 μg/mL; 15.38%). The results displayed the potential of protein bioactive compounds as a hopeful candidate for enhancing future medication plans for the treatment of Enterobacterales originating from animal and human sources.
Collapse
Affiliation(s)
- Azhar E. Ebrahim
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Norhan K. Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Norhan K. Abd El-Aziz, ;
| | - Eman Y. T. Elariny
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed Shindia
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Wael N. Hozzein
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Dalia El-Hossary
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes in foods-From culture identification to whole-genome characteristics. Food Sci Nutr 2022; 10:2825-2854. [PMID: 36171778 PMCID: PMC9469866 DOI: 10.1002/fsn3.2910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen, which is able to persist in the food production environments. The presence of these bacteria in different niches makes them a potential threat for public health. In the present review, the current information on the classical and alternative methods used for isolation and identification of L. monocytogenes in food have been described. Although these techniques are usually simple, standardized, inexpensive, and are routinely used in many food testing laboratories, several alternative molecular-based approaches for the bacteria detection in food and food production environments have been developed. They are characterized by the high sample throughput, a short time of analysis, and cost-effectiveness. However, these methods are important for the routine testing toward the presence and number of L. monocytogenes, but are not suitable for characteristics and typing of the bacterial isolates, which are crucial in the study of listeriosis infections. For these purposes, novel approaches, with a high discriminatory power to genetically distinguish the strains during epidemiological studies, have been developed, e.g., whole-genome sequence-based techniques such as NGS which provide an opportunity to perform comparison between strains of the same species. In the present review, we have shown a short description of the principles of microbiological, alternative, and modern methods of detection of L. monocytogenes in foods and characterization of the isolates for epidemiological purposes. According to our knowledge, similar comprehensive papers on such subject have not been recently published, and we hope that the current review may be interesting for research communities.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Beata Lachtara
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| |
Collapse
|
5
|
Hormsombut T, Rijiravanich P, Surareungchai W, Kalasin S. Highly sensitive and selective antibody microarrays based on a Cy5-antibody complexes coupling ES-biochip for E. coli and Salmonella detection. RSC Adv 2022; 12:24760-24768. [PMID: 36128368 PMCID: PMC9429895 DOI: 10.1039/d2ra03391g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Foodborne pathogens are threats in food and a cause of major health issues globally. Microbial safety has become a key concern to eliminate disease-causing pathogens from the food supply. For this purpose, the Cy5 dye conjugated with a double-biotin DNA linkage and a detection antibody (Cy5-Ab complexes) was developed to amplify a foodborne detection signal on a microarray. Additionally, the ES-biochip was designed to attain a visual screening of an antibody microarray for the simultaneous threat detection of Salmonella and Escherichia coli (E. coli). Quantification was also performed by fluorescence. After optimizing the Cy5-Ab complex appendage and enhancing the detection signal from a sandwich immunoassay, high sensitivity and selectivity were observed. The limits of detection for both pathogens in buffer and food samples were 103 CFU mL−1 and less than 9 CFU mL−1 by visual screening and fluorescent intensity quantification, respectively. Mono and duplex responses were not significantly different which means that no cross-reactivity occurred. Uniquely, the assays hold great potential to be used in several fields, such as clinical diagnosis of foodborne microbes, food hygiene screening, and pathogen detection. A visual ES-biochip was highly sensitive and selective as well as enabled simultaneous detection. An optimized amount of Cy5 dye was attached to a Cy5-Ab complex label using a double-biotin DNA linkage.![]()
Collapse
Affiliation(s)
- Timpika Hormsombut
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Patsamon Rijiravanich
- BioSciences and Systems Biology Research Team, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Werasak Surareungchai
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Surachate Kalasin
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| |
Collapse
|
6
|
Methodology of Selecting the Optimal Receptor to Create an Electrochemical Immunosensor for Equine Arteritis Virus Protein Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study reports a methodology of selecting the optimal receptor to create an electrochemical immunosensor for equine arteritis virus (EAV) protein detection. The detection was based on antigen recognition by antibodies immobilized on gold electrodes. Modification steps were controlled by electrochemical impedance spectroscopy and cyclic voltammetry measurements. In order to obtain the impedance immunosensor with the best parameters, seven different receptors complementary to equine arteritis virus protein were used. In order to make the selection, a rapid screening test was carried out to check the sensor’s response to blank, extremely low and high concentrations of target EAV protein, and negative sample: M protein from Streptococcus equi and glycoprotein G from Equid alphaherpesvirus 1. F6 10G receptor showed the best performance.
Collapse
|
7
|
Ayhan K, Coşansu S, Orhan-Yanıkan E, Gülseren G. Advance methods for the qualitative and quantitative determination of microorganisms. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Sinha K, Sharma P, Som Chaudhury S, Das Mukhopadhyay C, Ruidas B. Species detection using probe technology. FOOD TOXICOLOGY AND FORENSICS 2021:313-346. [DOI: 10.1016/b978-0-12-822360-4.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
9
|
Campbell VR, Carson MS, Lao A, Maran K, Yang EJ, Kamei DT. Point-of-Need Diagnostics for Foodborne Pathogen Screening. SLAS Technol 2020; 26:55-79. [PMID: 33012245 DOI: 10.1177/2472630320962003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Foodborne illness is a major public health issue that results in millions of global infections annually. The burden of such illness sits mostly with developing countries, as access to advanced laboratory equipment and skilled lab technicians, as well as consistent power sources, is limited and expensive. Current gold standards in foodborne pathogen screening involve labor-intensive sample enrichment steps, pathogen isolation and purification, and costly readout machinery. Overall, time to detection can take multiple days, excluding the time it takes to ship samples to off-site laboratories. Efforts have been made to simplify the workflow of such tests by integrating multiple steps of foodborne pathogen screening procedures into a singular device, as well as implementing more point-of-need readout methods. In this review, we explore recent advancements in developing point-of-need devices for foodborne pathogen screening. We discuss the detection of surface markers, nucleic acids, and metabolic products using both paper-based and microfluidic devices, focusing primarily on developments that have been made between 2015 and mid-2020.
Collapse
Affiliation(s)
- Veronica R Campbell
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Mariam S Carson
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Amelia Lao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Kajal Maran
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Eric J Yang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Jamal RB, Shipovskov S, Ferapontova EE. Electrochemical Immuno- and Aptamer-Based Assays for Bacteria: Pros and Cons over Traditional Detection Schemes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5561. [PMID: 32998409 PMCID: PMC7582323 DOI: 10.3390/s20195561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/20/2023]
Abstract
Microbiological safety of the human environment and health needs advanced monitoring tools both for the specific detection of bacteria in complex biological matrices, often in the presence of excessive amounts of other bacterial species, and for bacteria quantification at a single cell level. Here, we discuss the existing electrochemical approaches for bacterial analysis that are based on the biospecific recognition of whole bacterial cells. Perspectives of such assays applications as emergency-use biosensors for quick analysis of trace levels of bacteria by minimally trained personnel are argued.
Collapse
Affiliation(s)
| | | | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark; (R.B.J.); (S.S.)
| |
Collapse
|
11
|
Ratajczak M, Kaminska D, Światły-Błaszkiewicz A, Matysiak J. Quality of Dietary Supplements Containing Plant-Derived Ingredients Reconsidered by Microbiological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186837. [PMID: 32962120 PMCID: PMC7558626 DOI: 10.3390/ijerph17186837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Dietary supplements cover a wide range of products, the most popular are those containing plant-based ingredients. Supplements are consumed by consumers of all ages as well as by both healthy and sick people. The lack of unified regulation in this sector increases the probability that supplements are poor chemical and microbiological quality and can be dangerous for patients. The aim of this paper is to highlight selected issues associated with the microbiological quality of dietary supplements containing plant materials. We focus on the most recent reports referring to bacterial and fungal contaminations as well as the presence of mycotoxins. Dietary supplements containing plant ingredients commonly show a variety of microbial contaminants, which might be crucial for consumer safety. They often contain microorganisms potentially pathogenic to humans. Metabolites produced by microorganisms may pose a threat to the health of consumers. Because of that, in this review, we emphasize the risk that may be associated with the lack of appropriate studies of the quality of the supplements.
Collapse
Affiliation(s)
- Magdalena Ratajczak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland;
| | - Dorota Kaminska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland;
| | - Agata Światły-Błaszkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (A.Ś.-B.); (J.M.)
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (A.Ś.-B.); (J.M.)
| |
Collapse
|
12
|
Lin L, Zheng Q, Lin J, Yuk HG, Guo L. Immuno- and nucleic acid-based current technique for Salmonella detection in food. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-019-03423-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Bayramoglu G, Ozalp VC, Oztekin M, Arica MY. Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta 2019; 200:263-271. [PMID: 31036183 DOI: 10.1016/j.talanta.2019.03.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
In this work, a novel quartz crystal microbalance (QCM) aptasensor is designed for the diagnosis of Brucella melitensis bacteria, which affects the Mediterranean fever (brucellosis) from the zoonotic diseases that are very common in the Middle East Countries. The method is based on the selection of B. melitensis bacterium from solutions using B. melitensis specific binding aptamer (Apt) attached magnetic nanoparticles. The surface of the magnetic nanoparticles (i.e.,Fe3O4) was modified by 3-aminopropyltriethoxysilane (APTES) and then grafted with a hydrophilic macromonomer poly(ethyleneglycol)-methacrylate (PEG-MA) as a first block polymer and glycidylmethacrylate (GMA) as a second block functional polymer via atom transfer radical polymerization (ATRP) method [Fe3O4 @SiO2 @p(PEG-MA-GMA)], then, the specific binding aptamer was immobilized. The aptamer immobilized magnetic nanoparticles were used for the pre-concentration of the target bacterium, and the same aptamer sequence was also immobilized on the QCM chip and used for the quantitative detection of B. melitensis using QCM aptasensor. The detection limits of the QCM aptasensor were in the range 1.02-1.07 CFU mL-1, with recoveries up to 79%. The synthesized [Fe3O4 @SiO2 @p(PEGMA-GMA)] nanoparticles showed a good permanence and high isolation recoveries for the pull down of the target bacterium from food samples, after recycling eight times. The method was successfully applied to target bacterium determinations in milk and milk product samples.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Ankara, Turkey; Department of Chemistry, Gazi University, 06500 Ankara, Turkey.
| | - V Cengiz Ozalp
- Kit-ARGEM R&D center and the Department of Bioengineering, Konya Food & Agriculture University, 42080 Konya, Turkey
| | - Merve Oztekin
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Ankara, Turkey
| | - M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Ankara, Turkey
| |
Collapse
|
14
|
Vidic J, Vizzini P, Manzano M, Kavanaugh D, Ramarao N, Zivkovic M, Radonic V, Knezevic N, Giouroudi I, Gadjanski I. Point-of-Need DNA Testing for Detection of Foodborne Pathogenic Bacteria. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1100. [PMID: 30836707 PMCID: PMC6427207 DOI: 10.3390/s19051100] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Foodborne pathogenic bacteria present a crucial food safety issue. Conventional diagnostic methods are time-consuming and can be only performed on previously produced food. The advancing field of point-of-need diagnostic devices integrating molecular methods, biosensors, microfluidics, and nanomaterials offers new avenues for swift, low-cost detection of pathogens with high sensitivity and specificity. These analyses and screening of food items can be performed during all phases of production. This review presents major developments achieved in recent years in point-of-need diagnostics in land-based sector and sheds light on current challenges in achieving wider acceptance of portable devices in the food industry. Particular emphasis is placed on methods for testing nucleic acids, protocols for portable nucleic acid extraction and amplification, as well as on the means for low-cost detection and read-out signal amplification.
Collapse
Affiliation(s)
- Jasmina Vidic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Priya Vizzini
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy.
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy.
| | - Devon Kavanaugh
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Nalini Ramarao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Milica Zivkovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11000 Belgrade, Serbia.
| | - Vasa Radonic
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Nikola Knezevic
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Ioanna Giouroudi
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Ivana Gadjanski
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| |
Collapse
|
15
|
Su WH, Sun DW. Advanced Analysis of Roots and Tubers by Hyperspectral Techniques. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:255-303. [PMID: 30678816 DOI: 10.1016/bs.afnr.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hyperspectral techniques in terms of spectroscopy and hyperspectral imaging have become reliable analytical tools to effectively describe quality attributes of roots and tubers (such as potato, sweet potato, cassava, yam, taro, and sugar beet). In addition to the ability for obtaining rapid information about food external or internal defects including sprout, bruise, and hollow heart, and identifying different grades of food quality, such techniques have also been implemented to determine physical properties (such as color, texture, and specific gravity) and chemical constituents (such as protein, vitamins, and carotenoids) in root and tuber products with avoidance of extensive sample preparation. Developments of related quality evaluation systems based on hyperspectral data that determine food quality parameters would bring about economic and technical values to the food industry. Consequently, a comprehensive review of hyperspectral literature is carried out in this chapter. The spectral data acquired, the multivariate statistical methods used, and the main breakthroughs of recent studies on quality determinations of root and tuber products are discussed and summarized. The conclusion elaborates the promise of how hyperspectral techniques can be applied for non-invasive and rapid evaluations of tuber quality properties.
Collapse
Affiliation(s)
- Wen-Hao Su
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland.
| |
Collapse
|
16
|
Methods for the detection and characterization of Streptococcus suis: from conventional bacterial culture methods to immunosensors. Antonie van Leeuwenhoek 2018; 111:2233-2247. [PMID: 29934695 DOI: 10.1007/s10482-018-1116-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/14/2018] [Indexed: 01/26/2023]
Abstract
One of the most important zoonotic pathogens worldwide, Streptococcus suis is a swine pathogen that is responsible for meningitis, toxic shock and even death in humans. S. suis infection develops rapidly with nonspecific clinical symptoms in the early stages and a high fatality rate. Recently, much attention has been paid to the high prevalence of S. suis as well as the increasing incidence and its epidemic characteristics. As laboratory-acquired infections of S. suis can occur and it is dangerous to public health security, timely and early diagnosis has become key to controlling S. suis prevalence. Here, the techniques that have been used for the detection, typing and characterization of S. suis are reviewed and the prospects for future detection methods for this bacterium are also discussed.
Collapse
|
17
|
Karus A, Ceciliani F, Bonastre AS, Karus V. Development of Simple Multiplex Real-Time PCR Assays for Foodborne Pathogens Detection and Identification On Lightcycler. MACEDONIAN VETERINARY REVIEW 2017. [DOI: 10.1515/macvetrev-2017-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Most acute intestinal diseases are caused by food-borne pathogens. A fast and simple real-time PCR-based procedure for simultaneous detection of food contamination by any of the five food-borne pathogens: Campylobacter jejuni, Mycobacterium bovis, Enterobacter sakazaki, Shigella boydii, Clostridium perfrigens using multiplex EvaGreen real-time PCR for LightCycler was developed and evaluated. Real-time qPCR showed excellent sensitivity. Tm calling and Melting Curve Genotyping (MCG) were used for analysis of PCR product melting curves. The Melting Curve Genotyping option showed good performance for discrimination of positive samples containing DNA of single pathogen or pathogen mixtures from negative samples.
Collapse
Affiliation(s)
- Avo Karus
- Department of Food Sciences and Food Technology, Institute of Veterinary Medicine and Animal Science , Estonian University of Life Sciences , Kreutzwaldi 62, Tartu , Estonia
| | - Fabrizio Ceciliani
- Department of Veterinary Science and Public Health , University of Milan , via Celoria 10, 20133 Milan , Italy
| | | | - Virge Karus
- Department of Food Sciences and Food Technology, Institute of Veterinary Medicine and Animal Science , Estonian University of Life Sciences , Kreutzwaldi 62, Tartu , Estonia
| |
Collapse
|
18
|
A Nondestructive Real-Time Detection Method of Total Viable Count in Pork by Hyperspectral Imaging Technique. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
The evolution of analytical chemistry methods in foodomics. J Chromatogr A 2016; 1428:3-15. [DOI: 10.1016/j.chroma.2015.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/26/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
|
20
|
Dawnay N, Hughes R, Court DS, Duxbury N. Species detection using HyBeacon(®) probe technology: Working towards rapid onsite testing in non-human forensic and food authentication applications. Forensic Sci Int Genet 2015; 20:103-111. [PMID: 26561743 DOI: 10.1016/j.fsigen.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/05/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Identifying individual species or determining species' composition in an unknown sample is important for a variety of forensic applications. Food authentication, monitoring illegal trade in endangered species, forensic entomology, sexual assault case work and counter terrorism are just some of the fields that can require the detection of the biological species present. Traditional laboratory based approaches employ a wide variety of tools and technologies and exploit a number of different species specific traits including morphology, molecular differences and immuno-chemical analyses. A large number of these approaches require laboratory based apparatus and results can take a number of days to be returned to investigating authorities. Having a presumptive test for rapid identification could lead to savings in terms of cost and time and allow sample prioritisation if confirmatory testing in a laboratory is required later. This model study describes the development of an assay using a single HyBeacon(®) probe and melt curve analyses allowing rapid screening and authentication of food products labelled as Atlantic cod (Gadus morhua). Exploiting melt curve detection of species specific SNP sites on the COI gene the test allows detection of a target species (Atlantic cod) and closely related species which may be used as substitutes. The assay has been designed for use with the Field Portable ParaDNA system, a molecular detection platform for non-expert users. The entire process from sampling to result takes approximately 75min. Validation studies were performed on both single source genomic DNA, mixed genomic DNA and commercial samples. Data suggests the assay has a lower limit of detection of 31 pg DNA. The specificity of the assay to Atlantic cod was measured by testing highly processed food samples including frozen, defrosted and cooked fish fillets as well as fish fingers, battered fish fillet and fish pie. Ninety-six (92.7%) of all Atlantic cod food products, tested, provided a correct single species result with the remaining samples erroneously identified as containing non-target species. The data shows that the assay was quick to design and characterise and is also capable of yielding results that would be beneficial in a variety of fields, not least the authentication of food.
Collapse
Affiliation(s)
- Nick Dawnay
- Product Development Group, LGC Forensics, Culham Science Centre, Abingdon OX14 3ED, UK; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| | - Rebecca Hughes
- Department of Pharmacy and Forensic Science, King's College London, Faculty of Life Sciences and Medicine, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Denise Syndercombe Court
- Department of Pharmacy and Forensic Science, King's College London, Faculty of Life Sciences and Medicine, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Nicola Duxbury
- Product Development Group, LGC Forensics, Culham Science Centre, Abingdon OX14 3ED, UK
| |
Collapse
|
21
|
He HJ, Sun DW. Hyperspectral imaging technology for rapid detection of various microbial contaminants in agricultural and food products. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Wang Y, Salazar JK. Culture-Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. Compr Rev Food Sci Food Saf 2015; 15:183-205. [DOI: 10.1111/1541-4337.12175] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Yun Wang
- Div. of Food Processing Science and Technology; U.S. Food and Drug Administration; Bedford Park IL U.S.A
| | - Joelle K. Salazar
- Div. of Food Processing Science and Technology; U.S. Food and Drug Administration; Bedford Park IL U.S.A
| |
Collapse
|
23
|
Everard CD, Kim MS, Cho H, O’Donnell CP. Hyperspectral fluorescence imaging using violet LEDs as excitation sources for fecal matter contaminate identification on spinach leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2015. [DOI: 10.1007/s11694-015-9276-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Li X, Harwood VJ, Nayak B, Staley C, Sadowsky MJ, Weidhaas J. A novel microbial source tracking microarray for pathogen detection and fecal source identification in environmental systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7319-7329. [PMID: 25970344 DOI: 10.1021/acs.est.5b00980] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pathogen detection and the identification of fecal contamination sources are challenging in environmental waters. Factors including pathogen diversity and ubiquity of fecal indicator bacteria hamper risk assessment and remediation of contamination sources. A custom microarray targeting pathogens (viruses, bacteria, protozoa), microbial source tracking (MST) markers, and antibiotic resistance genes was tested against DNA obtained from whole genome amplification (WGA) of RNA and DNA from sewage and animal (avian, cattle, poultry, and swine) feces. Perfect and mismatch probes established the specificity of the microarray in sewage, and fluorescence decrease of positive probes over a 1:10 dilution series demonstrated semiquantitative measurement. Pathogens, including norovirus, Campylobacter fetus, Helicobacter pylori, Salmonella enterica, and Giardia lamblia were detected in sewage, as well as MST markers and resistance genes to aminoglycosides, beta-lactams, and tetracycline. Sensitivity (percentage true positives) of MST results in sewage and animal waste samples (21-33%) was lower than specificity (83-90%, percentage of true negatives). Next generation DNA sequencing revealed two dominant bacterial families that were common to all sample types: Ruminococcaceae and Lachnospiraceae. Five dominant phyla and 15 dominant families comprised 97% and 74%, respectively, of sequences from all fecal sources. Phyla and families not represented on the microarray are possible candidates for inclusion in subsequent array designs.
Collapse
Affiliation(s)
- Xiang Li
- †Department of Civil and Environmental Engineering, West Virginia University, P.O. Box 6103, Morgantown, West Virginia 26506, United States
| | - Valerie J Harwood
- ‡Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Bina Nayak
- ‡Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Christopher Staley
- §BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Michael J Sadowsky
- ∥Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jennifer Weidhaas
- †Department of Civil and Environmental Engineering, West Virginia University, P.O. Box 6103, Morgantown, West Virginia 26506, United States
| |
Collapse
|
25
|
Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL. Waterborne pathogens: detection methods and challenges. Pathogens 2015; 4:307-34. [PMID: 26011827 PMCID: PMC4493476 DOI: 10.3390/pathogens4020307] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA) is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.
Collapse
Affiliation(s)
- Flor Yazmín Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
- Laboratorio de Ciencias Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| | - Abraham Loera-Muro
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| | - Mario Jacques
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Philippe Garneau
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Francisco Javier Avelar-González
- Laboratorio de Ciencias Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| | - Josée Harel
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Alma Lilián Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| |
Collapse
|
26
|
Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015; 5:770. [PMID: 25628612 PMCID: PMC4290631 DOI: 10.3389/fmicb.2014.00770] [Citation(s) in RCA: 562] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
- School of Science, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Bandar Tun RazakKuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
| |
Collapse
|
27
|
Cremonesi P, Pisani LF, Lecchi C, Ceciliani F, Martino P, Bonastre AS, Karus A, Balzaretti C, Castiglioni B. Development of 23 individual TaqMan® real-time PCR assays for identifying common foodborne pathogens using a single set of amplification conditions. Food Microbiol 2014; 43:35-40. [DOI: 10.1016/j.fm.2014.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/07/2014] [Accepted: 04/18/2014] [Indexed: 11/28/2022]
|
28
|
Ren J, Zhou Y, Zhou Y, Zhou C, Li Z, Lin Q, Huang H. A Piezoelectric Microelectrode Arrays System for Real-Time Monitoring of Bacterial Contamination in Fresh Milk. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1394-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Scheler O, Glynn B, Kurg A. Nucleic acid detection technologies and marker molecules in bacterial diagnostics. Expert Rev Mol Diagn 2014; 14:489-500. [PMID: 24724586 DOI: 10.1586/14737159.2014.908710] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There is a growing need for quick and reliable methods for microorganism detection and identification worldwide. Although traditional culture-based technologies are trustworthy and accurate at a relatively low cost, they are also time- and labor-consuming and are limited to culturable bacteria. Those weaknesses have created a necessity for alternative technologies that are capable for faster and more precise bacterial identification from medical, food or environmental samples. The most common current approach is to analyze the nucleic acid component of analyte solution and determine the bacterial composition according to the specific nucleic acid profiles that are present. This review aims to give an up-to-date overview of different nucleic acid target sequences and respective analytical technologies.
Collapse
Affiliation(s)
- Ott Scheler
- Department of Biotechnology, IMCB, University of Tartu, Riia 23, Tartu 51010, Estonia
| | | | | |
Collapse
|
30
|
Detection of food spoilage and pathogenic bacteria based on ligation detection reaction coupled to flow-through hybridization on membranes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:156323. [PMID: 24818128 PMCID: PMC4004135 DOI: 10.1155/2014/156323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/14/2014] [Indexed: 11/17/2022]
Abstract
Traditional culturing methods are still commonly applied for bacterial identification in the food control sector, despite being time and labor intensive. Microarray technologies represent an interesting alternative. However, they require higher costs and technical expertise, making them still inappropriate for microbial routine analysis. The present study describes the development of an efficient method for bacterial identification based on flow-through reverse dot-blot (FT-RDB) hybridization on membranes, coupled to the high specific ligation detection reaction (LDR). First, the methodology was optimized by testing different types of ligase enzymes, labeling, and membranes. Furthermore, specific oligonucleotide probes were designed based on the 16S rRNA gene, using the bioinformatic tool Oligonucleotide Retrieving for Molecular Applications (ORMA). Four probes were selected and synthesized, being specific for Aeromonas spp., Pseudomonas spp., Shewanella spp., and Morganella morganii, respectively. For the validation of the probes, 16 reference strains from type culture collections were tested by LDR and FT-RDB hybridization using universal arrays spotted onto membranes. In conclusion, the described methodology could be applied for the rapid, accurate, and cost-effective identification of bacterial species, exhibiting special relevance in food safety and quality.
Collapse
|
31
|
|
32
|
Specific discrimination of three pathogenic Salmonella enterica subsp. enterica serotypes by carB-based oligonucleotide microarray. Appl Environ Microbiol 2013; 80:366-73. [PMID: 24185846 DOI: 10.1128/aem.02978-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes.
Collapse
|
33
|
Optimization and Application of a Custom Microarray for the Detection and Genotyping of E. coli O157:H7 in Fresh Meat Samples. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Guan ZP, Jiang Y, Gao F, Zhang L, Zhou GH, Guan ZJ. Rapid and simultaneous analysis of five foodborne pathogenic bacteria using multiplex PCR. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2039-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Abstract
This paper presents a revision on the instrumental analytical techniques and methods used in food analysis together with their main applications in food science research. The present paper includes a brief historical perspective on food analysis, together with a deep revision on the current state of the art of modern analytical instruments, methodologies, and applications in food analysis with a special emphasis on the works published on this topic in the last three years (2009–2011). The article also discusses the present and future challenges in food analysis, the application of “omics” in food analysis (including epigenomics, genomics, transcriptomics, proteomics, and metabolomics), and provides an overview on the new discipline of Foodomics.
Collapse
Affiliation(s)
- Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
36
|
Ahmed WM, Bayraktar B, Bhunia A, Hirleman ED, Robinson JP, Rajwa B. Classification of bacterial contamination using image processing and distributed computing. IEEE J Biomed Health Inform 2012; 17:232-9. [PMID: 23060342 DOI: 10.1109/titb.2012.2222654] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Disease outbreaks due to contaminated food are a major concern not only for the food-processing industry but also for the public at large. Techniques for automated detection and classification of microorganisms can be a great help in preventing outbreaks and maintaining the safety of the nations food supply. Identification and classification of foodborne pathogens using colony scatter patterns is a promising new label-free technique that utilizes image-analysis and machine-learning tools. However, the feature-extraction tools employed for this approach are computationally complex, and choosing the right combination of scatter-related features requires extensive testing with different feature combinations. In the presented work we used computer clusters to speed up the feature-extraction process, which enables us to analyze the contribution of different scatter-based features to the overall classification accuracy. A set of 1000 scatter patterns representing ten different bacterial strains was used. Zernike and Chebyshev moments as well as Haralick texture features were computed from the available light-scatter patterns. The most promising features were first selected using Fishers discriminant analysis, and subsequently a support-vector-machine (SVM) classifier with a linear kernel was used. With extensive testing we were able to identify a small subset of features that produced the desired results in terms of classification accuracy and execution speed. The use of distributed computing for scatter-pattern analysis, feature extraction, and selection provides a feasible mechanism for large-scale deployment of a light scatter-based approach to bacterial classification.
Collapse
|
37
|
A polymer microfluidic chip for quantitative detection of multiple water- and foodborne pathogens using real-time fluorogenic loop-mediated isothermal amplification. Biomed Microdevices 2012; 14:769-78. [DOI: 10.1007/s10544-012-9658-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Viswanathan S, Rani C, Ho JAA. Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta 2012; 94:315-9. [PMID: 22608454 DOI: 10.1016/j.talanta.2012.03.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 01/20/2023]
Abstract
Bacterial food poisoning is an ever-present threat that can be prevented with proper care and handling of food products. A disposable electrochemical immunosensor for the simultaneous measurements of common food pathogenic bacteria namely Escherichia coli O157:H7 (E. coli), campylobacter and salmonella were developed. The immunosensor was fabricated by immobilizing the mixture of anti-E. coli, anti-campylobacter and anti-salmonella antibodies with a ratio of 1:1:1 on the surface of the multiwall carbon nanotube-polyallylamine modified screen printed electrode (MWCNT-PAH/SPE). Bacteria suspension became attached to the immobilized antibodies when the immunosensor was incubated in liquid samples. The sandwich immunoassay was performed with three antibodies conjugated with specific nanocrystal (α-E. coli-CdS, α-campylobacter-PbS and α-salmonella-CuS) which has releasable metal ions for electrochemical measurements. The square wave anodic stripping voltammetry (SWASV) was employed to measure released metal ions from bound antibody nanocrystal conjugates. The calibration curves for three selected bacteria were found in the range of 1×10(3)-5×10(5) cells mL(-1) with the limit of detection (LOD) 400 cells mL(-1) for salmonella, 400 cells mL(-1) for campylobacter and 800 cells mL(-1) for E. coli. The precision and sensitivity of this method show the feasibility of multiplexed determination of bacteria in milk samples.
Collapse
|
39
|
Recent Advances in Minimal Heat Processing of Fish: Effects on Microbiological Activity and Safety. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0517-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|