1
|
Guan W, Liu X, Zhu S, Li Z, Jiang H, Cui Z, Zheng Y, Wu S. Deprotonation-Constructed Instant Gelation Coating for Staphylococcus Disinfection and Preservation of Fresh Food in Multiple Scenarios. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410268. [PMID: 39888271 DOI: 10.1002/smll.202410268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/12/2025] [Indexed: 02/01/2025]
Abstract
The ancient proverb "disease enters through the mouth" elucidates the connection between food and pathogens, underscoring the pivotal role of food preservation in preventing foodborne diseases. Drawing inspiration from ancient food preservation techniques such as waxing and the use of spices, a novel approach combining the deprotonation-induced solid-liquid phase separation of natural polymer solutions with the solubilization of plant-derived antibacterial compounds has been developed. The "two-step soaking" construction strategy enables the creation of biodegradable and adaptable for hydrogel coatings with micro-scale thickness. These multifunctional coatings can be applied to the surfaces of fresh fruits, vegetables, and meats in 35 s, providing both moisture retention and antioxidant protection. The coating's versatility allows for the targeted can achieve the elimination of various Staphylococcus and other bacterial strains through the selection of bactericides with differing antibacterial mechanisms. The scalability of this approach offers significant potential for broad applications in sterilization and food preservation in across diverse contexts.
Collapse
Affiliation(s)
- Wei Guan
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Youyi Avenue 368#, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| |
Collapse
|
2
|
Yue R, Zhang Y, Liu J, Sun J. Preparation of Steamed Purple Sweet Potato-Based Films Containing Mandarin Essential Oil for Smart Packaging. Molecules 2024; 29:2314. [PMID: 38792175 PMCID: PMC11124375 DOI: 10.3390/molecules29102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.
Collapse
Affiliation(s)
- Ruixue Yue
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| | - Yiren Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| |
Collapse
|
3
|
Pinheiro I, Quarato M, Moreda-Piñeiro A, Vieira A, Serin V, Neumeyer D, Ratel-Ramond N, Joulié S, Claverie A, Spuch-Calvar M, Correa-Duarte MA, Campos A, Martins JC, Bermejo-Barrera P, Sarriá MP, Rodriguez-Lorenzo L, Espiña B. Acute Aquatic Toxicity to Zebrafish and Bioaccumulation in Marine Mussels of Antimony Tin Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2112. [PMID: 37513123 PMCID: PMC10385626 DOI: 10.3390/nano13142112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Antimony tin oxide (Sb2O5/SnO2) is effective in the absorption of infrared radiation for applications, such as skylights. As a nanoparticle (NP), it can be incorporated into films or sheets providing infrared radiation attenuation while allowing for a transparent final product. The acute toxicity exerted by commercial Sb2O5/SnO2 (ATO) NPs was studied in adults and embryos of zebrafish (Danio rerio). Our results suggest that these NPs do not induce an acute toxicity in zebrafish, either adults or embryos. However, some sub-lethal parameters were altered: heart rate and spontaneous movements. Finally, the possible bioaccumulation of these NPs in the aquacultured marine mussel Mytilus sp. was studied. A quantitative analysis was performed using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The results indicated that, despite being scarce (2.31 × 106 ± 9.05 × 105 NPs/g), there is some accumulation of the ATO NPs in the mussel. In conclusion, commercial ATO NPs seem to be quite innocuous to aquatic organisms; however, the fact that some of the developmental parameters in zebrafish embryos are altered should be considered for further investigation. More in-depth analysis of these NPs transformations in the digestive tract of humans is needed to assess whether their accumulation in mussels presents an actual risk to humans.
Collapse
Affiliation(s)
- Ivone Pinheiro
- Water Quality Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Monica Quarato
- Water Quality Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Antonio Moreda-Piñeiro
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Vieira
- Water Quality Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Virginie Serin
- Centre d'Élaboration de Matériaux et d'Etudes Structurales (CEMES/CNRS), 29, rue Jeanne Marvig, 31055 Toulouse, France
| | - David Neumeyer
- Centre d'Élaboration de Matériaux et d'Etudes Structurales (CEMES/CNRS), 29, rue Jeanne Marvig, 31055 Toulouse, France
| | - Nicolas Ratel-Ramond
- Centre d'Élaboration de Matériaux et d'Etudes Structurales (CEMES/CNRS), 29, rue Jeanne Marvig, 31055 Toulouse, France
| | - Sébastien Joulié
- Centre d'Élaboration de Matériaux et d'Etudes Structurales (CEMES/CNRS), 29, rue Jeanne Marvig, 31055 Toulouse, France
| | - Alain Claverie
- Centre d'Élaboration de Matériaux et d'Etudes Structurales (CEMES/CNRS), 29, rue Jeanne Marvig, 31055 Toulouse, France
| | - Miguel Spuch-Calvar
- TeamNanoTech/Magnetic Materials Group, CINBIO, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Miguel A Correa-Duarte
- TeamNanoTech/Magnetic Materials Group, CINBIO, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Alexandre Campos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - José Carlos Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Pilar Bermejo-Barrera
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marisa P Sarriá
- Water Quality Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Laura Rodriguez-Lorenzo
- Water Quality Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Begoña Espiña
- Water Quality Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
4
|
Involvement of Phytochemical-Encapsulated Nanoparticles' Interaction with Cellular Signalling in the Amelioration of Benign and Malignant Brain Tumours. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113561. [PMID: 35684498 PMCID: PMC9182026 DOI: 10.3390/molecules27113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
Brain tumours have unresolved challenges that include delay prognosis and lower patient survival rate. The increased understanding of the molecular pathways underlying cancer progression has aided in developing various anticancer medications. Brain cancer is the most malignant and invasive type of cancer, with several subtypes. According to the WHO, they are classified as ependymal tumours, chordomas, gangliocytomas, medulloblastomas, oligodendroglial tumours, diffuse astrocytomas, and other astrocytic tumours on the basis of their heterogeneity and molecular mechanisms. The present study is based on the most recent research trends, emphasising glioblastoma cells classified as astrocytoma. Brain cancer treatment is hindered by the failure of drugs to cross the blood–brain barrier (BBB), which is highly impregnableto foreign molecule entry. Moreover, currently available medications frequently fail to cross the BBB, whereas chemotherapy and radiotherapy are too expensive to be afforded by an average incomeperson and have many associated side effects. When compared to our current understanding of molecularly targeted chemotherapeutic agents, it appears that investigating the efficacy of specific phytochemicals in cancer treatment may be beneficial. Plants and their derivatives are game changers because they are efficacious, affordable, environmentally friendly, faster, and less toxic for the treatment of benign and malignant tumours. Over the past few years, nanotechnology has made a steady progress in diagnosing and treating cancers, particularly brain tumours. This article discusses the effects of phytochemicals encapsulated in nanoparticles on molecular targets in brain tumours, along with their limitations and potential challenges.
Collapse
|
5
|
Xing H, Li J, Zhang T, Pan F, Liu J. Preparation of porous cross‐linked CS/PVA freshness indicator film and its recognition property of carbon dioxide. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heqin Xing
- College of Food Science and Engineering Jilin University Changchun Jilin China
- Laboratory of Nutrition and Functional Food Jilin University Changchun Jilin China
| | - Jiali Li
- College of Food Science and Engineering Jilin University Changchun Jilin China
- Laboratory of Nutrition and Functional Food Jilin University Changchun Jilin China
| | - Tiehua Zhang
- College of Food Science and Engineering Jilin University Changchun Jilin China
- Laboratory of Nutrition and Functional Food Jilin University Changchun Jilin China
| | - Fengguang Pan
- College of Food Science and Engineering Jilin University Changchun Jilin China
- Laboratory of Nutrition and Functional Food Jilin University Changchun Jilin China
| | - Jingbo Liu
- College of Food Science and Engineering Jilin University Changchun Jilin China
- Laboratory of Nutrition and Functional Food Jilin University Changchun Jilin China
| |
Collapse
|
6
|
Bourbon AI, Costa MJ, Maciel LC, Pastrana L, Vicente AA, Cerqueira MA. Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films' Properties. Foods 2021; 10:1512. [PMID: 34209227 PMCID: PMC8304399 DOI: 10.3390/foods10071512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Carboxymethylcellulose (CMC)-based films can act as a protective barrier in food surfaces and a carrier of bioactive compounds, such as curcumin. However, incorporating curcumin in hydrophilic matrixes can be a challenge, and new strategies need to be explored. In this work, CMC-based films containing free curcumin and curcumin-loaded nanohydrogels (composed of lactoferrin and glycomacropeptide) were produced and characterized. The incorporation of curcumin-loaded nanohydrogels showed a significant decrease in films' thickness (from 0.0791 to 0.029 mm). Furthermore, the water vapor permeability of CMC-based films was significantly decreased (62%) by incorporating curcumin-loaded nanohydrogels in the films. The water affinity's properties (moisture, solubility, and contact angle) of films were also affected by incorporating encapsulated curcumin. The addition of nanohydrogels to CMC-based films reduced the tensile strength values from 16.46 to 9.87 MPa. Chemical interactions were analyzed using Fourier transform infrared spectroscopy. The release profile of curcumin from CMC-based films was evaluated at 25 °C using a hydrophilic food simulant and suggests that the release mechanism of the curcumin happens by Fick's diffusion and Case II transport. Results showed that protein-based nanohydrogels can be a good strategy for incorporating curcumin in edible films, highlighting their potential for use in food applications.
Collapse
Affiliation(s)
- Ana I. Bourbon
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.J.C.); (L.P.)
| | - Maria J. Costa
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.J.C.); (L.P.)
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.C.M.); (A.A.V.)
| | - Luís C. Maciel
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.C.M.); (A.A.V.)
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.J.C.); (L.P.)
| | - António A. Vicente
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.C.M.); (A.A.V.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.J.C.); (L.P.)
| |
Collapse
|
7
|
Costa MJ, Pastrana LM, Teixeira JA, Sillankorva SM, Cerqueira MA. Characterization of PHBV films loaded with FO1 bacteriophage using polyvinyl alcohol-based nanofibers and coatings: A comparative study. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Kaewprachu P, Rungraeng N, Osako K, Rawdkuen S. Properties of fish myofibrillar protein film incorporated with catechin-Kradon extract. Food Packag Shelf Life 2017. [DOI: 10.1016/j.fpsl.2017.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Álvarez-Paino M, Muñoz-Bonilla A, Fernández-García M. Antimicrobial Polymers in the Nano-World. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E48. [PMID: 28336882 PMCID: PMC5333033 DOI: 10.3390/nano7020048] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 02/08/2023]
Abstract
Infections are one of the main concerns of our era due to antibiotic-resistant infections and the increasing costs in the health-care sector. Within this context, antimicrobial polymers present a great alternative to combat these problems since their mechanisms of action differ from those of antibiotics. Therefore, the microorganisms' resistance to these polymeric materials is avoided. Antimicrobial polymers are not only applied in the health-care sector, they are also used in many other areas. This review presents different strategies that combine nanoscience and nanotechnology in the polymer world to combat contaminations from bacteria, fungi or algae. It focuses on the most relevant areas of application of these materials, viz. health, food, agriculture, and textiles.
Collapse
Affiliation(s)
- Marta Álvarez-Paino
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/ Juan de la Cierva 3, Madrid 28006, Spain.
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/ Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
10
|
Jin B, Li X, Zhou X, Xu X, Jian H, Li M, Guo K, Guan J, Yan S. Fabrication and characterization of nanocomposite film made from a jackfruit filum polysaccharide incorporating TiO2nanoparticles by photocatalysis. RSC Adv 2017. [DOI: 10.1039/c6ra28648h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Jackfruit filum polysaccharide (JFPS) was extracted and confirmed to contain neutral and acidic polysaccharides, largely composed of acidic polysaccharides.
Collapse
Affiliation(s)
- Bei Jin
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Xiangzhong Li
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Xuan Xu
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Hailin Jian
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Mulan Li
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Keqi Guo
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Jinmin Guan
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Shanglong Yan
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| |
Collapse
|
11
|
Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1772-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
|
13
|
Fuciños C, Míguez M, Cerqueira MA, Costa MJ, Vicente AA, Rúa ML, Pastrana LM. Functional Characterisation and Antimicrobial Efficiency Assessment of Smart Nanohydrogels Containing Natamycin Incorporated into Polysaccharide-Based Films. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1506-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Influence of Homogenization Conditions on Physical Properties and Antioxidant Activity of Fully Biodegradable Pea Protein–Alpha-Tocopherol Films. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1372-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Das Purkayastha M, Manhar AK, Das VK, Borah A, Mandal M, Thakur AJ, Mahanta CL. Antioxidative, hemocompatible, fluorescent carbon nanodots from an "end-of-pipe" agricultural waste: exploring its new horizon in the food-packaging domain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4509-20. [PMID: 24784501 DOI: 10.1021/jf500138f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The attention of researchers is burgeoning toward oilseed press-cake valorization for its high protein content. Protein removal from oil-cakes generates large quantities of fibrous residue (oil-and-protein spent meal) as a byproduct, which currently has very limited practical utility. In the wake of increasing awareness in waste recycling, a simple environmentally benign hydrothermal carbonization process to convert this "end-of-pipe" waste (spent meal) into antioxidative, hemocompatible, fluorescent carbonaceous nanoparticles (FCDs) has been described. In the present investigation, an interesting application of FCDs in fabricating low-cost rapeseed protein-based fluorescent film, with improved antioxidant potential (17.5-19.3-fold) and thermal stability has been demonstrated. The nanocomposite film could also be used as forgery-proof packaging due to its photoluminescence property. For assessing the feasibility of antioxidative FCDs in real food systems, a comparative investigation was further undertaken to examine the effect of such nanocarbon-loaded composite film on the oxidative shelf life of rapeseed oil. Oil samples packed in nanocomposite film sachets showed significant delay in oxidative rancidity compared to those packed in pristine protein-film sachet (free fatty acids, peroxide value, and thiobarbituric acid-reactive substances reduced up to 1.4-, 2-, and 1.2-fold, respectively). The work presents a new concept of biobased fluorescent packaging and avenues for harnessing this potent waste.
Collapse
Affiliation(s)
- Manashi Das Purkayastha
- Department of Food Engineering and Technology, School of Engineering, ‡Department of Molecular Biology and Biotechnology, School of Science, and #Department of Chemical Sciences, School of Science, Tezpur University , Assam, India 784028
| | | | | | | | | | | | | |
Collapse
|