1
|
de Medeiros FGM, You SW, Hoskin RT, Moncada M. Spray dried protein concentrates from white button and oyster mushrooms produced by ultrasound-assisted alkaline extraction and isoelectric precipitation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1635-1650. [PMID: 39367715 PMCID: PMC11726604 DOI: 10.1002/jsfa.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND In the present study, the optimization of ultrasound-assisted alkaline extraction (UAAE) and isoelectric precipitation (IEP) was applied to white button (WBM) and oyster (OYM) mushroom flours to produce functional spray dried mushroom protein concentrates. Solid-to-liquid ratio (5-15% w/v), ultrasound power (0-900 W) and type of acid [HCl or acetic acid (AcOH)] were evaluated for their effect on the extraction and protein yields from mushroom flours submitted to UAAE-IEP protein extraction. RESULTS Prioritized conditions with maximized protein yield (5% w/v, 900 W, AcOH, for WBM; 5% w/v, 900 W, HCl for OYM) were used to produce spray dried protein concentrates from white button (WBM-PC) and oyster (OYM-PC) mushrooms with high solids recovery (62.3-65.8%). WBM-PC and OYM-PC had high protein content (5.19-5.81 g kg-1), in addition to remarkable foaming capacity (82.5-235.0%) and foam stability (7.0-162.5%), as well as antioxidant phenolics. Highly pH-dependent behavior was observed for solubility (> 90%, at pH 10) and emulsifying properties (emulsification activity index: > 50 m2 g-1, emulsion stability index: > 65%, at pH 10). UAAE-IEP followed by spray drying increased surface hydrophobicity and free sulfhydryl groups by up to 196.5% and 117.5%, respectively, which improved oil holding capacity (359.9-421.0%) and least gelation concentration (6.0-8.0%) of spray dried mushroom protein concentrates. CONCLUSION Overall, the present study showed that optimized UAAE-IEP coupled with spray drying is an efficient strategy to produce novel mushroom protein concentrates with enhanced functional attributes for multiple food applications. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fábio Gonçalves Macêdo de Medeiros
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
| | - Seung Woon You
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
| | - Roberta Targino Hoskin
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
| | - Marvin Moncada
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
| |
Collapse
|
2
|
Lana VSD, Estevam PN, de Castro TB, de São José VPB, Brito-Oliveira TC, Santos PH, Oliveira CAS, Corrêa CB, Rostagno MA, Martino HSD, de Carvalho IMM. Nutritional and technological potential of umbu-caja and soursop co-product flours. Food Res Int 2025; 200:115520. [PMID: 39779150 DOI: 10.1016/j.foodres.2024.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Umbu-caja and soursop from the Northeast region of Brazil are rich in nutrients and bioactive compounds and are widely processed by the fruit agroindustry. However, there is a lack of research examining the composition and nutritional/technological potential of these co-product fruits. The present study evaluated the nutritional and technological characteristics of umbu-caja and soursop co-product flours (UCF and SCF, respectively), in addition to cytotoxicity in healthy cells. The results demonstrated that they are rich in dietary fiber (approximately 53 %), low in protein (approximately 8.0 %), and have minimal moisture content (<15 %). The mineral composition of the flours exhibited a notable presence of copper, iron, zinc, manganese, and boron. The evaluation of antioxidant capacity using the DPPH, ABTS, and FRAP methods demonstrated the presence of antioxidants that resisted processing, indicated by a high antioxidant capacity. Furthermore, the flours were found to contain phenolic compounds, predominantly rutin (UCF) and p-coumaric acid (SCF). The cytotoxicity test demonstrated that both co-product flours did not exert detrimental effects on healthy cells according to the MTT assay. The technological analyses highlighted low pH values (2.38 and 3.61 for UCF and SCF, respectively), which is favorable for a greater shelf life and suggests applications in fermented products. In addition, the flours have good water and oil holding capacity and low foaming, and they could be incorporated into food products that require these properties. The results demonstrated promising qualities of the UCF and SCF for incorporation into the human diet and product development, mainly due to their high fiber content, antioxidant capacity and low cytotoxicity.
Collapse
Affiliation(s)
- Valeria Silva de Lana
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Thais Carvalho Brito-Oliveira
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, São Paulo, Brazil
| | - Pedro Henrique Santos
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, São Paulo, Brazil
| | | | | | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
3
|
Karim A, Raji Z, Habibi Y, Khalloufi S. A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry. Crit Rev Food Sci Nutr 2024; 64:11722-11756. [PMID: 37565505 DOI: 10.1080/10408398.2023.2243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dietary fiber (DF) significantly affects the quality attributes of food matrices. Depending on its chemical composition, molecular structure, and degree of hydration, the behavior of DF may differ. Numerous reports confirm that incorporating DF derived from food waste into food products has significant effects on textural, sensory, rheological, and antimicrobial properties. Additionally, the characteristics of DF, modification techniques (chemical, enzymatic, mechanical, thermal), and processing conditions (temperature, pH, ionic strength), as well as the presence of other components, can profoundly affect the functionalities of DF. This review aims to describe the interactions between DF and water, focusing on the effects of free water, freezing-bound water, and unfreezing-bound water on the hydration capacity of both soluble and insoluble DF. The review also explores how the structural, functional, and environmental properties of DF contribute to its hydration capacity. It becomes evident that the interactions between DF and water, and their effects on the rheological properties of food matrices, are complex and multifaceted subjects, offering both opportunities and challenges for further exploration. Utilizing DF extracted from food waste exhibits promise as a sustainable and viable strategy for the food industry to create nutritious and high-value-added products, while concurrently reducing reliance on primary virgin resources.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| |
Collapse
|
4
|
Oroumei S, Rezaei K, Chodar Moghadas H. Pomegranate seed as a novel source of plant protein: Optimization of protein extraction and evaluation of in vitro digestibility, functional, and thermal properties. Food Sci Nutr 2024; 12:5951-5965. [PMID: 39139954 PMCID: PMC11317717 DOI: 10.1002/fsn3.4242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024] Open
Abstract
This research was carried out to optimize the extraction process of proteins from pomegranate seeds and characterize their in vitro digestibility as well as their thermal and functional properties. For this purpose, the study screened five parameters (liquid/solid ratio, pH, temperature, NaCl concentration, and time) that could potentially influence the extraction process. This screening was conducted using a two-level Placket-Burman design (PBD). The significant parameters (pH and NaCl concentration) were subsequently optimized using a three-level face-centered central composite design (FCCD) to determine the optimum extraction conditions. A maximum protein recovery of 83.8% was obtained at pH 11.0 and NaCl concentration of 0.0 M. Pomegranate seed protein isolate (PSPI) with a protein content of 92.4% (w/w) was obtained through the isoelectric precipitation of pomegranate seed protein extracted under the optimized conditions. An emulsifying activity index of 14.1 m2 g-1 was observed at the isoelectric pH, where the emulsion stability index was at 8.2%. PSPI also showed high water- and oil-holding capacities (3.7 and 4.3 g g-1, respectively). The essential amino acid levels in PSPI (except for valine and isoleucine) exceeded the recommended amounts set by WHO/FAO/UNU for adults, highlighting its high nutritional value. Based on thermal analysis data, denaturation of PSPI could occur at 89.5°C. The in vitro digestibility of PSPI was found to be 74.3%. PSPI shows a potential as a novel ingredient for substituting animal-based proteins in various food applications.
Collapse
Affiliation(s)
- Souri Oroumei
- Department of Food Science, Engineering, and TechnologyUniversity of TehranKarajIran
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and TechnologyUniversity of TehranKarajIran
| | | |
Collapse
|
5
|
da Silva VT, Mateus N, de Freitas V, Fernandes A. Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions. Foods 2024; 13:2303. [PMID: 39063388 PMCID: PMC11275277 DOI: 10.3390/foods13142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
As the lack of resources required to meet the demands of a growing population is increasingly evident, plant-based diets can be seen as part of the solution, also addressing ethical, environmental, and health concerns. The rise of vegetarian and vegan food regimes is a powerful catalyzer of a transition from animal-based diets to plant-based diets, which foments the need for innovation within the food industry. Vegetables and fruits are a rich source of protein, and bioactive compounds such as dietary fibres and polyphenols and can be used as technological ingredients (e.g., thickening agents, emulsifiers, or colouring agents), while providing health benefits. This review provides insight on the potential of plant-based ingredients as a source of alternative proteins, dietary fibres and antioxidant compounds, and their use for the development of food- and alternative plant-based products. The application of these ingredients on meat analogues and their impact on health, the environment and consumers' acceptance are discussed. Given the current knowledge on meat analogue production, factors like cost, production and texturization techniques, upscaling conditions, sensory attributes and nutritional safety are factors that require further development to fully achieve the full potential of plant-based meat analogues.
Collapse
Affiliation(s)
- Vasco Trincão da Silva
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
de Oliveira NMT, Schneider VS, Bueno LR, de Mello Braga LLV, da Silva KS, Malaquias da Silva LC, Souza ML, da Luz BB, Lima CD, Bastos RS, de Paula Werner MF, Fernandes ES, Rocha JA, Gois MB, Cordeiro LMC, Maria-Ferreira D. CPW partially attenuates DSS-induced ulcerative colitis in mice. Food Res Int 2023; 173:113334. [PMID: 37803644 DOI: 10.1016/j.foodres.2023.113334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the gastrointestinal tract. The etiology is not fully understood, but environmental, microbial, and immunologic factors, as well as a genetic predisposition, play a role. UC is characterized by episodes of abdominal pain, diarrhea, bloody stools, weight loss, severe colonic inflammation, and ulceration. Despite the increase in the frequency of UC and the deterioration of the quality of life, there are still patients who do not respond well to available treatment options. Against this background, natural products such as polysaccharides are becoming increasingly important as they protect the intestinal mucosa, promote wound healing, relieve inflammation and pain, and restore intestinal motility. In this study, we investigated the effect of a polysaccharide isolated from the biomass of Campomanesia adamantium and Campomanesia pubescens (here referred to as CPW) in an experimental model of acute and chronic ulcerative colitis induced by dextran sulfate sodium (DSS). CPW reversed weight loss, increased disease activity index (DAI), bloody diarrhea, and colon shortening. In addition, CPW reduced visceral mechanical hypersensitivity, controlled oxidative stress and inflammation, and protected the mucosal barrier. CPW is not absorbed in the intestine, does not inhibit cytochrome P450 proteins, and does not exhibit AMES toxicity. These results suggest that CPW attenuates DSS-induced acute and chronic colitis in mice and may be a potential alternative treatment for UC.
Collapse
Affiliation(s)
- Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Vanessa S Schneider
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Laryssa Regis Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Liziane Cristine Malaquias da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Maria Luiza Souza
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Cleiane Dias Lima
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Ruan Sousa Bastos
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | | | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Jefferson Almeida Rocha
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Marcelo Biondaro Gois
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | | | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.
| |
Collapse
|
7
|
Özpak Akkuş Ö, Metin U, Çamlık Z. The effects of pomegranate peel added bread on anthropometric measurements, metabolic and oxidative parameters in individuals with type 2 diabetes: a double-blind, randomized, placebo-controlled study. Nutr Res Pract 2023; 17:698-716. [PMID: 37529273 PMCID: PMC10375327 DOI: 10.4162/nrp.2023.17.4.698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 02/08/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES The aim of this study was to evaluate the sensory properties of antioxidant-rich bread made by adding pomegranate peels and their effects on anthropometric measurements and metabolic and oxidative parameters of individuals with type 2 diabetes after consumption. SUBJECTS/METHODS This randomized, double-blind, placebo-controlled study was conducted with 22 individuals aged between 19 and 64 years who had been diagnosed with type 2 diabetes for at least 5 years, used only metformin, did not lose more than 10% of their body weight in the last 6 months, and had a body mass index of ≥ 25.0 kg/m2. While the study group (n = 11) consumed bread containing 500 mg pomegranate peel daily for 8 wk, the control group (n = 11) consumed standard bread. Anthropometric measurements and metabolic and oxidative parameters of individuals were evaluated at the beginning and end of the study. RESULTS Decreases were detected in the waist circumference, waist/hip and waist/height ratios, body fat percentages, blood pressure, and serum insulin, triglyceride, and total cholesterol levels in the individuals in the treatment group, compared with those in the control group (P < 0.05). CONCLUSIONS Pomegranate peel consumption by individuals with type 2 diabetes may have positive effects on anthropometric measurements and glycemic and lipid parameters.
Collapse
Affiliation(s)
- Özlem Özpak Akkuş
- Department of Nutrition and Dietetics, Toros University, Mersin 33140, Turkey
| | - Uğurcan Metin
- Department of Culinary, Toros University, Mersin 33140, Turkey
| | - Zeynep Çamlık
- Department of Nutrition and Dietetic, City Hospital, Mersin 33330, Turkey
| |
Collapse
|
8
|
Muñoz-Bas C, Muñoz-Tebar N, Candela-Salvador L, Pérez-Alvarez JA, Lorenzo JM, Viuda-Martos M, Fernández-López J. Quality Characteristics of Fresh Date Palm Fruits of "Medjoul" and "Confitera" cv. from the Southeast of Spain (Elche Palm Grove). Foods 2023; 12:2659. [PMID: 37509750 PMCID: PMC10379225 DOI: 10.3390/foods12142659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The quality characteristics (physical, techno-functional, and chemical) of date fruits (at the tamar stage) of two cultivars ("Confitera", autochthonous and unknown vs. "Medjoul", widely distributed and well-known), grown in the Southeast of Spain (Elche palm grove) were evaluated in order to reinforce decisions aimed at organizing the production of fresh dates from Elche by selecting the most profitable cultivar. Morphologically, Confitera dates were longer and with higher pulp yield than Medjoul dates (4.58 cm vs. 3.88 cm, and 84% vs. 78%, respectively) (p < 0.05). Nutritionally, both dates are a good source of carbohydrates (total sugars (43-48%) and dietary fiber (20-22%)), with small amounts of fat and proteins. The main free sugars in dates from both cultivars were glucose and fructose (reducing sugars). The most abundant mineral found in both date fruits were K, followed by Ca or Mg (depending on the cultivar; Ca in Medjoul and Mg in Confitera). Confitera dates showed a higher total antioxidant activity than Medjoul, corresponding with their higher (p < 0.05) content in polyphenolic compounds, mainly flavonoids (catechin and epicatechin predominantly). Confitera dates should be promoted in this region not only for their contribution to sustainable agricultural development and biodiversity, but also for their higher overall quality.
Collapse
Affiliation(s)
- Clara Muñoz-Bas
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Ctra. Beniel Km 3.2, 033121 Orihuela, Spain
| | - Nuria Muñoz-Tebar
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Ctra. Beniel Km 3.2, 033121 Orihuela, Spain
| | - Laura Candela-Salvador
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Ctra. Beniel Km 3.2, 033121 Orihuela, Spain
| | - José A Pérez-Alvarez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Ctra. Beniel Km 3.2, 033121 Orihuela, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, 32900 San Cibrao das Viñas, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Ctra. Beniel Km 3.2, 033121 Orihuela, Spain
| | - Juana Fernández-López
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Ctra. Beniel Km 3.2, 033121 Orihuela, Spain
| |
Collapse
|
9
|
Zhang F, Shen R, Li N, Yang X, Lin D. Nanocellulose: An amazing nanomaterial with diverse applications in food science. Carbohydr Polym 2023; 304:120497. [PMID: 36641166 DOI: 10.1016/j.carbpol.2022.120497] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Recently, nanocellulose has gained growing interests in food science due to its many advantages including its broad resource of raw materials, renewability, interface stability, high surface area, mechanical strength, prebiotic characteristics, surface chemistry versatility and easy modification. Since then, this review summarized the sources, morphology, and structure characteristics of nanocellulose. Meanwhile, the mechanical, chemical, and combined treatment methods for the preparation of nanocellulose with desired properties were elaborated. Furthermore, the application of nanocellulose in Pickering emulsions, reinforced food packaging, functional food ingredient, food-grade hydrogels, and biosensors were emphasized. Finally, the safety, challenges, and future perspectives of nanocellulose were discussed. This work provided key developments and effective benefits of nanocellulose for future research opportunities in food.
Collapse
Affiliation(s)
- Fengrui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Nan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
10
|
Magalhães D, Vilas-Boas AA, Teixeira P, Pintado M. Functional Ingredients and Additives from Lemon by-Products and Their Applications in Food Preservation: A Review. Foods 2023; 12:foods12051095. [PMID: 36900612 PMCID: PMC10001058 DOI: 10.3390/foods12051095] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Citrus trees are among the most abundant fruit trees in the world, with an annual production of around 124 million tonnes. Lemons and limes are among the most significant contributors, producing nearly 16 million tonnes per year. The processing and consumption of citrus fruits generates a significant amount of waste, including peels, pulp, seeds, and pomace, which represents about 50% of the fresh fruit. Citrus limon (C. limon) by-products are composed of significant amounts of bioactive compounds, such as phenolic compounds, carotenoids, vitamins, essential oils, and fibres, which give them nutritional value and health benefits such as antimicrobial and antioxidant properties. These by-products, which are typically discarded as waste in the environment, can be explored to produce new functional ingredients, a desirable approach from a circular economy perspective. The present review systematically summarizes the potential high-biological-value components extracted from by-products to achieve a zero-waste goal, focusing on the recovery of three main fractions: essential oils, phenolic compounds, and dietary fibres, present in C. limon by-products, and their applications in food preservation.
Collapse
|
11
|
Zou X, Xu X, Chao Z, Jiang X, Zheng L, Jiang B. Properties of plant-derived soluble dietary fibers for fiber-enriched foods: A comparative evaluation. Int J Biol Macromol 2022; 223:1196-1207. [PMID: 36347374 DOI: 10.1016/j.ijbiomac.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Plant-derived soluble dietary fibers (SDF) have many important physiological functions and the applications of SDF vary based on their properties, which are worth further investigating for fiber-enriched food production. In this study, SDF derived from konjac, apple, chicory, flaxseed, orange, psyllium seed, soybean and oat were purified, and their structural, physicochemical and functional properties were systematically evaluated. Monosaccharide composition analysis showed that these SDF belonged to heteropolysaccharides, of which konjac, psyllium seed, apple, soybean and oat SDF were glucomannan, arabinoxylan, pectin, arabinogalactan and glucan, respectively. The molecular weight of konjac glucomannan (KGM, 5.22 × 106 Da) was the highest, and inulin, soybean arabinogalactan (SA) and oat glucan (OG) had higher water solubility. Moreover, KGM, apple pectin (AP), flaxseed SDF (FS) and psyllium seed arabinoxylan (PA) exhibited better water-holding capacity, swelling capacity, emulsifying activity and stability. Rheological studies and texture profile analysis suggested that KGM had the best viscosity and gelation ability. In addition, AP and orange SDF (OS) showed better α-amylase inhibitory activity, while OS and KGM had higher pancreatic lipase inhibitory activity. Also, KGM and FS displayed fine cholesterol absorption capacity. To summary, these functional properties illustrated the feasibility of SDF to regulate blood sugar and blood lipid levels.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Xiuli Xu
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhonghao Chao
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xuan Jiang
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
12
|
Abstract
One of the biggest problems faced by food industries is the generation of large amounts of agro-industrial byproducts, such as those derived from fruit processing, as well as the negative effects of their inadequate management. Approximately 1/3 of the food produced worldwide is unused or is otherwise wasted along the chain, which represents a burden on the environment and an inefficiency of the system. Thus, there is growing interest in reintroducing agro-industrial byproducts (both from fruits and other sources) into the processing chain, either by adding them as such or utilizing them as sources of health-promoting bioactive compounds. The present work discusses recent scientific studies on the nutritional and bioactive composition of some agro-industrial byproducts derived from fruit processing, their applications as ingredients to supplement baked foods, and their main biological activities on the consumer’s health. Research shows that agro-industrial fruit byproducts can be incorporated into various baked foods, increasing their fiber content, bioactive profile, and antioxidant capacity, in addition to other positive effects such as reducing their glycemic impact and inducing satiety, all while maintaining good sensory acceptance. Using agro-industrial fruit byproducts as food ingredients avoids discarding them; it can promote some bioactivities and maintain or even improve sensory acceptance. This contributes to incorporating edible material back into the processing chain as part of a circular bioeconomy, which can significantly benefit primary producers, processing industries (particularly smaller ones), and the final consumer.
Collapse
|
13
|
A. Vaz A, Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O. Physicochemical Properties and Bioaccessibility of Phenolic Compounds of Dietary Fibre Concentrates from Vegetable By-Products. Foods 2022; 11:2578. [PMID: 36076764 PMCID: PMC9455628 DOI: 10.3390/foods11172578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The agro-food industry generates a large volume of by-products, whose revaluation is essential for the circular economy. From these by-products, dietary fibre concentrates (DFCs) can be obtained. Therefore, the objective of this study was to characterise (a) the proximal composition by analysing soluble, insoluble and total Dietary Fibre (DF), (b) the physicochemical properties, and (c) the phenolic profile of artichoke, red pepper, carrot, and cucumber DFCs. In addition, the bioaccessibility of phenolic compounds was also evaluated after in vitro gastrointestinal and colonic digestions. The results showed that the DFCs had more than 30 g/100 g dw. The water holding and retention capacity of the DFCs ranges from 9.4 to 18.7 g of water/g. Artichoke DFC presented high concentration of phenolic compounds (8340.7 mg/kg) compared to the red pepper (304.4 mg/kg), carrot (217.4 mg/kg) and cucumber DFCs (195.7 mg/kg). During in vitro gastrointestinal digestion, soluble phenolic compounds were released from the food matrix, chlorogenic acid, the principal compound in artichoke and carrot DFCs, and hesperetin-7-rutinoside in red pepper cucumber DFCs. Total phenolic content decreased after in vitro colonic digestion hence the chemical transformation of the phenolic compounds by gut microbiota. Based on the results, DFCs could be good functional ingredients to develop DF-enriched food, reducing food waste.
Collapse
Affiliation(s)
| | | | | | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida—Agrotecnio CERCA Center, Av. Alcalde Rovira Roure191, 25198 Lleida, Spain
| |
Collapse
|
14
|
Chemical composition, structural and functional properties of insoluble dietary fiber obtained from the Shatian pomelo peel sponge layer using different modification methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Jiang C, Wang R, Liu X, Wang J, Zheng X, Zuo F. Effect of Particle Size on Physicochemical Properties and in vitro Hypoglycemic Ability of Insoluble Dietary Fiber From Corn Bran. Front Nutr 2022; 9:951821. [PMID: 35911126 PMCID: PMC9335050 DOI: 10.3389/fnut.2022.951821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study was designed for determining the effect of particle size on the functional properties of corn bran insoluble dietary fiber (IDF). Results showed that some physicochemical properties were improved with the decrease in particle size. The structure of the IDF was observed by the scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The surface was found wrinkled and sparse, the particle size was smaller, the crystallinity of IDF had increased slightly, and more -OH and C-O groups were exposed. Moreover, the corn bran IDF with a smaller particle size had a better hypoglycemic effect in vitro, and the inhibitory activity of α-glucosidase and α-amylase were also increased significantly with the decrease in particle size (p < 0.05). When the IDF was 300 mesh, the inhibitory rate of α-glucosidase was 61.34 ± 1.12%, and the inhibitory rate of α-amylase was 17.58 ± 0.33%. It had increased by 25.54 and 106.83%, respectively compared to the control treatment (CK) group. In addition, correlation analysis found that the particle size was highly negatively correlated with some functional properties of IDF (p < 0.05), and the content of cellulose was positively correlated with the functional properties of IDF except WHC (p < 0.05). To sum up, reducing particle size was suitable for the development of high value-added IDF products. This study also revealed the potential value of corn bran IDF and provided a new idea for the diversified application of IDF.
Collapse
Affiliation(s)
- Caixia Jiang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaolan Liu
- College of Food and Bioengineering, Qiqihar University, Qiqihar, China
- Heilongjiang Key Laboratory of Corn Deep Processing Theory and Technology, Qiqihar, China
- *Correspondence: Xiaolan Liu
| | - Juntong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiqun Zheng
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- Xiqun Zheng
| | - Feng Zuo
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
16
|
Mo Y, Ma J, Gao W, Zhang L, Li J, Li J, Zang J. Pomegranate Peel as a Source of Bioactive Compounds: A Mini Review on Their Physiological Functions. Front Nutr 2022; 9:887113. [PMID: 35757262 PMCID: PMC9218663 DOI: 10.3389/fnut.2022.887113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The production and consumption of pomegranates have always been increasing owing to their taste and nutrition. However, during fruit processing, a large number of by-products are produced, such as peels and seeds, which can lead to environmental pollution problems if not handled properly. The pomegranate peel takes up about 26-30% of the total weight, while it contains abundant bioactive substances. This paper carries out a mini review of the characterization and physiological functions of key bioactive compounds in pomegranate peel, comprehensively assessing their effects on human health. The overview summarizes the main phenolic substances in pomegranate peel, including tannins, flavonoids, and phenolic acids. Dietary fiber and other bioactive substances such as alkaloids, minerals, and vitamins are also mentioned. These components act as antioxidants by improving oxidative biomarkers and scavenging or neutralizing reactive oxygen species, further contributing to their extensive functions like anti-inflammatory, anti-cancer, antibacterial, and cardiovascular protection. Overall, it is envisaged that through the deeper understanding of bioactive compounds in pomegranate peel, the waste sources can be better reused for physiological applications.
Collapse
Affiliation(s)
- Yaxian Mo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiaqi Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentao Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Ürümqi, China
| | - Jiangui Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Ürümqi, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Intake of Natural, Unprocessed Tiger Nuts ( Cyperus esculentus L.) Drink Significantly Favors Intestinal Beneficial Bacteria in a Short Period of Time. Nutrients 2022; 14:nu14091709. [PMID: 35565679 PMCID: PMC9104503 DOI: 10.3390/nu14091709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/14/2023] Open
Abstract
Horchata is a natural drink obtained from tiger nut tubers (Cyperus esculentus L.). It has a pleasant milky aspect and nutty flavor; some health benefits have been traditionally attributed to it. This study evaluated the effects of an unprocessed horchata drink on the gut microbiota of healthy adult volunteers (n = 31) who consumed 300 mL of natural, unprocessed horchata with no added sugar daily for 3 days. Although there were no apparent microbial profile changes induced by horchata consumption in the studied population, differences could be determined when volunteers were segmented by microbial clusters. Three distinctive enterogroups were identified previous to consuming horchata, respectively characterized by the relative abundances of Blautia and Lachnospira (B1), Bacteroides (B2) and Ruminococcus and Bifidobacterium (B3). After consuming horchata, samples of all volunteers were grouped into two clusters, one enriched in Akkermansia, Christenellaceae and Clostridiales (A1) and the other with a remarkable presence of Faecalibacterium, Bifidobacterium and Lachnospira (A2). Interestingly, the impact of horchata was dependent on the previous microbiome of each individual, and its effect yielded microbial profiles associated with butyrate production, which are typical of a Mediterranean or vegetable/fiber-rich diet and could be related to the presence of high amylose starch and polyphenols.
Collapse
|
18
|
Fayaz G, Soleimanian Y, Mhamadi M, Turgeon SL, Khalloufi S. The applications of conventional and innovative mechanical technologies to tailor structural and functional features of dietary fibers from plant wastes: A review. Compr Rev Food Sci Food Saf 2022; 21:2149-2199. [DOI: 10.1111/1541-4337.12934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/04/2021] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Goly Fayaz
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Yasamin Soleimanian
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Mmadi Mhamadi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Sylvie L. Turgeon
- Institute of Nutrition and Functional Foods Laval University Québec Canada
- Food Science Department Laval University Québec Canada
| | - Seddik Khalloufi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| |
Collapse
|
19
|
Ultracentrifugal milling and steam heating pretreatment improves structural characteristics, functional properties, and in vitro binding capacity of cellulase modified soy okara residues. Food Chem 2022; 384:132526. [PMID: 35217458 DOI: 10.1016/j.foodchem.2022.132526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022]
Abstract
Soy okara contains high levels of insoluble dietary fiber (IDF). The objective of this work is to investigate the composition, structure changes, and functionality of okara residues after the modification by ultracentrifugal milling (M), milling + steam heating (M + S), or milling + steam heating + enzymatic (M + S + E) treatment. The results showed that the combination of M + S could significantly convert okara IDF into soluble ones, and the highest conversion rate (59%) was achieved with the smallest size (147 µm). The structural characterization revealed that size reduction altered the functional groups and crystallinity of the modified okara residues with irregular and enlarged morphology. More importantly, the functionalities, including water and oil holding capacities, swelling capacity, as well as cholesterol and bile acid binding capacities were improved remarkably in okara residues pretreated by M + S prior to cellulase hydrolysis. The findings provide new insights on the effective biotransformation of okara into valuable food ingredients.
Collapse
|
20
|
Olive Cake Powder as Functional Ingredient to Improve the Quality of Gluten-Free Breadsticks. Foods 2022; 11:foods11040552. [PMID: 35206029 PMCID: PMC8871176 DOI: 10.3390/foods11040552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
The growing demand for high-quality gluten-free baked snacks has led researchers to test innovative ingredients. The aim of this work was to assess the feasibility of olive cake powder (OCP) to be used as a functional ingredient in gluten-free (GF) breadsticks. OCP was used by replacing 1, 2, and 3% of maize flour into GF breadstick production (BS1, BS2, BS3, respectively), and their influence on nutritional, bioactive, textural, and sensorial properties was assessed and compared with a control sample (BSC). BS1, BS2, and BS3 showed a higher lipid, moisture, and ash content. BS2 and BS3 had a total dietary fibre higher than 3 g 100 g−1, achieving the nutritional requirement for it to be labelled as a “source of fibre”. The increasing replacement of olive cake in the formulation resulted in progressively higher total phenol content and antioxidant activity for fortified GF breadsticks. The L* and b* values decreased in all enriched GF breadsticks when compared with the control, while hardness was the lowest in BS3. The volatile profile highlighted a significant reduction in aldehydes, markers of lipid oxidation, and Maillard products (Strecker aldehydes, pyrazines, furans, ketones) in BS1, BS2, and BS3 when compared with BSC. The sensory profile showed a strong influence of OCP addition on GF breadsticks for almost all the parameters considered, with a higher overall pleasantness score for BS2 and BS3.
Collapse
|
21
|
Marques BC, Rayo-Mendez LM, Tadini CC. Applying the concept of state diagram on the stability analysis of an NSP-rich ingredient extracted from overripe bananas (Musa cavendishii var. Nanicão). Food Chem 2021; 367:130639. [PMID: 34348199 DOI: 10.1016/j.foodchem.2021.130639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
In this work, an ingredient containing non-starch polysaccharides (NSP), obtained from overripe bananas, was characterized using differential scanning calorimetry (DSC) and vapor sorption isotherms. Soluble sugars from overripe bananas were extracted using ethanol, resulting in a solid NSP-rich fraction. The physical properties of this new ingredient and its response to temperature and water interactions are needed for its application as a fiber flour aggregate in food preparations. Results from thermal analyses, including gelatinization, glass transition and fusion, allowed building state diagrams, then compared to vapor sorption isotherms which resulted similar to a Brunauer-Emmet-Teller (BET) type III isotherm at 25 °C, for NSP and standards samples as arabinoxylan and polygalacturonic acid. A good fit was obtained for the glass transition curves using the Kwei model. This approach enabled us to explore the stability of the material, regarding safety limits for microbial deterioration and structural changes due to glass transition.
Collapse
Affiliation(s)
- Bianca C Marques
- Universidade de São Paulo, Escola Politécnica, Dept. of Chemical Eng., Main Campus, SP, Brazil; Universidade de São Paulo, FoRC/NAPAN-Food Research Center, Brazil
| | - Lina M Rayo-Mendez
- Universidade de São Paulo, Escola Politécnica, Dept. of Chemical Eng., Main Campus, SP, Brazil; Universidade de São Paulo, FoRC/NAPAN-Food Research Center, Brazil
| | - Carmen C Tadini
- Universidade de São Paulo, Escola Politécnica, Dept. of Chemical Eng., Main Campus, SP, Brazil; Universidade de São Paulo, FoRC/NAPAN-Food Research Center, Brazil.
| |
Collapse
|
22
|
Ching LW, Zulkipli N‘AM, Muhamad II, Marsin AM, Khair Z, Anis SNS. Dietary management for healthier batter formulations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Yang X, Dai J, Zhong Y, Wei X, Wu M, Zhang Y, Huang A, Wang L, Huang Y, Zhang C, Chen X, Xiao H. Characterization of insoluble dietary fiber from three food sources and their potential hypoglycemic and hypolipidemic effects. Food Funct 2021; 12:6576-6587. [PMID: 34100044 DOI: 10.1039/d1fo00521a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dietary fiber is an important nutrient for improving human health and controlling calorie intake, and is used to produce functional foods. In this study, insoluble dietary fiber (IDF) from three sources (enoki mushrooms, carrots, and oats) was characterized and their hypoglycemic and hypolipidemic effects were determined with in vitro and in vivo models. The results of Scanning electron microscopy (SEM) showed that the IDF from the three sources have different morphologies. The Fourier transform infrared spectroscopy (FT-IR) results showed that the IDF samples from the three sources have similar active groups, but the X-ray diffraction (XRD) and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) results indicated that oat IDF mainly contained cellulose, and enoki mushroom IDF and carrot IDF contained hemicelluloses and cellulose. Among three IDF, carrot IDF had stronger water holding capacity, swelling capacity, and adsorption capacity of oil and cholate; enoki mushroom IDF had stronger glucose adsorption capacity and the ability to inhibit fat digestion; while oat IDF had stronger cholesterol adsorption capacity. None of the three IDF showed significant inhibition on starch digestion. Results from mouse feeding studies showed that IDF from three sources all improved glucose tolerance and inhibited the rise of blood lipid after the fat loading. Thus, this study demonstrated the functional significance of the IDF from three sources, which provides a reference for their application in functional food products aiming at maintaining healthy glucose and blood lipid levels.
Collapse
Affiliation(s)
- Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Valorization of Citrus Co-Products: Recovery of Bioactive Compounds and Application in Meat and Meat Products. PLANTS 2021; 10:plants10061069. [PMID: 34073552 PMCID: PMC8228688 DOI: 10.3390/plants10061069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
Citrus fruits (orange, lemon, mandarin, and grapefruit) are one of the most extensively cultivated crops. Actually, fresh consumption far exceeds the demand and, subsequently, a great volume of the production is destined for the citrus-processing industries, which produce a huge quantity of co-products. These co-products, without proper treatment and disposal, might cause severe environmental problems. The co-products obtained from the citrus industry may be considered a very important source of high-added-value bioactive compounds that could be used in the pharmaceutical, cosmetic, and dietetic industries, and mainly in the food industry. Due to consumer demands, the food industry is exploring a new and economical source of bioactive compounds to develop novel foods with healthy properties. Thus, the aim of this review is to describe the possible benefits of citrus co-products as a source of bioactive compounds and their applications in the development of healthier meat and meat products.
Collapse
|
25
|
Delgado-Ospina J, Lucas-González R, Viuda-Martos M, Fernández-López J, Pérez-Álvarez JÁ, Martuscelli M, Chaves-López C. Bioactive compounds and techno-functional properties of high-fiber co-products of the cacao agro-industrial chain. Heliyon 2021; 7:e06799. [PMID: 33898851 PMCID: PMC8060597 DOI: 10.1016/j.heliyon.2021.e06799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
The cacao shell (CS) and cacao pod husk (CPH), two of the most promising high-fiber co-products of the cacao agro-industrial chain, were evaluated to determine their potential incorporation into food products. This research determined bioactive compounds and techno-functional properties of CS and CPH, and was evaluated the enzymatic inactivation by thermal treatments in CPH. We found that CS is rich in protein, lipids, dietary fiber (48.1 ± 0.3 g 100 gdw -1), and antioxidant molecules such as epicatechin (1.10 ± 0.02 mg g-1) and isoquercetin (1.04 ± 0.09 mg g-1). Moreover, in CS a positive effect of hydration mechanism occur; in fact, it was observed a reduction of Lightness (L∗) value and a remarkable color difference (ΔE∗,18.8 ± 0.7) (CIEL∗a∗b∗ color space), between hydrated and dry CS samples; so, it could be used as a potential natural colorant in foods. CPH resulted equally rich in dietary fiber (35.3-37.4%) and flavonoids (2.9 ± 0.1 mg RE g-1); in this co-product, the rapid enzymatic inactivation by thermal treatments was essential to obtain the highest antioxidant activity and polyphenols content; regarding the techno-functional properties, it was found that CPH flour had high hydration capacity, so CPH can use it as a replacement for emulsifiers or water holding additives while incorporating the fiber and abundantly found antioxidants.
Collapse
Affiliation(s)
- Johannes Delgado-Ospina
- Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, 76001, Cali, Colombia
| | - Raquel Lucas-González
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - Maria Martuscelli
- Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Clemencia Chaves-López
- Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
26
|
Jiménez Nempeque LV, Gómez Cabrera ÁP, Colina Moncayo JY. Evaluation of Tahiti lemon shell flour ( Citrus latifolia Tanaka) as a fat mimetic. Journal of Food Science and Technology 2021; 58:720-730. [PMID: 33568866 DOI: 10.1007/s13197-020-04588-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
The citrus juice industry produces a significant amount of peel residues; it can represent between 18 and 30% of the total weight of the fruit. In recent years, there has been an increase in its use as a source of fiber. The objective of this study was to evaluate the Tahiti lemon peel flour (Citrus latifolia Tanaka) as a fat mimetic (10, 20 and 30%) in a cake. The chemical and nutritional characterization of the lemon peel, the determination of the drying conditions to obtain the flour of the lemon peel, and the physical, chemical, and nutritional characterization of the lemon peel flour and cake was evaluated. A high content of dietary fiber for Tahiti lemon peel (89.15 ± 0.00 g/100 g) and flour (85.30 ± 0.06 g/100 g) was obtained. For the drying conditions to obtain the lemon peel flour, a temperature of 60 °C during 16 h was selected. The cake with greater acceptability had a 10% fat replacement with lemon peel flour, which presented a reduction of 19.16% in the fat content and an approximately double increase in the dietary fiber content. This study suggests that the flour obtained from Tahiti lemon flavedo can be used as a mimetic of fat in cakes, contributing to the nutritional characteristics of the food in which it is included.
Collapse
|
27
|
|
28
|
Flavedo and albedo of five citrus fruits from Southern Italy: physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00787-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Fernández-López J, Botella-Martínez C, Navarro-Rodríguez de Vera C, Sayas-Barberá ME, Viuda-Martos M, Sánchez-Zapata E, Pérez-Álvarez JA. Vegetable Soups and Creams: Raw Materials, Processing, Health Benefits, and Innovation Trends. PLANTS 2020; 9:plants9121769. [PMID: 33327480 PMCID: PMC7764940 DOI: 10.3390/plants9121769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Vegetable soups and creams have gained popularity among consumers worldwide due to the wide variety of raw materials (vegetable fruits, tubers, bulbs, leafy vegetables, and legumes) that can be used in their formulation which has been recognized as a healthy source of nutrients (mainly proteins, dietary fiber, other carbohydrates, vitamins, and minerals) and bioactive compounds that could help maintain the body’s health and wellbeing. In addition, they are cheap and easy to preserve and prepare at home, ready to eat, so in consequence they are very useful in the modern life rhythms that modify the habits of current consumption and that reclaim foods elaborated with natural ingredients, ecologic, vegans, less invasive production processes, agroindustry coproducts valorization, and exploring new flavors and textures. This review focuses on the nutritional and healthy properties of vegetable soups and creams (depending on the raw materials used in their production) highlighting their content in bioactive compounds and their antioxidant properties. Apart from the effect that some processing steps could have on these compounds, innovation trends for the development of healthier soups and creams adapted to specific consumer requirements have also been explored.
Collapse
Affiliation(s)
- Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Casilda Navarro-Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - María Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Elena Sánchez-Zapata
- Research & Development Pre-Cooked Convenience Food, Surinver El Grupo S.Coop, 03191 Alicante, Spain;
| | - José Angel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
- Correspondence: ; Tel.: +94-96-674-9739
| |
Collapse
|
30
|
Khalil MNA, Farghal HH, Farag MA. Outgoing and potential trends of composition, health benefits, juice production and waste management of the multi-faceted Grapefruit Citrus Χ paradisi: A comprehensive review for maximizing its value. Crit Rev Food Sci Nutr 2020; 62:935-956. [PMID: 33054326 DOI: 10.1080/10408398.2020.1830364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Grapefruit (GF) Citrus Χ paradisi Macfad (F. Rutaceae) is one of the major citrus fruits that encompass a myriad of bioactive chemicals and most unique among citrus fruits. Nevertheless, no study has yet to assess comprehensively its multitudinous constituents, health benefits, and valuable waste products. Hereto, the present review provides an updated comprehensive review on the different aspects of GF, its juice production, waste valorization, enhancement of its byproducts quality, and compared to other citrus fruits. Grapefruit uniqueness among other citrus fruits stands from its unique taste, flavor, and underlying complex chemical composition. Despite limonene abundance in peel oil and grapefruit juice (GFJ) aroma, nootkatone and sulfur compounds are the key determinants of its flavor, whereas flavanones contribute to its bitter taste and in conjunction with limonoids. Different postharvest treatments and juice processing are reviewed and in context to its influence on final product quality and or biological effects. Flavanones, furanocoumarins, and limonoids appear as the most prominent in GF drug interactions affecting its metabolism and or excretion. Valorization of GF peel is overviewed for its utilization as biosrobent, its oil in aromatherapy, limonene as antimicrobial or in cosmetics, fruit pectin for bioethanol production, or as biosorbent, and peel phenolics biotransformation. The present review capitalizes on all of the aforementioned aspects in GF and further explore novel aspects of its juice quality presenting the full potential of this valued multi-faceted citrus fruit.
Collapse
Affiliation(s)
- Mohammed N A Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hebatullah H Farghal
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
31
|
Gutöhrlein F, Morales-Medina R, Boje AL, Drusch S, Schalow S. Modulating the hydration properties of pea hull fibre by its composition as affected by mechanical processing and various extraction procedures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Gabiatti C, Vasquez Mejia SM, Lim LT, Bohrer B, Rodrigues RC, Prentice C. Enzymatically Treated Spent Cellulose Sausage Casings as an Ingredient in Beef Emulsion Systems. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.9875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective of this research was to incorporate an ingredient obtained from spent cellulose casings in beef emulsion modeling systems. The test ingredient (residual sausage casing, RSC) was procured from cellulose sausage casings following thermal processing of the sausages. The casings were cleaned of contaminants before a combination of enzymatic hydrolysis and high-speed homogenization was conducted in an effort to improve the functional attributes of the cellulose casing residue (i.e. recycling/upcycling of the spent casings). The beef emulsion modeling systems used in this study consisted of 57.30% beef, 20% water, 15% olive oil, 6% of the combination of RSC and an all-purpose binder, 1.45% NaCl, 0.40% sodium tri-polyphosphate, 0.15% sodium nitrite cure, and 0.0035% sodium erythorbate. The overlying goal here was to test the ability of the RSC ingredient for partial or full replacement of binder ingredients in a beef emulsion system. Therefore, the beef emulsion model systems were prepared with five different levels of the RSC ingredient as a substitution to an all-purpose binder ingredient (0% RSC, 25% RSC, 50% RSC, 75% RSC, and 100% RSC). This study was independently replicated in its entirety three times in a completely randomized design and data were analyzed using a generalized linear mixed statistical model. Emulsion samples were tested for proximate composition, cooking loss, emulsion stability, texture profile analysis, and instrumental color. Overall, technological properties and emulsion stability were lost as the level of the RSC ingredient increased, but low inclusion levels of the RSC ingredient (25% RSC) may help maintain acceptable levels of yield and emulsion stability, while improving the sustainability of the sausage production system.
Collapse
|
33
|
Zhang F, Yi W, Cao J, He K, Liu Y, Bai X. Microstructure characteristics of tea seed dietary fibre and its effect on cholesterol, glucose and nitrite ion adsorption capacities
in vitro
: a comparison study among different modifications. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fangfang Zhang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Wangrui Yi
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Jun Cao
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Kunming He
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Yawen Liu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Xinpeng Bai
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| |
Collapse
|
34
|
Perez‐Santaescolastica C, Goemaere O, Hanskens J, Lorenzo JM, Fraeye I. Effect of stabiliser classes (animal proteins, vegetable proteins, starches, hydrocolloids and dietary fibre) on the physicochemical properties of a model lean meat product. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Olivier Goemaere
- KU Leuven Ghent Technology Campus Leuven Food Science and Nutrition Research Centre (Lforce) Research Group for Technology and Quality of Animal Products Gebroeders De Smetstraat 1 Ghent9000Belgium
| | - Jana Hanskens
- KU Leuven Ghent Technology Campus Leuven Food Science and Nutrition Research Centre (Lforce) Research Group for Technology and Quality of Animal Products Gebroeders De Smetstraat 1 Ghent9000Belgium
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia Rúa Galicia 4 Parque Tecnológico de Galicia Ourense 32900 Spain
| | - Ilse Fraeye
- KU Leuven Ghent Technology Campus Leuven Food Science and Nutrition Research Centre (Lforce) Research Group for Technology and Quality of Animal Products Gebroeders De Smetstraat 1 Ghent9000Belgium
| |
Collapse
|
35
|
Gabiatti C, Neves IC, Lim LT, Bohrer BM, Rodrigues RC, Prentice C. Characterization of dietary fiber from residual cellulose sausage casings using a combination of enzymatic treatment and high-speed homogenization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Mu R, Hong X, Ni Y, Li Y, Pang J, Wang Q, Xiao J, Zheng Y. Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.09.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Cui J, Lian Y, Zhao C, Du H, Han Y, Gao W, Xiao H, Zheng J. Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Compr Rev Food Sci Food Saf 2019; 18:1514-1532. [DOI: 10.1111/1541-4337.12489] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jiefen Cui
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| | - Yunhe Lian
- Research and Development Dept.Chenguang Biotech Group Co., Ltd. Hebei 057250 China
| | - Chengying Zhao
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hengjun Du
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Yanhui Han
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Wei Gao
- Research and Development Dept.Chenguang Biotech Group Co., Ltd. Hebei 057250 China
| | - Hang Xiao
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Jinkai Zheng
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| |
Collapse
|
38
|
Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales. Journal of Food Science and Technology 2019; 57:152-162. [PMID: 31975718 DOI: 10.1007/s13197-019-04041-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
Abstract
We evaluated soy hull dietary fibers (SHDF) extracted from different raw materials, in terms of their chemical composition, physicochemical properties, structure, and ability to regulate fecal microflora, in order to investigate the properties and functions of SHDF. The structures of insoluble dietary fiber from soy hull with oxalic acid extraction (IDFO) and insoluble dietary fiber from soy hull with citric acid extraction (IDFC) were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Compared with IDFO, IDFC had larger crystalline regions, and a higher water retention capacity (4.92 g/g), water swelling capacity (4.77 mL/g), oil adsorption capacity (1.60%), α-amylase activity inhibition ratio (12.72%), glucose adsorption capacity (1.59-13.42%), and bile acid retardation index (5.18-26.61%). Given that the gut microbiota plays a pivotal role in health homeostasis, we performed a detailed investigation of the effects of dietary fiber on fecal microbiota through 16S rDNA high-throughput sequencing. As revealed by Venn, principal component analysis, and 3D-principal co-ordinates analysis analysis, the structure of the fecal microbiota community was markedly altered by intake of IDFO and IDFC. In particular, the abundance of Bifidobacteriales and Lactobacillales significantly increased to varying degrees as a result of IDFO and IDFC intake. Altogether, this study demonstrates a prebiotic effect of SHDF on the fecal microbiota in vitro and provides a basis for the development of SHDF as a novel gut microbiota modulator for health promotion.
Collapse
|
39
|
Functional and compositional changes of orange peel fiber thermally-treated in a twin extruder. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Lucas-González R, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M. Effect of drying processes in the chemical, physico-chemical, techno-functional and antioxidant properties of flours obtained from house cricket (Acheta domesticus). Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03301-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Khorasani AC, Shojaosadati SA. Intestinal adsorption of glucose, cholesterol and bile salt by simultaneous incorporation of edible microbiosorbent and intestinal bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Ciudad-Mulero M, Fernández-Ruiz V, Matallana-González MC, Morales P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:83-134. [PMID: 31445601 DOI: 10.1016/bs.afnr.2019.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary fiber (DF) includes the remnants of the edible part of plants and analogous carbohydrates that are resistant to digestion and absorption in the human small intestine with complete or partial fermentation in the human large intestine. DF can be classified into two main groups according to its solubility, namely insoluble dietary fiber (IDF) that mainly consists on cell wall components, including cellulose, some hemicelluloses, lignin and resistant starch, and soluble dietary fiber (SDF) that consists of non-cellulosic polysaccharides as non-digestible oligosaccharides, arabinoxylans (AX), β-glucans, some hemicelluloses, pectins, gums, mucilages and inulin. The intake of DF is associated with health benefits. IDF can contribute to the normal function of the intestinal tract and it has an important role in the prevention of colonic diverticulosis and constipation. SDF is extensively fermented by gut microbiota and it is associated with carbohydrate and lipid metabolism, with important health benefits due to its hypocholesterolemic properties. Due to these nutritional and health properties, DF is widely used as functional ingredients in food industry, being whole grain cereals, pulses, fruits and vegetables the main sources of DF. Also some synthetic sources are employed, namely polydextrose, hydroxypropyl methylcellulose or cyclodextrins. The DF content of cereals varies depending on cultivars, their botanical components (pericarp, emdosperm and germ) and the processing conditions they have undergone (baking, extrusion, etc.). In cereal grains, AX are the predominant non-cellulose DF polysaccharides followed by cellulose and β-glucans, while in pseudocereals, pectins are quantitatively predominant.
Collapse
Affiliation(s)
- María Ciudad-Mulero
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Mª Cruz Matallana-González
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Patricia Morales
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
43
|
Luo X, Wang Q, Fang D, Zhuang W, Chen C, Jiang W, Zheng Y. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties. Int J Biol Macromol 2018; 120:1461-1467. [DOI: 10.1016/j.ijbiomac.2018.09.149] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 01/27/2023]
|
44
|
Cao X, Zhang M, Mujumdar AS, Zhong Q, Wang Z. Effect of nano-scale powder processing on physicochemical and nutritional properties of barley grass. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.05.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Influence of Drying Method on the Composition, Physicochemical Properties, and Prebiotic Potential of Dietary Fibre Concentrates from Fruit Peels. J FOOD QUALITY 2018. [DOI: 10.1155/2018/9105237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dietary fibre concentrates (DFC) obtained from fruit and vegetable by-products are powders, mainly obtained by dehydration, used in food formulations to increase nutritional value and to improve functional properties. The modifications of insoluble, soluble, and total dietary fibres (IDF, SDF, and TDF), physicochemical properties (solubility, swelling capacity, water/oil retention capacity, pH, and tapping density), and prebiotic potential of DFC from orange, mango, and prickly pear peels obtained by freeze-drying (FD) and convective hot air-drying (HA) were studied. In vitro faecal fermentation was used to evaluate the short-chain fatty acid (SCFA) production as a prebiotic indicator. TDF in FD orange was 5.5 g·100 g−1 higher than that in the HA sample, whereas HA increased TDF in prickly pear (9.5 g·100 g−1). No differences in fibre composition were observed in mango DFC. The physicochemical properties mostly affected by dehydration treatment were solubility and swelling capacity. HA increased SCFA production in orange peel (48 mmol·g−1 higher) but decreased it in mango and prickly pear (15 and 19 mmol·g−1 lower). Butyrate production of HA orange DFC was comparable to that obtained with the positive control (4.5 mmol·g−1). No production of propionate or butyrate was observed after 6 h fermentation in mango samples, despite the high SDF content (≈20 g·100 g−1). A decrease of the SDF : TDF ratio produced by the drying method improved the SCFA production.
Collapse
|
46
|
Song Y, Su W, Mu YC. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1479715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Ying Chun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
47
|
Garcia-Amezquita LE, Tejada-Ortigoza V, Serna-Saldivar SO, Welti-Chanes J. Dietary Fiber Concentrates from Fruit and Vegetable By-products: Processing, Modification, and Application as Functional Ingredients. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2117-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Lucas-González R, Viuda-Martos M, Pérez Álvarez JA, Fernández-López J. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion. Food Chem 2018; 256:252-258. [PMID: 29606446 DOI: 10.1016/j.foodchem.2018.02.128] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/29/2022]
Abstract
The aim was to evaluate (i) the phenol and flavonoid recovery and bioaccessibility indexes, (ii) the stability of individual polyphenolic compounds and (iii) the antioxidant activity of persimmon flours (cultivars 'Rojo Brillante' and 'Triumph') during the in vitro digestion. The recovery index for phenolic and flavonoid content was dependent on flour type and digestion phase. After the dialysis phase, the bioaccessibility for phenolic compounds from both flours was similar; for flavonoids it was higher in 'Triumph' than 'Rojo Brillante' flour. After in vitro digestion, 13 polyphenolic compounds were detected in both flours, of which only six were detected in the intestinal phase. Their antioxidant activity (ABTS+, FRAP and DPPH) decreased after intestinal phase, while their chelating activity (FIC assay) increased in both flours. So, persimmon flours could be included in the formulation of foods to improve either their scarcity of bioactive compounds or an unbalanced nutritional composition.
Collapse
Affiliation(s)
- Raquel Lucas-González
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Alicante, Spain
| | - José A Pérez Álvarez
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Alicante, Spain.
| |
Collapse
|
49
|
Rubert J, Hurkova K, Stranska M, Hajslova J. Untargeted metabolomics reveals links between Tiger nut (Cyperus esculentus L.) and its geographical origin by metabolome changes associated with membrane lipids. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:605-613. [DOI: 10.1080/19440049.2017.1400694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Josep Rubert
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Kamila Hurkova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Milena Stranska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
50
|
Luo X, Wang Q, Zheng B, Lin L, Chen B, Zheng Y, Xiao J. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food Chem Toxicol 2017; 109:1003-1009. [PMID: 28237776 DOI: 10.1016/j.fct.2017.02.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/10/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Xianliang Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Agricultural Engineering, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangmei Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bingyan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau.
| |
Collapse
|