1
|
Mundanat AS, Singh V, Talniya NC, Rana SS. Plasma modification in fruit juices: Changes in structure, colour, rheological parameters and sensory properties. Food Chem X 2025; 27:102445. [PMID: 40264445 PMCID: PMC12013408 DOI: 10.1016/j.fochx.2025.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
Cold plasma is an eco-friendly technology suitable for processing heat-sensitive food components. Compared to thermal treatments, the technique has the competence in delivering good quality, sensorial accepted, safe food products to the market. Consisting of a high-energy system of reactive species, plasma incurs interaction with the food components causing physical-chemical alterations, without employing any chemical agents to the system. Understanding system efficacy requires evaluating plasma effects on various food properties. The review focuses on the influence of plasma on the physical and sensory properties of fruit juices. Studies suggest the positive and negative inclinations in colour value of samples without deviating from acceptable range. Plasma has exhibited an ability to uphold the particle size distribution which in turn contributes towards the cloud stability, flow behaviour, and viscosity value. The taste, appearance, and mouthfeel of the plasma treated samples were superior than thermal treatments emphasising their value.
Collapse
Affiliation(s)
- Anjaly Shanker Mundanat
- Department of Bio Sciences, School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Vipin Singh
- Department of Catering and Hotel Management, School of Hotel and Tourism Management, Vellore Institute of Technology, Vellore 632014, India
| | | | - Sandeep Singh Rana
- Department of Bio Sciences, School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
2
|
Zhang C, Luo Y, Deng Z, Du R, Han M, Wu J, Zhao W, Guo R, Hou Y, Wang S. Recent advances in cold plasma technology for enhancing the safety and quality of meat and meat products: A comprehensive review. Food Res Int 2025; 202:115701. [PMID: 39967157 DOI: 10.1016/j.foodres.2025.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
Meat and meat products constitute an important component of the diet for several populations around the world and fulfill various nutritional requirements of the human body. However, owing to the inherent characteristics of meat - including its susceptibility to oxidation and contamination with foodborne pathogens - meat and meat products perish easily. In recent years, with improvements in living standards and increased focus on nutrition and health among consumers, non-thermal food processing technologies have received increasing attention. Among these strategies, cold plasma (CP) technology has emerged as a promising and novel processing technique with substantial potential in preserving meat and meat products. In this review, we discussed and analyzed the effects of CP on the nutritional value, sensory quality, and safety of meat and meat products, particularly, the potential toxicological hazards. Furthermore, we provided a detailed introduction to the mechanisms about how CP affects microorganisms, highlighting its role in inducing apoptosis and inhibiting quorum sensing. In the base of these theoretical foundations, this paper proposed several practical recommendations in order to optimize CP technology. Finally, we summarized the potential applications of CP in meat preservation, aiming to establish a theoretical framework for further research and application of this technology.
Collapse
Affiliation(s)
- Changyan Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yulong Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China.
| | - Ziyao Deng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rui Du
- Yinchuan Agricultural Product Quality Testing Center, Yinchuan Agriculture and Rural Bureau, Yinchuan 750021 PR China
| | - Mei Han
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Junqin Wu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Wenxiu Zhao
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rong Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yanru Hou
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| |
Collapse
|
3
|
Shanker MA, Rana SS. Prospects of cold plasma in enhancing food phenolics: analyzing nutritional potential and process optimization through RSM and AI techniques. Front Nutr 2025; 11:1504958. [PMID: 39882036 PMCID: PMC11774703 DOI: 10.3389/fnut.2024.1504958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Consumption of plant-based food is steadily increasing and follows an augmented trend owing to their nutritive, functional, and energy potential. Different bioactive fractions, such as phenols, flavanols, and so on, contribute highly to the nutritive profile of food and are known to have a sensitivity toward higher temperatures. This limits the applicability of traditional thermal treatments for plant products, paving the way for the advancement of innovative and non-thermal techniques such as pulsed electric field, microwave, ultrasound, cold plasma, and high-pressure processing. Among these techniques, cold plasma would be an operative choice in plant-based applications due to their higher efficacy, greenness, chemical exclusivity, and quality retention. The efficiency of the plasma process in ensuring the bioactive potential depends on several factors, such as feeding gas, input voltage, exposure time, pressure, and current flow. This review explains in detail the optimization of process parameters of the cold plasma technique, ensuring greater extractability or retention of total phenols and antioxidant potential. Response surface methodology (RSM) is one of the common techniques involved in the optimization of these course factors. It also covers the convention of artificial intelligence-based methods, such as artificial neural networks (ANN) and genetic algorithms (GA), in evaluating the data on process parameters. The review critically examines the strengths of each optimization tool in determining the optimal process parameters for maximizing phenol retention and antioxidant activity. The ascendancy of these techniques was mentioned in the studies regarding fruit, vegetables, and their products, and they can also be applied to other food products.
Collapse
Affiliation(s)
| | - Sandeep Singh Rana
- Department of BioSciences, School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
de Morais JS, Cabral L, Fonteles TV, Silva FA, Sant'Ana AS, Dos Santos Lima M, Rodrigues S, Fernandes FAN, Magnani M. Effects of different cold plasma treatments on chemical composition, phenolics bioaccessibility and microbiota of edible red mini-roses. Food Chem 2024; 460:140522. [PMID: 39047492 DOI: 10.1016/j.foodchem.2024.140522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
This study evaluated the effect of dielectric barrier discharge (DBD) and glow discharge (glow) cold plasma treatments in color, sugars, organic acids, phenolics (concentration and bioaccessibility), antioxidant activity, volatiles, and microbiota of edible mini-roses. Plasma treatments did not affect the flowers' color, while they increased organic acids and phenolics. Flowers treated with DBD had a higher concentration of most phenolics, including hesperidin (84.04 μg/g) related to antioxidant activity, and a higher mass fraction of most volatiles, including octanal (16.46% after 5 days of storage). Flowers treated with glow had a higher concentration of pelargonidin 3,5-diglucoside (392.73 μg/g), greater bioaccessibility of some phenolics and higher antioxidant activity. Plasma treatments reduced the microbiota diversity in mini-roses. Regardless of the plasma treatment, phylum Proteobacteria, family Erwiniaceae, and genus Rosenbergiella were the dominant groups. Results indicate plasma treatments as promising technologies to improve the quality and increase phenolic and specific volatile compounds in mini-roses.
Collapse
Affiliation(s)
- Janne Santos de Morais
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Lucélia Cabral
- Institute of Biological Sciences, University of Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, /DF, Brazil
| | - Thatyane Vidal Fonteles
- Department of Food Engineering, Center of Agrarian Sciences, Federal University of Ceara, Campus of Pici, Fortaleza, Ceará, Brazil
| | - Francyeli Araújo Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, State of São Paulo, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Pernambuco, Brazil
| | - Sueli Rodrigues
- Department of Food Engineering, Center of Agrarian Sciences, Federal University of Ceara, Campus of Pici, Fortaleza, Ceará, Brazil
| | - Fabiano André Narciso Fernandes
- Department of Chemical Engineering, Technology Center, Federal University of Ceara, Campus of Pici, Fortaleza, Ceará, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
5
|
Jia S, Zheng P, Li M, Chen C, Li X, Zhang N, Ji H, Yu J, Dong C, Liang L. The effect of cold plasma treatment on the fruit quality and aroma components of winter jujubes (Ziziphus jujuba Mill. 'Dongzao'). J Food Sci 2024; 89:6350-6361. [PMID: 39261646 DOI: 10.1111/1750-3841.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Cold plasma (CP) is a novel environmental-friendly preservation technology that causes minimal damage to fruits. The flavor and quality of winter jujubes have decreased with the extended storage time. Currently, the research on the use of CP on winter jujubes (Ziziphus jujuba Mill. 'Dongzao') mainly focuses on the effect of the treatment on storage quality. There is limited research on the effect of CP treatment on the flavor of winter jujubes. This study used different CP (80 kV) treatment durations (0, 5, and 10 min) to treat winter jujubes. The appropriate treatment time was selected by observing the changes in color, respiratory intensity, soluble sugar content, total acid content, and vitamin C (VC) content of winter jujubes. Amino acid analyzer and headspace solid-phase microextraction in combination with gas chromatography coupled with mass spectrometric detection were used to analyze the effect of CP treatment on the flavor compounds of winter jujubes. The results showed that the 5-min CP treatment could significantly slow down the red coloration of winter jujube while maintaining high soluble sugar, total acid, and VC content. At the respiration peak, the respiratory intensity of the 5-min CP treatment group was 0.74 mg CO2·kg-1·h-1 lower than that of the control group (p < 0.05). CP treatment slowed down the decrease in the content of amino acids and volatile organic compounds (such as 2-methyl-4-pentenal, 2-hexenal, and 3-hexenal) in winter jujubes. This study will provide basic data for applying CP preservation technology in postharvest winter jujubes.
Collapse
Affiliation(s)
- Sitong Jia
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| | - Pufan Zheng
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Mo Li
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Xiaoxue Li
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Na Zhang
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Haipeng Ji
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Jinze Yu
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Chenghu Dong
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Liya Liang
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
6
|
Ramezan Y, Kamkari A, Lashkari A, Moradi D, Tabrizi AN. A review on mechanisms and impacts of cold plasma treatment as a non-thermal technology on food pigments. Food Sci Nutr 2024; 12:1502-1527. [PMID: 38455202 PMCID: PMC10916563 DOI: 10.1002/fsn3.3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Food characteristics like appearance and color, which are delicate parameters during food processing, are important determinants of product acceptance because of the growing trend toward more diverse and healthier diets worldwide, as well as the increase in population and its effects on food consumption. Cold plasma (CP), as a novel technology, has marked a new trend in agriculture and food processing due to the various advantages of meeting both the physicochemical and nutritional characteristics of food products with minimal changes in physical, chemical, nutritional, and sensorial properties. CP processing has a positive impact on food quality, including the preservation of natural food pigments. This article describes the influence of CP on natural food pigments and color changes in vegetables and fruits. Attributes of natural pigments, such as carotenoids, chlorophyll, anthocyanin, betalain, and myoglobin, are presented. In addition, the characteristics and mechanisms of CP processes were studied, and the effect of CP on mentioned pigments was investigated in recent literature, showing that the use of CP technology led to better preservation of pigments, improving their preservation and extraction yield. While certain modest and undesirable changes in color are documented, overall, the exposure of most food items to CP resulted in minor loss and even beneficial influence on color. More study is needed since not all elements of CP treatment are currently understood. The negative and positive effects of CP on natural food pigments in various products are discussed in this review.
Collapse
Affiliation(s)
- Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Amir Kamkari
- Department of Food Engineering, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Armita Lashkari
- Department of Food Science and TechnologyIslamic Azad University, Tehran North BranchTehranIran
| | - Donya Moradi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abbas Najafi Tabrizi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
7
|
Kungsuwan K, Sawangrat C, Ounjaijean S, Chaipoot S, Phongphisutthinant R, Wiriyacharee P. Enhancing Bioactivity and Conjugation in Green Coffee Bean ( Coffea arabica) Extract through Cold Plasma Treatment: Insights into Antioxidant Activity and Phenolic-Protein Conjugates. Molecules 2023; 28:7066. [PMID: 37894545 PMCID: PMC10609076 DOI: 10.3390/molecules28207066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Cold plasma technology is gaining attention as a promising approach to enhancing the bioactivity of plant extracts. However, its impact on green coffee bean extracts (GCBEs) still needs to be explored. In this study, an innovative underwater plasma jet system was employed to investigate the effects of cold plasma on Coffea arabica GCBEs, focusing on the conjugation reflected by the change in composition and bioactivity. The DPPH radical scavenging antioxidant activity exhibited a gradual increase with plasma treatment up to 35 min, followed by a decline. Remarkably, at 35 min, the plasma treatment resulted in a significant 66% increase in the DPPH radical scavenging activity of the GCBE. The total phenolic compound content also displayed a similar increasing trend to the DPPH radical scavenging activity. However, the phenolic profile analysis indicated a significant decrease in chlorogenic acids and caffeine. Furthermore, the chemical composition analysis revealed a decrease in free amino acids, while sucrose remained unchanged. Additionally, the SDS-PAGE results suggested a slight increase in protein size. The observed enhancement in antioxidant activity, despite the reduction in the two major antioxidants in the GCBE, along with the increase in protein size, might suggest the occurrence of conjugation processes induced by plasma, particularly involving proteins and phenolic compounds. Notably, the plasma treatment exhibited no adverse effects on the extract's safety, as confirmed by the MTT assay. These findings indicate that cold plasma treatment holds significant promise in improving the functional properties of GCBE while ensuring its safety. Incorporating cold plasma technology into the processing of natural extracts may offer exciting opportunities for developing novel and potent antioxidant-rich products.
Collapse
Affiliation(s)
- Kuntapas Kungsuwan
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Agriculture and Bio Plasma Technology Center (ABPlas), Thai Korean Research Collaboration Center (TKRCC), Science and Technology Park, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sakaewan Ounjaijean
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Chaipoot
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pairote Wiriyacharee
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Oner ME, Gultekin Subasi B, Ozkan G, Esatbeyoglu T, Capanoglu E. Efficacy of cold plasma technology on the constituents of plant-based food products: Principles, current applications, and future potentials. Food Res Int 2023; 172:113079. [PMID: 37689859 DOI: 10.1016/j.foodres.2023.113079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
Cold plasma (CP) is one of the novel non-thermal food processing technologies, which has the potential to extend the shelf-life of plant-based food products without adversely affecting the nutritional value and sensory characteristics. Besides microbial inactivation, this technology has been explored for food functionality, pesticide control, and allergen removals. Cold plasma technology presents positive results in applications related to food processing at a laboratory scale. This review discusses applications of CP technology and its effect on the constituents of plant-based food products including proteins, lipids, carbohydrates, and polar and non-polar secondary plant metabolites. As proven by the publications in the food field, the influence of CP on the food constituents and sensory quality of various food materials are mainly based on CP-related factors such as processing time, voltage level, power, frequency, type of gas, gas flow rate as well as the amount of sample, type, and content of food constituents. In addition to these, changes in the secondary plant metabolites depend on the action of CP on both cell membrane breakdown and increase/decrease in the scavenging compounds. This technology offers a good alternative to conventional methods by inactivating enzymes and increasing antioxidant levels. With a waterless and chemical-free property, this sustainable and energy-efficient technology presents several advantages in food applications. However, scaling up CP by ensuring uniform plasma treatment is a major challenge. Further investigation is required to provide information regarding the toxicity of plasma-treated food products.
Collapse
Affiliation(s)
- Manolya Eser Oner
- Department of Food Engineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, 07425 Alanya, Antalya, Turkey; Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Busra Gultekin Subasi
- Chalmers University of Technology, Food and Nutrition Science, 41258 Göteborg, Sweden
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
9
|
Heydari M, Carbone K, Gervasi F, Parandi E, Rouhi M, Rostami O, Abedi-Firoozjah R, Kolahdouz-Nasiri A, Garavand F, Mohammadi R. Cold Plasma-Assisted Extraction of Phytochemicals: A Review. Foods 2023; 12:3181. [PMID: 37685115 PMCID: PMC10486403 DOI: 10.3390/foods12173181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, there has been growing interest in bioactive plant compounds for their beneficial effects on health and for their potential in reducing the risk of developing certain diseases such as cancer, cardiovascular diseases, and neurodegenerative disorders. The extraction techniques conventionally used to obtain these phytocompounds, however, due to the use of toxic solvents and high temperatures, tend to be supplanted by innovative and unconventional techniques, in line with the demand for environmental and economic sustainability of new chemical processes. Among non-thermal technologies, cold plasma (CP), which has been successfully used for some years in the food industry as a treatment to improve food shelf life, seems to be one of the most promising solutions in green extraction processes. CP is characterized by its low environmental impact, low cost, and better extraction yield of phytochemicals, saving time, energy, and solvents compared with other classical extraction processes. In light of these considerations, this review aims to provide an overview of the potential and critical issues related to the use of CP in the extraction of phytochemicals, particularly polyphenols and essential oils. To review the current knowledge status and future insights of CP in this sector, a bibliometric study, providing quantitative information on the research activity based on the available published scientific literature, was carried out by the VOSviewer software (v. 1.6.18). Scientometric analysis has seen an increase in scientific studies over the past two years, underlining the growing interest of the scientific community in this natural substance extraction technique. The literature studies analyzed have shown that, in general, the use of CP was able to increase the yield of essential oil and polyphenols. Furthermore, the composition of the phytoextract obtained with CP would appear to be influenced by process parameters such as intensity (power and voltage), treatment time, and the working gas used. In general, the studies analyzed showed that the best yields in terms of total polyphenols and the antioxidant and antimicrobial properties of the phytoextracts were obtained using mild process conditions and nitrogen as the working gas. The use of CP as a non-conventional extraction technique is very recent, and further studies are needed to better understand the optimal process conditions to be adopted, and above all, in-depth studies are needed to better understand the mechanisms of plasma-plant matrix interaction to verify the possibility of any side reactions that could generate, in a highly oxidative environment, potentially hazardous substances, which would limit the exploitation of this technique at the industrial level.
Collapse
Affiliation(s)
- Mahshid Heydari
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Fabio Gervasi
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 3158777871, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Azin Kolahdouz-Nasiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Farhad Garavand
- Department of Food Chemistry & Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co., P61 C996 Cork, Ireland
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| |
Collapse
|
10
|
Yanclo LA, Belay ZA, Sigge GO, Caleb OJ. Impact of electrolyzed water as pre-treatments on drying properties and total colour difference of fresh-cut 'Tommy Atkins' mangoes. Heliyon 2023; 9:e18555. [PMID: 37560658 PMCID: PMC10407149 DOI: 10.1016/j.heliyon.2023.e18555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
Mango fruits are a rich source of nutrients, however, due to their perishability and seasonality, minimal processing and drying offer the potential ensure a shelf stable and safe product. The use of sodium metabisulphite (SMB) as pre-treatment in the dried fruit industry has been widely adopted, but sulphite residue remains a health public concern. Therefore, this study investigated the effects of alkaline and acidic electrolyzed water (AIEW and AEW, mg/mL) as alternative pre-treatments to SMB (1% w/w) for 'Tommy Atkins' mango slices prior to hot air drying at 60 °C. Fresh-cut and untreated samples were used as a control. During the drying process the weight of the slices were monitored every 60 min for 10 h, which was used to calculate moisture ratio (MR), drying rate (DR), and the experimental data of the samples were subjected to eight thin layer models. Colour parameters (L*, a*, and b*) were measured, and use to determine colour intensity (C*), hue angle (h°), and total colour difference (TCD) before and after drying. Based on measured weight, continuous decline in MR was recorded for all dried mango slices over the drying time irrespective on treatment. Out of the eight applied thin layer models Henderson & Pabis and Logarithmic were the best appropriate models describing and predicting the drying behavior of 'Tommy Atkins' mangoes (R2 = 0.94, RMSE ≥ 0.0006). Samples treated with AEW treated samples had lowest L*, h°, and TCD values (p < 0.05). No significant different were found in h° values amongst all pre-treated and dried samples (p > 0.05), but these samples were significantly different from dried untreated (control) and fresh samples (p < 0.05). Pre-treatments maintained the visual quality of dried 'Tommy Atkins' mango slices; SMB > AIEW > AEW > untreated (control). This study provided science-based evidence for the application of acidic and alkaline electrolyzed water as an alternative pre-treatment to sodium metabisulphite for the drying of 'Tommy Atkins' mango.
Collapse
Affiliation(s)
- Loriane A. Yanclo
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
- African Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Zinash A. Belay
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Gunnar O. Sigge
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Oluwafemi J. Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
- African Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
11
|
Xu C, Lu J, Zeng Q, Zhang J, Dong L, Huang F, Shen Y, Su D. Magnetic nanometer combined with microwave: Novel rapid thawing promotes phenolics release in frozen-storage lychee. Food Chem 2023; 410:135384. [PMID: 36610094 DOI: 10.1016/j.foodchem.2022.135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Magnetic nanometer combined with microwave thawing (MN-MT) could become a novel solution to challenges uneven and overheating of microwave thawing (MT), while retaining high thawing efficiency, compared to conventional water immersion thawing (WT). In this study, MN-MT was applied to thaw fruit (lychee as an example) for the first time, and was evaluated by comparison with WT, MT and water immersion combined with microwave thawing (WI-MT). Results showed that MN-MT could significantly shorten the thawing time of frozen lychee by 80.67%, 25.86% and 18.83% compared to WT, MT and WI-MT, respectively. Compared to WT, MN-MT was the only thawing treatment which significantly enhanced the release of quercetin-3-O-rutinose-7-O-α-l-rhamnoside, according to HPLC-DAD. Meanwhile, thermal-sensitive procyanidin B2, phenylpropionic acid and protocatechuic acid were found to be protected from degradations only by MN-MT based on UPLC-ESI-QTOF-MS/MS results. In summary, MN-MT is a potential novel treatment for rapid thawing and quality maintenance of frozen fruits.
Collapse
Affiliation(s)
- Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jiaming Lu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yingbin Shen
- School of Life Science, Guangzhou University, Guangzhou 510006, PR China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Miguel TBAR, Lima LMG, Pinheiro SKDP, Miguel EDC, Fernandes FAN, Rodrigues S. Toxic effect of plasma and ultrasound activated cashew apple juice in Artemia salina nauplii. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Air Atmospheric Pressure Plasma Jet to Improve Fruiting Body Production and Enhance Bioactive Phytochemicals from Mutant Cordyceps militaris (White Cordyceps militaris). FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Faizal FA, Ahmad NH, Yaacob JS, Abdul Halim Lim S, Abd Rahim MH. Food processing to reduce antinutrients in plant-based foods. INTERNATIONAL FOOD RESEARCH JOURNAL 2023; 30:25-45. [DOI: 10.47836/ifrj.30.1.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Antinutrients such as phytic acids, tannins, saponin, and enzyme inhibitors are phytochemicals that can decrease the bioavailability of micro- and macronutrients, thus causing them to be unavailable for absorptions in the digestive system. Antinutrients are a major concern especially in countries where plant-based commodities such as wheat, legumes, and cereals are staple foods, for the antinutrients can cause not only mineral deficiencies, but also lead to more serious health issues. Although various thermal and non-thermal processing methods such as cooking, boiling, and fermentation processes have been practiced to decrease the level of antinutrients, these processes may also undesirably influence the final products. More advanced practices, such as ozonation and cold plasma processing (CPP), have been applied to decrease the antinutrients without majorly affecting the physicochemical and nutritional aspects of the commodities post-processing. This review will cover the types of antinutrients that are commonly found in plants, and the available processing methods that can be used, either singly or in combination, to significantly decrease the antinutrients, thus rendering the foods safe for consumption.
Collapse
|
15
|
Li D, Dai T, Chen M, Liang R, Liu W, Liu C, Sun J, Chen J, Deng L. Role of maturity status on the quality and volatile properties of mango fruits dried by infrared radiation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
16
|
Chaple S, Sarangapani C, Dickson S, Bourke P. Product development and X-Ray microtomography of a traditional white pan bread from plasma functionalized flour. Lebensm Wiss Technol 2023; 174:114326. [PMID: 36733634 PMCID: PMC9883616 DOI: 10.1016/j.lwt.2022.114326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Cold plasma (CP) technology has emerged as a novel non-thermal technology with the potential to improve food quality or impart functionality to ingredients. Our previous studies on wheat flour demonstrated how the structure and functionality of wheat flour might be modified using CP to provide an alternative to chemical additives (Chaple et al., 2020). However, understanding of the further effects of plasma functionalized ingredients in existing or new product formulation is limited. This study investigated the effects of CP treatment of wheat flour on traditional white pan bread development. The bread was formulated using plasma functionalized flour (PFF), and critical product characteristic responses were analyzed. Plasma treatment of flour positively affected the bread's expansion ratio, crust color, and water activity. Farinograph analysis suggests improvement in water absorption capacity, dough development time, and dough stability. X-Ray Microtomography (XRMT) analysis was conducted to understand how plasma functionalising the flour impacted the microstructure of bread. The 3D scans suggested no macro-change in the bread matrix compared to control; however, the porosity decreased in line with the increasing plasma treatment duration of the flour. The texture profile analysis showed an improvement in the gluten network developed in the dough developed from PFF. Sensory analysis results showed overall acceptance for bread formulated with PFF compared with a commercial sample. Overall, CP treatment of the flour improved the functionality in relation to dough and bread preparation and can thus provide an alternative to chemical additives in bread making. The CP processes may be modulated to deliver tailored effects for bread product development.
Collapse
Affiliation(s)
- Sonal Chaple
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chaitanya Sarangapani
- School of Food Science and Environmental Health, Technological University Dublin, Dublin 7, Ireland
| | - Shannon Dickson
- School of Culinary Arts and Food Technology, Technological University Dublin, Dublin 7, Ireland
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland,Corresponding author.
| |
Collapse
|
17
|
Rodrigues S, Fernandes FAN. Effect of Dielectric Barrier Discharge Plasma Treatment in Pasteurized Orange Juice: Changes in Volatile Composition, Aroma, and Mitigation of Off-flavors. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
da Costa Pinto C, Sanches EA, Clerici MTPS, Rodrigues S, Fernandes FAN, de Souza SM, Teixeira-Costa BE, de Araújo Bezerra J, Lamarão CV, Campelo PH. Modulation of the Physicochemical Properties of Aria (Goeppertia allouia) Starch by Cold Plasma: Effect of Excitation Frequency. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Wang LH, Li Z, Qin J, Huang Y, Zeng XA, Aadil RM. Investigation on the impact of quality characteristics and storage stability of foxtail millet induced by air cold plasma. Front Nutr 2022; 9:1064812. [PMID: 36570165 PMCID: PMC9767948 DOI: 10.3389/fnut.2022.1064812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this work was to investigate the effects of dielectric barrier discharge-air cold plasma (DBD-ACP, 15-35 kV, 2-12 min) on the quality of foxtail millets. The L and b* values were evaluated by a digital colorimeter representing that the color of millets was significantly changed at 25 kV for 4-12 min or at 35 kV for 2-12 min. The results were consistent with the change of total yellow pigment in millets, indicating that DBD-ACP damaged the carotenoids if the treatment condition was too high. The activity of lipoxygenase and lipase, involving the oxidation and hydrolysis of lipids of millet, decreased significantly induced by DBD-ACP. For example, the lipoxygenase and lipase activity of Mizhi millet was decreased from 44.0 to 18.7 U g-1min-1, 56.0-15.1 U/(mg pro) (p<0.05) after being exposed to 25 kV for 2-12 min, respectively. Changes of color, lipoxygenase and lipase activity, and malondialdehyde content of millets were determined during accelerated storage (40 ± 2°C and 75% Relative Humidity) for 15 days after being treated by DBD-ACP under 15 and 25 kV for 4 min. Results showed that millets treated by DBD-ACP at 15 kV kept a better color with lower malondialdehyde content, and lower lipoxygenase and lipase activity compared to control. This work implied that DBD-ACP is an underlying approach for the storage of foxtail millets.
Collapse
Affiliation(s)
- Lang-Hong Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China,College of Food Science and Technology, Northwest University, Xi’an, China,School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhongyan Li
- College of Food Science and Technology, Northwest University, Xi’an, China
| | - Jiale Qin
- College of Food Science and Technology, Northwest University, Xi’an, China
| | - Yanyan Huang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China,*Correspondence: Yanyan Huang,
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China,School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Xin-An Zeng,
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
20
|
Qiu Y, Chen X, Zhang J, Ding Y, Lyu F. Effects of tempering with plasma activated water on the degradation of deoxynivalenol and quality properties of wheat. Food Res Int 2022; 162:112070. [DOI: 10.1016/j.foodres.2022.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
21
|
Mol S, Akan T, Kartal S, Coşansu S, Tosun ŞY, Alakavuk DÜ, Ulusoy Ş, Doğruyol H, Bostan K. Effects of Air and Helium Cold Plasma on Sensory Acceptability and Quality of Fresh Sea Bass (Dicentrarchus labrax). FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kumar S, Pipliya S, Srivastav PP. Effect of cold plasma on different polyphenol compounds: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sitesh Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Sunil Pipliya
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
23
|
Zielinska S, Staniszewska I, Cybulska J, Zdunek A, Szymanska-Chargot M, Zielinska D, Liu ZL, Pan Z, Xiao HW, Zielinska M. Modification of the cell wall polysaccharides and phytochemicals of okra pods by cold plasma treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Zhang B, Tan C, Zou F, Sun Y, Shang N, Wu W. Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods 2022; 11:foods11182818. [PMID: 36140945 PMCID: PMC9497965 DOI: 10.3390/foods11182818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
As an emerging non-thermal food processing technology, cold plasma (CP) technology has been widely applied in food preservation due to its high efficiency, greenness and lack of chemical residues. Recent studies have indicated that CP technology also has an impressing effect on improving food quality. This review summarized the impact of CP on the functional composition and quality characteristics of various food products. CP technology can prevent the growth of spoilage microorganisms while maintaining the physical and chemical properties of the food. It can maintain the color, flavor and texture of food. CP can cause changes in protein structure and function, lipid oxidation, vitamin and monosaccharide degradation, starch modification and the retention of phenolic substances. Additionally, it also degrades allergens and toxins in food. In this review, the effects of CP on organoleptic properties, nutrient content, safety performance for food and the factors that cause these changes were concluded. This review also highlights the current application limitations and future development directions of CP technology in the food industry. This review enables us to more comprehensively understand the impacts of CP technology on food quality and promotes the healthy application of CP technology in the food industry.
Collapse
Affiliation(s)
- Bo Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| |
Collapse
|
25
|
de Sousa Silva R, Gomes Fernandes F, Macedo Dantas A, Moreira de Carvalho L, Karoline Almeida da Costa W, dos Santos Lima M, Magnani M, da Silva Campelo Borges G. Juá (Ziziphus joazeiro Mart.) mucilage and juá by-product phenolic extract improve quality parameters and retain bioactive compounds in fresh-cut pineapple during storage. Food Res Int 2022; 161:111826. [DOI: 10.1016/j.foodres.2022.111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022]
|
26
|
Inactivation of Penicillium expansum spores in apple juice by contact glow discharge electrolysis and its related mechanism. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Recent Advances in Cold Plasma Technology for Food Processing. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. BEVERAGES 2022. [DOI: 10.3390/beverages8020033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent social, economic, and technological evolutions have impacted consumption habits. The new consumer is more rational, more connected and demanding with products, more concerned with the management of the family budget, with the health, origin, and sustainability of food. The food industry over the last few years has shown remarkable technological and scientific evolution, with an impact on the development and innovation of new products using non-thermal processing. Non-thermal processing technologies involve methods by which fruit juices receive microbiological inactivation and enzymatic denaturation with or without the direct application of low heat, thereby lessening the adverse effects on the nutritional, bioactive, and flavor compounds of the treated fruit juices, extending their shelf-life. The recognition of the nutritional and protective values of fruit juices and fermented fruit beverages is evident and is attributed to the presence of different bioactive compounds, protecting against chronic and metabolic diseases. Fermentation maintains the fruit's safety, nutrition, and shelf life and the development of new products. This review aims to summarize the chemical and sensory characteristics of fruit juices and fermented fruit drinks, the fermentation process, its benefits, and its effects.
Collapse
|
29
|
Basak S, Chakraborty S. The potential of nonthermal techniques to achieve enzyme inactivation in fruit products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Impact of Cold Plasma on Extraction of Polyphenol From De-Oiled Rice and Corn Bran: Improvement in Extraction Efficiency, In Vitro Digestibility, Antioxidant Activity, Cytotoxicity and Anti-Inflammatory Responses. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02801-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
32
|
Asl PJ, Rajulapati V, Gavahian M, Kapusta I, Putnik P, Mousavi Khaneghah A, Marszałek K. Non-thermal plasma technique for preservation of fresh foods: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
NMR Spectroscopy and Chemometrics to Evaluate the Effect of Different Non-Thermal Plasma Processing on Sapota-do-Solimões (Quararibea cordata Vischer) Juice Quality and Composition. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02792-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Environmentally Friendly Techniques for the Recovery of Polyphenols from Food By-Products and Their Impact on Polyphenol Oxidase: A Critical Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even though food by-products have many negative financial and environmental impacts, they contain a considerable quantity of precious bioactive compounds such as polyphenols. The recovery of these compounds from food wastes could diminish their adverse effects in different aspects. For doing this, various nonthermal and conventional methods are used. Since conventional extraction methods may cause plenty of problems, due to their heat production and extreme need for energy and solvent, many novel technologies such as microwave, ultrasound, cold plasma, pulsed electric field, pressurized liquid, and ohmic heating technology have been regarded as alternatives assisting the extraction process. This paper highlights the competence of mild technologies in the recovery of polyphenols from food by-products, the effect of these technologies on polyphenol oxidase, and the application of the recovered polyphenols in the food industry.
Collapse
|
35
|
Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Sruthi NU, Josna K, Pandiselvam R, Kothakota A, Gavahian M, Mousavi Khaneghah A. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chem 2022; 368:130809. [PMID: 34450498 DOI: 10.1016/j.foodchem.2021.130809] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022]
Abstract
Cold plasma processing is a technique that uses electricity and reactive carrier gases, such as oxygen, nitrogen, or helium, to inactivate enzymes, destroy microorganisms, preserve food, and maintain quality without employing chemical antimicrobial agents.The review collates the latest information on the interaction mechanism and impact of non-thermal plasma, as an emerging processing technology, on selected physical properties, low-molecular-weight functional components, and bioactive properties of food. Significant changes observed in the physicochemical and functional properties. For example, changes in pH, total soluble solids, water and oil absorption capacities, sensory properties such as color, aroma, and texture, bioactive components (e.g., polyphenols, flavonoids, and antioxidants), and food enzymes, antinutrients, and allergens were elaborated in the present manuscript. It was highlighted that the plasma reactive species result in both constructive and antagonistic outcomes on specific food components, and the associated mechanism was different in each case. However, the design's versatility, characteristic non-thermal nature, better economic standards, and safer environmental factors offer matchless benefits for cold plasma over conventional processing methods. Even so, a thorough insight on the impact of cold plasma on functional and bioactive food constituents is still a subject of imminent research and is imperative for its broad recognition as a modern non-conventional processing technique.
Collapse
Affiliation(s)
- N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - K Josna
- Processing and Food Engineering Department, Kelappaji College of Agricultural Engineering & Technology, Kerala Agricultural University, Malappuram 679573, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671 124, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
37
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
38
|
Umair M, Jabbar S, Lin Y, Nasiru MM, Zhang J, Abid M, Murtaza MA, Zhao L. Comparative study: Thermal and non‐thermal treatment on enzyme deactivation and selected quality attributes of fresh carrot juice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
- Key Laboratory of Optoelectronic Devices and Systems College of Physics and Optoelectronic Engineering Ministry of Education and Guangdong Province Shenzhen University Shenzhen 518060 China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI) National Agricultural Research Centre (NARC) Islamabad 46000 Pakistan
| | - Yue Lin
- Department of Food Science and Engineering College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
| | - Mustapha Muhammad Nasiru
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Jianhao Zhang
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi Rawalpindi 44000 Pakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition University of Sargodha Sargodha 40100 Pakistan
| | - Liqing Zhao
- Department of Food Science and Engineering College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
| |
Collapse
|
39
|
Pohl P, Dzimitrowicz A, Cyganowski P, Jamroz P. Do we need cold plasma treated fruit and vegetable juices? A case study of positive and negative changes occurred in these daily beverages. Food Chem 2021; 375:131831. [PMID: 34952383 DOI: 10.1016/j.foodchem.2021.131831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Cold atmospheric pressure plasma (CAPP) is a prospective technology for various branches of industry. As such, much attention has been recently paid towards the use of CAPPs for treating fruit and vegetable beverages as they do not need any more to be thermally pasteurized or sanitized. However, this application of CAPPs is not only limited to the improvement of their shelf-life. It could also contribute to the enhancement of their nutritional properties and anticancer activity. This could be achieved due to the presence of numerous reactive oxygen and nitrogen species (RONS), produced at the plasma-liquid interface, that might contribute to the increase of the content of nutritional and bioactive compounds, simply upgrading the juices. In this context, the present review focuses on the recent advances in the CAPP-based technology towards the processing of fruit and vegetable juices. As such, a series of different CAPP-based reaction-discharge systems and their configurations are reviewed and set together with the physicochemical, nutritional, and antimicrobial characteristics of the CAPP-treated juices, providing an useful insight into the perspective development of emerging CAPP technology.
Collapse
Affiliation(s)
- Pawel Pohl
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Anna Dzimitrowicz
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Cyganowski
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Jamroz
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
40
|
Cold Plasma Processing on Fruits and Fruit Juices: A Review on the Effects of Plasma on Nutritional Quality. Processes (Basel) 2021. [DOI: 10.3390/pr9122098] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to present the effects of cold plasma technology on the nutritional quality of fruits and fruit juices. This review focuses on the chemical changes induced by plasma on several bioactive compounds, such as sugars, starch, lipids, vitamins, phenolic compounds, carotenoids, and anthocyanins. The main plasma-reacting species that reacts with fruit compounds are presented and discussed. The review presents the mechanisms that lead to the improvement and degradation of the main compounds, showing both the advantages and disadvantages of cold plasma technology.
Collapse
|
41
|
Rodriguez Ó, Rodrigues S, Fernandes FAN. Effect of glow discharge plasma technology on the phenolic content and antioxidant capacity of four tropical juices with different phenolic composition. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Óscar Rodriguez
- Departamento de Engenharia Química Universidade Federal do Ceara Fortaleza Brazil
| | - Sueli Rodrigues
- Departamento de Engenharia de Alimentos Universidade Federal do Ceara Fortaleza Brazil
| | | |
Collapse
|
42
|
Pogorzelska-Nowicka E, Hanula MM, Brodowska-Trębacz M, Górska-Horczyczak E, Jankiewicz U, Mazur T, Marcinkowska-Lesiak M, Półtorak A, Wierzbicka A. The Effect of Cold Plasma Pretreatment on Water-Suspended Herbs Measured in the Content of Bioactive Compounds, Antioxidant Activity, Volatile Compounds and Microbial Count of Final Extracts. Antioxidants (Basel) 2021; 10:antiox10111740. [PMID: 34829611 PMCID: PMC8615236 DOI: 10.3390/antiox10111740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cold plasma is a new technology of promising potential to use as a part of technological extraction lines constructed to implement green chemistry solutions or simply to reduce resources in solvent-based extraction lines. The present study was undertaken to verify the effect of nitrogen cold plasma pre-treatment conducted for 8 min (20 kHz) on the content of antioxidants, antioxidant activity, the profile of volatile compounds, microbial count, pH and color measured in herb extracts (12 herbs: Echinacea purpurea; Salvia officinalis; Urtica dioica; Polygonum aviculare; Vaccinium myrtillus; Taraxacum officinale; Hypericum perforatum; Achillea millefolium; Sanguisorba officinalis; Leonurus cardiaca; Ballota nigra; Andrographis paniculata) obtained with its usage. The surface morphology of extracted herbs was examined as well. Herbs used for extraction were ground and suspended in water before cold plasma treatment, which is a novel approach not studied before. Most plasma-treated extracts were characterized by a higher content of polyphenols (11 out of 12). Content of flavonoids and anthocyanins increased in four extracts and in the case of anthocyanins was significantly higher in comparison to control (up to 77%). The antioxidant activity measured at least by one method (ABTS, DPPH, FRAP) was also higher in nine plasma-treated solutions. Moreover, plasma decreased total aerobic bacteria, affected the color and increased pH of the extracts. The surface structure of the plant material after the extraction process was significantly damaged, which probably led to a higher extraction yield of bioactive compounds and in consequence to the higher antioxidant activity of extracts obtained with the cold plasma treatment.
Collapse
Affiliation(s)
- Ewelina Pogorzelska-Nowicka
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 c Street, 02-776 Warsaw, Poland; (M.M.H.); (M.B.-T.); (E.G.-H.); (M.M.-L.); (A.P.); (A.W.)
- Correspondence: ; Tel.: +48-22-59-37-014
| | - Monika Maria Hanula
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 c Street, 02-776 Warsaw, Poland; (M.M.H.); (M.B.-T.); (E.G.-H.); (M.M.-L.); (A.P.); (A.W.)
| | - Marta Brodowska-Trębacz
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 c Street, 02-776 Warsaw, Poland; (M.M.H.); (M.B.-T.); (E.G.-H.); (M.M.-L.); (A.P.); (A.W.)
| | - Elżbieta Górska-Horczyczak
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 c Street, 02-776 Warsaw, Poland; (M.M.H.); (M.B.-T.); (E.G.-H.); (M.M.-L.); (A.P.); (A.W.)
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences—SGGW, 159 Street, 02-776 Warsaw, Poland;
| | - Tomasz Mazur
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland;
| | - Monika Marcinkowska-Lesiak
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 c Street, 02-776 Warsaw, Poland; (M.M.H.); (M.B.-T.); (E.G.-H.); (M.M.-L.); (A.P.); (A.W.)
| | - Andrzej Półtorak
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 c Street, 02-776 Warsaw, Poland; (M.M.H.); (M.B.-T.); (E.G.-H.); (M.M.-L.); (A.P.); (A.W.)
| | - Agnieszka Wierzbicka
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 c Street, 02-776 Warsaw, Poland; (M.M.H.); (M.B.-T.); (E.G.-H.); (M.M.-L.); (A.P.); (A.W.)
| |
Collapse
|
43
|
Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
NMR evaluation of apple cubes and apple juice composition subjected to two cold plasma technologies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Loureiro ADC, Souza FDCDA, Sanches EA, Bezerra JDA, Lamarão CV, Rodrigues S, Fernandes FAN, Campelo PH. Cold plasma technique as a pretreatment for drying fruits: Evaluation of the excitation frequency on drying process and bioactive compounds. Food Res Int 2021; 147:110462. [PMID: 34399462 DOI: 10.1016/j.foodres.2021.110462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
The present work aims to evaluate the effect of different excitation frequency (200, 500 and 800 Hz) of cold plasma technique as a pretreatment for drying tucumã. SEM images showed changes on the pretreated tucumã's surface, favoring the drying rate and diffusivity of water as well as reducing the drying time. Marginal variation of color and reduced drying time were observed in the samples treated using 200 and 800 Hz. The pretreatment improved the concentration of phenolic (45.3 mg GAE g-1) and antioxidant compounds (799.8 µM ET) (p-value < 0.05). Carotenoids were more sensitive to the drying time, presenting significant degradation at 500 Hz. For this reason, the propose pretreatment based on the application of cold plasma technique for drying foods can preserve/improve their nutritional quality.
Collapse
Affiliation(s)
- Andria da C Loureiro
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Federal University of Amazonas, Manaus/AM, Brazil; Faculty of Agrarian Science, Federal University of Amazonas, Manaus/AM, Brazil
| | | | - Edgar A Sanches
- Laboratory of Nanostructured Polymers (NANOPOL; @nanopol_ufam), Federal University of Amazonas, Manaus/AM, Brazil
| | | | - Carlos Victor Lamarão
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Federal University of Amazonas, Manaus/AM, Brazil
| | - Sueli Rodrigues
- Federal University of Ceará, Department of Food Engineering, Fortaleza/CE, Brazil
| | - Fabiano A N Fernandes
- Federal University of Ceará, Department of Chemical Engineering, Fortaleza/CE, Brazil
| | - Pedro H Campelo
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Federal University of Amazonas, Manaus/AM, Brazil; Faculty of Agrarian Science, Federal University of Amazonas, Manaus/AM, Brazil.
| |
Collapse
|
46
|
K F Leite A, Fonteles TV, B A R Miguel T, Silvestre da Silva G, Sousa de Brito E, Alves Filho EG, Fernandes FAN, Rodrigues S. Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin C bioaccessibility. Food Res Int 2021; 147:110479. [PMID: 34399475 DOI: 10.1016/j.foodres.2021.110479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/29/2021] [Accepted: 05/23/2021] [Indexed: 11/26/2022]
Abstract
This study evaluated the atmospheric cold plasma (ACP) effect on cashew apple juice composition at different frequencies (200 and 700 Hz). The impact of this non-thermal technology on the organic juice compounds after the processing and along with the in vitro digestion carried out in a simulated digestion system at 37 °C/6 h was evaluated. The changes in the juice composition were determined by NMR spectroscopy and chemometric analyses. Vitamin C and total phenolic compounds were also quantified in processed and non-processed (control) juices and after each digestion phase. The results showed decreased glucose and fructose in samples treated by ACP and an increment in malic acid concentration for ACP700. ACP increased the amount of vitamin C in the juices and did not affect the total phenolic content. The gastric digestion highlighted the pronounced effect of plasma on the juice composition, increasing all of the components detected by NMR. Cashew apple juice processed by ACP700 presented a higher concentration of malic acid and phenylalanine. An increased bioaccessibility of vitamin C was also found for ACP700. Although ACP processing has decreased some compounds' concentration, this technology improved the bioaccessibility of vitamin C - the main bioactive compound of cashew apple juice.
Collapse
Affiliation(s)
- Ana K F Leite
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, Bloco 858, 60440-900, Fortaleza-CE, Brazil
| | - Thatyane V Fonteles
- Department of Food Engineering, Federal University of Ceará, Campus do Pici, Bloco 858, 60440-900, Fortaleza-CE, Brazil
| | - Thaiz B A R Miguel
- Department of Food Engineering, Federal University of Ceará, Campus do Pici, Bloco 858, 60440-900, Fortaleza-CE, Brazil
| | - Giselle Silvestre da Silva
- Embrapa Tropical Agroindustry, Rua Dra Sara Mesquita Rua Dr(a), Sara Mesquita, n(o) 2.270, CEP 60511-110, Fortaleza-CE, Brazil
| | - Edy Sousa de Brito
- Embrapa Tropical Agroindustry, Rua Dra Sara Mesquita Rua Dr(a), Sara Mesquita, n(o) 2.270, CEP 60511-110, Fortaleza-CE, Brazil
| | - Elenilson G Alves Filho
- Department of Food Engineering, Federal University of Ceará, Campus do Pici, Bloco 858, 60440-900, Fortaleza-CE, Brazil
| | - Fabiano A N Fernandes
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, Bloco 858, 60440-900, Fortaleza-CE, Brazil
| | - Sueli Rodrigues
- Department of Food Engineering, Federal University of Ceará, Campus do Pici, Bloco 858, 60440-900, Fortaleza-CE, Brazil.
| |
Collapse
|
47
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
48
|
Alves Filho EG, Silva LMA, de Brito ES, Castro DRG, Bezerra JA, Sanches EA, Rodrigues S, Fernandes FAN, Campelo PH. Effect of Glow and Dielectric Barrier Discharges Plasma on Volatile and Non-volatile Chemical Profiling of Camu-Camu Juice. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02639-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Miguel TBAR, Porto ECM, de Paiva Pinheiro SK, de Castro Miguel E, Fernandes FAN, Rodrigues S. Protective Effect of Natural and Processed Coconut Water by Non-thermal Technologies Against Oxidative Stress in Brine Shrimp (Artemia salina). FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02600-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
|