1
|
Khubber S, Gharibzahedi SMT, Gupta S. Gum Arabic-protein coacervation: Recent advances for improved functionality and food applications. Adv Colloid Interface Sci 2025; 342:103522. [PMID: 40262359 DOI: 10.1016/j.cis.2025.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Gum Arabic (GA), a safe dietary fiber known for its ability to modulate healthy gut microbiota and biocompatibility, is highly intriguing for coacervation with several classes of proteins. Coacervation between GA and proteins has gained significant interest for a range of food applications, particularly for encapsulation, emulsification, thermal stability, and sustained release of bioactive compounds. To date, the optimization process has preliminarily focused on pH and the biopolymer ratio. However, this alone is not sufficient to determine the strength of interactions and functionality. This review evaluates the conditions under which GA complexes with proteins, focusing on modifications in conjugation methods and structural changes in GA or proteins that enhance electrostatic interactions and improve functionality. The review highlights the potential of unexplored modified GA, which could improve coacervation with proteins, and explores its possible food applications, such as encapsulation and sustained release of bioactives, probiotic viability, edible packaging, 3D-printed foods, shelf stability, and gummy candies, illustrating the future growth of GA-based coacervates. It also addresses the digestibility, safety, regulations, limitations, and future prospects of GA-protein coacervates. In conclusion, the enhanced complexation of highly compatible GA with food proteins suggests promising scalability for various food products.
Collapse
Affiliation(s)
- Sucheta Khubber
- Food Science and Technology, School of Biotechnology and Bioinformatics, DY Patil Deemed to be University, Navi Mumbai 400614, India.
| | | | - Swati Gupta
- Food Science and Technology, School of Biotechnology and Bioinformatics, DY Patil Deemed to be University, Navi Mumbai 400614, India
| |
Collapse
|
2
|
Delaporte A, Paraskevopoulou A, Grisel M, Gore E. Animal-free coacervates: The combination of fungal chitosan-gum Arabic for the encapsulation of lipophilic compounds. Int J Biol Macromol 2025; 299:140003. [PMID: 39842567 DOI: 10.1016/j.ijbiomac.2025.140003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
In this study, fungal chitosan (FC) and gum Arabic (GA) were combined to develop non-animal complex coacervates for encapsulation. Optimal coacervate formation occurred at pH 5 with a 1:4 (FC:GA) weight ratio. Innovative complementary approaches, including rheology coupled with phase-contrast microscopy, revealed that FC-GA coacervates could withstand high shear rates, reverting to their original structure afterward, making them suitable for industrial applications. FTIR, DSC, and TGA analyses confirmed the electrostatic interactions and thermal stability, making them suitable for high-temperature procedures like spray-drying or extrusion. Higher GA concentrations increased coacervate hydrophilicity, while low-dielectric-constant liquids reduced particle size and disrupted coacervates. This study also explored interactions with solvents used in cosmetics, finding that isohexadecane, ethylhexyl stearate, and ethanol improved wetting properties by reducing electrostatic interactions, while polar solvents such as water and glycerol hindered them due to stronger interactions. The coacervates effectively encapsulated α-tocopherol, achieving an 82.6 % of encapsulation efficiency at a 1:1 (w/w) wall material-to-active ratio. These findings highlight the potential of FC-GA coacervates as stable, easy-to-prepare encapsulation materials for high-shear and high-temperature conditions, offering promising applications in the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Adeline Delaporte
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, Le Havre F-76600, France.
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Michel Grisel
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, Le Havre F-76600, France.
| | - Ecaterina Gore
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, Le Havre F-76600, France.
| |
Collapse
|
3
|
Wang X, Wang L, Wei X, Xu C, Cavender G, Lin W, Sun S. Invited review: Advances in yogurt development-Microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across different dairy and plant-based alternative sources. J Dairy Sci 2025; 108:33-58. [PMID: 39369892 DOI: 10.3168/jds.2024-25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
Yogurt, as a globally prevalent fermented dairy product, is renowned for its substantial nutritional value and a myriad of health benefits, particularly pertaining to the digestive system. This narrative review elucidates the latest advancements in yogurt development from 2019 to 2024, addressing aspects of microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across diverse protein sources. The intrinsic quality of yogurt is notably influenced by its primary ingredient, milk, traditionally derived from animals such as cows, goats, and sheep. In recent years, plant-based yogurt (PBY) have emerged as a popular alternative to traditional dairy yogurts, that are made from plant sources and offer similar textures and flavors, catering to those seeking nondairy options. This discussion encompasses the advantages and limitations of various sources and explores methodologies to enhance yogurt quality using these diverse sources. Ensuring the microbiological safety of yogurt is thus paramount to its quality, as it involves both preventing the presence of harmful pathogens and managing spoilage to maintain freshness. This article encapsulates the potential hazards and corresponding antibacterial strategies that safeguard yogurt consumption. These strategies include the use of natural preservatives, advancements in packaging technologies, and the implementation of stringent hygiene practices throughout the production process. Moreover, the quality of yogurt is dependent not only on the source but also on the fermentation process and additional ingredients used. By addressing both the prevention of pathogen contamination and the control of spoilage organisms, this article explores comprehensive approaches but also examines the use of high-quality starter cultures, the role of prebiotics in enhancing probiotic efficacy, and genetic advancements, as well as improvements in the overall nutritional profile and shelf life of yogurt. Techniques to improve texture, flavor, and nutrient content are also discussed, providing a comprehensive overview of current quality enhancement methods. This analysis delves into the intricate mechanisms underpinning probiotic development, including the roles of prebiotics, supplementary starter cultures, and genetic factors that facilitate probiotic proliferation. These benefits include improved digestive health, enhanced immune function, and potential reductions in the risk of certain chronic diseases. Beyond quality and functionality, the sensory evaluation of yogurt remains crucial for consumer acceptance. In recent years, the incorporation of diverse additional ingredients into yogurt has been observed, aimed at augmenting its sensory attributes. This examination reveals these ingredients and their respective functions, such as natural flavorings, sweeteners, and texturizing agents, with the ultimate goal of enhancing overall consumer satisfaction. Consumer preferences exert a profound influence on yogurt production, rendering the understanding of customer opinions essential for devising competitive industry strategies. This article consolidates consumer feedback and preferences, striving to elevate yogurt quality and promote dietary diversity. The analysis includes trends such as the growing demand for organic and nondairy yogurts, the importance of sustainable practices, and the impact of marketing and packaging on consumer choices. This comprehensive overview serves as a valuable reference for the dairy industry and researchers dedicated to the advancement of yogurt development.
Collapse
Affiliation(s)
- Xiaojun Wang
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, China
| | - Linlin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100085, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350014, China
| | - Changmou Xu
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - George Cavender
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634
| | - Walker Lin
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695
| | - Shengqian Sun
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, China.
| |
Collapse
|
4
|
Ebrahimi F, Habibi N, Hosseini M. Nano-Coating Loaded With Leaf and Flowers of Pelargonium graveolens Plant Extract Stabilized With Fenugreek Seed Gum and Soy Protein Isolate in Increasing the Shelf Life of Mutton Fillet. Food Sci Nutr 2025; 13:e4618. [PMID: 39803259 PMCID: PMC11717032 DOI: 10.1002/fsn3.4618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, the extract of leaf and flower of Pelargonium graveolens was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.97 mg GAE g DM-1, 31.93 mg QE g DM-1, and 9.08 mg QEE g DM-1) than leaf extract (10.69%, 67.46 mg GAE g DM-1, 23.04 mg QE g DM-1, and 11.34 mg QEE g DM-1). Both extracts demonstrated antioxidant properties in tests involving the scavenging of DPPH radicals and the ferric reduction assay. Extracts exhibited antimicrobial properties. MIC of flower extract against Staphylococcus aureus and Escherichia coli were 2500 and 5000, while MBC of leaf extract were 15,000, and 20,000 ppm, respectively. The concentration of 2000 ppm of extracts was encapsulated in fenugreek seed gum (FSG) and soy protein isolate (SPI) produced by the emulsification method. All nano-coatings exhibited a nanometric size range between 172.75 to 255.21 nm, and encapsulation efficiency higher than 80.0% (80.82% to 89.59%). The application of nano-coatings significantly reduced microbial counts and delayed lipid oxidation in mutton meat during 12 days of cold storage at 4°C, enhancing meat quality and extending shelf life. The inclusion of bioactive compounds like polyphenols in the coatings contributed to antimicrobial and antioxidant effects, decreasing pH levels and preventing spoilage. The findings indicated that the combination of edible FSG and SPI as wall materials with 2000 ppm of P. graveolens extract demonstrated efficacy in implementation bacterial growth and lipid oxidation in fresh mutton meat.
Collapse
Affiliation(s)
- Farzad Ebrahimi
- Department of Food Science and Technology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Nader Habibi
- Department of Food Science and Technology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Mohammadyar Hosseini
- Department of Food Science and Hygiene, Faculty of Veterinary ScienceIlam UniversityIlamIran
| |
Collapse
|
5
|
Mannai F, Elhleli H, Abouzied R, Khiari R, Nacer SN, Belgacem MN, Moussaoui Y. Encapsulation of sunflower and flaxseed oils using Opuntia (Cactaceae) mucilage as a core-shell material through coacervation methods: A study on formulation, characterization, and in vitro digestion. Food Chem 2024; 459:140447. [PMID: 39024875 DOI: 10.1016/j.foodchem.2024.140447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Sunflower oil (SFO) and Flaxseed oil (FSO) were microencapsulated using simple and complex coacervation techniques with Opuntia (Cactaceae) mucilage (Mu) and with a combination of Mu with chitosan (Chit). The encapsulation efficiency (EE) of SFO and FSO in emulsions using Mu/Chit shells was 96.7% and 97.4%, respectively. Morphological studies indicated successful entrapment of oils in core shells with particle sizes ranging from 1396 ± 42.4 to 399.8 ± 42.3 nm. The thermogravimetric analyses demonstrated enhanced core protection with thermal stability noted for microcapsules regardless of encapsulation method. The stability of the microcapsules, during in vitro digestion was studied. The obtained results revealed that the microcapsules are intact in oral conditions and have a slow release of oil over stomach digestion and rapid release in the small intestine. The results showed that Mu and Mu/Chit coacervates can be used as effective carrier systems to encapsulate sensitive ingredients and functional oils.
Collapse
Affiliation(s)
- Faten Mannai
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Gafsa, Tunisia; University of Gafsa, Faculty of Sciences of Gafsa, Tunisia
| | - Hanedi Elhleli
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Gafsa, Tunisia; University of Gafsa, Faculty of Sciences of Gafsa, Tunisia
| | - Ragab Abouzied
- Cellulose and Paper Department, National Research Centre, 33 Bohouthst., Dokki, Giza 12622, Egypt
| | - Ramzi Khiari
- Higher Institute of Technological Studies of Ksar Hellal, Department of Textile, Tunisia; University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble, F-38000, France
| | - Salah Neghmouche Nacer
- El Oued University, Faculty of Exact Sciences, Chemistry Department, ElOued, 39000, Algeria
| | | | - Younes Moussaoui
- University of Gafsa, Faculty of Sciences of Gafsa, Tunisia; University of Sfax, Faculty of Sciences of Sfax, Organic Chemistry Laboratory (LR17ES08), Sfax, Tunisia.
| |
Collapse
|
6
|
Hassanvand E, Razavi SMA. Effect of chitosan molecular weight and protein to polysaccharide ratio on the rheological and physicochemical properties of milk proteins-chitosan complex coacervate. Int J Biol Macromol 2024; 282:137247. [PMID: 39500424 DOI: 10.1016/j.ijbiomac.2024.137247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 11/13/2024]
Abstract
The small amplitude oscillatory shear (SAOS) rheological properties of complex coacervate of milk proteins with high (HMC), medium (MMC), and low (LMC) molecular weight chitosan in the optimal ratios of milk proteins to chitosan (15:1, 10:1, and 5:1, respectively) were measured. In addition, the morphological (SEM), structural (XRD), and thermal (DSC) properties of the complex coacervates were investigated in comparison with the milk protein concentrate. Complex coacervates showed the shear-thinning behavior due to a linear decrease of complex viscosity with increasing frequency. Furthermore, the highest complex modulus and the more compact structure under optimal conditions, in terms of the ratio of protein to chitosan and pH, revealed strong electrostatic bonding between proteins and chitosan. All coacervates showed a G' > G″ (Tanδ<1), indicating the formation of an interconnected gel-like structure that was described by the power law model. The maximum fracture stress was obtained at optimum conditions (R = 15:1, pH =6.7 for HMC; R = 10:1, pH =5.5 for MMC and R = 5:1, pH =4.6 for LMC), indicating the highest intermolecular interaction between milk proteins and chitosan. The coacervates had a completely amorphous structure similar to MPC, and according to DSC results, the ionic bonds between milk proteins and chitosan were not destroyed up to 300 °C. Coacervation leads to purified milk proteins at a low cost. In addition, the coacervates can be used for the encapsulation of heat-sensitive compounds, and also as a stabilizer to improve the texture of food.
Collapse
Affiliation(s)
- Elham Hassanvand
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran.
| |
Collapse
|
7
|
Imam MW, Luqman S. Unveiling the mechanism of essential oil action against skin pathogens: from ancient wisdom to modern science. Arch Microbiol 2024; 206:347. [PMID: 38985339 DOI: 10.1007/s00203-024-03986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 07/11/2024]
Abstract
Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.
Collapse
Affiliation(s)
- Md Waquar Imam
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India.
| |
Collapse
|
8
|
da Silva ACP, Barbosa JR, da Silva Araújo C, Sousa Batista JT, Xavier Neves EMP, Pereira Cardoso DN, Peixoto Joele MRS, de Fátima Henriques Lourenço L. A new edible coating of fish gelatin incorporated into açaí oil to increase the post-harvest shelf life of tomatoes. Food Chem 2024; 438:138047. [PMID: 38007951 DOI: 10.1016/j.foodchem.2023.138047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Açaí oil (Euterpe oleracea) is a new active ingredient, originating from the Amazon Forest, which offers numerous benefits as an antioxidant and antimicrobial agent. Here, we report how açaí oil can be used as an active ingredient in gelatin coatings to increase the shelf life of tomatoes. The optimized viscosity and gel strength conditions were 5.40 % gelatin, 17.25 % açaí oil and 18 % plasticizer. FTIR, XRD and zeta potential analysis reveals that repulsive forces dominate the interactions between açaí oil and gelatin. The optimized coating (GAO) reduced mass loss by 8 % and achieved greater firmness (25 N), proving its effectiveness in maintaining tomato quality during storage. For the first time, it was found that the addition of açaí oil to fish gelatin improves the percentage of acidity and firmness of the tomato, delaying ripening, making it a promising alternative as packaging for climacteric fruits.
Collapse
Affiliation(s)
- Ana Caroline Pereira da Silva
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Jhonatas Rodrigues Barbosa
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Cleidiane da Silva Araújo
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| | - Jáira Thayse Sousa Batista
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| | - Eleda Maria Paixão Xavier Neves
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| | - Dilson Nazareno Pereira Cardoso
- Institute of Technology (ITEC), Chemical Engineering Laboratory, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| | | | - Lúcia de Fátima Henriques Lourenço
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| |
Collapse
|
9
|
Liu X, Yu S, Lu X, Zhang Y, Zhong H, Zhou Z, Guan R. Optimization of Preparation Conditions for Quercetin Nanoliposomes Using Response Surface Methodology and Evaluation of Their Stability. ACS OMEGA 2024; 9:17154-17162. [PMID: 38645336 PMCID: PMC11024936 DOI: 10.1021/acsomega.3c09892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Quercetin is a flavonol compound with excellent biological activities. However, quercetin exhibits poor stability and solubility in water, which limits its application. In this study, quercetin nanoliposomes (QUE-NL-1) were prepared using an ultrasonic thin-film dispersion method, and the preparation conditions were optimized using response surface methodology. The optimal conditions for preparing QUE-NL-1 were as follows: an evaporation temperature of 35 °C, a drug concentration of 0.20 mg/mL, and a lipid bile ratio of 4:1. The encapsulation rate of QUE-NL-1 is (63.73 ± 2.09)%, the average particle size is 134.11 nm, and the average absolute value of the zeta potential is 37.50 and PDI = 0.24. By analyzing the storage temperature, storage time, and leakage rate of QUE-NL-1 in simulated gastrointestinal fluid, it was found that quercetin exhibits good stability after embedding and can achieve sustained release in intestinal juice. In addition, the cytotoxicity of QUE-NL-1 was not significant, and the survival rate of Caco-2 cells was >90% when the concentration range of QUE-NL-1 was 0.1-0.4 mg/mL. This study provides an efficient method for preparing QUE-NL-1 with small particle sizes, good stability, and high safety, which is of great significance for expanding the application range of quercetin.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shuzhen Yu
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoqin Lu
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yao Zhang
- Zhejiang
Provincial Key Lab for Chem and Bio Processing Technology of Farm
Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Hao Zhong
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhiyuan Zhou
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongfa Guan
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
10
|
Ghandehari-Alavijeh S, Can Karaca A, Akbari-Alavijeh S, Assadpour E, Farzaneh P, Saidi V, Jafari SM. Application of encapsulated flavors in food products; opportunities and challenges. Food Chem 2024; 436:137743. [PMID: 37852072 DOI: 10.1016/j.foodchem.2023.137743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Flavors are considered among the most important components of food formulations since they can predominantly affect the consumer acceptance and satisfaction. However, most flavors are highly volatile and inherently sensitive to pH, light, thermal processes, and chemical reactions such as oxidation and hydrolysis. Encapsulation is used as an effective strategy for protecting flavors from environmental conditions and extending their shelf life. Moreover, release characteristics of flavors can be modified via application of appropriate carriers and wall materials. This review focuses on the use of encapsulated flavors in various food products. Various factors affecting flavor retention during encapsulation, flavor release mechanisms, profiles and kinetics are discussed. Finally, the challenges associated with the use of encapsulated flavors in food products (in situ) and to model systems (in vitro), their storage stability, product requirements and problems related to the market are presented.
Collapse
Affiliation(s)
- Somayeh Ghandehari-Alavijeh
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parisa Farzaneh
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Vahideh Saidi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
11
|
Kumari SVG, Pakshirajan K, Pugazhenthi G. Facile fabrication and characterization of novel antimicrobial and antioxidant poly (3-hydroxybutyrate)/essential oil composites for potential use in active food packaging applications. Int J Biol Macromol 2023; 252:126566. [PMID: 37648135 DOI: 10.1016/j.ijbiomac.2023.126566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Poly (3-hydroxybutyrate) (PHB) is a bio-based biodegradable biopolymer with excellent potential to substitute petrochemical-based food packaging materials. Nevertheless, low elongation at break is one of the limiting factors for its commercial-scale application in the packaging field. Microbial contamination and lipid oxidation are the two main causes of food spoilage and pose huge challenges to the food industry. In this regard, essential oils are bioactive compounds that, in addition to providing antimicrobial and antioxidant properties, can improve the flexibility of biopolymers. Therefore, to overcome the aforementioned challenges, the current study aimed to fabricate novel PHB composite films loaded with essential oils, viz. grapeseed oil (GS), bergamot oil (BG), and ginger oil (GG), by a simple solution casting technique. To evaluate the potential of prepared PHB/essential oil composites for food packaging applications, extensive characterizations of their mechanical, structural, barrier, optical, and thermal properties were carried out. Interestingly, PHB/essential oil composites demonstrated good UV-blocking properties without affecting its transparency. PHB films loaded with 5 wt% GS showed a 30-fold enhancement in flexibility compared to pristine PHB. The DPPH radical scavenging activities of PHB/5GS, PHB/5BG, and PHB/5GG films are 53.17 ± 4.76, 50.70 ± 3.92 and 86.38 ± 2.73 %, respectively. The antibacterial activities of PHB/5GS, PHB/5BG, and PHB/5GG films against the model bacterium E. coli are 19.72 ± 0.97, 12.62 ± 2.23 and 29.98 ± 2.15 %, respectively, whereas, for S. aureus, the values are 61.56 ± 3.39, 30.28 ± 0.92 and 70.97 ± 0.26 %, respectively. Moreover, the overall migration values of the composite films in simulants representing hydrophilic, acidic, and lipophilic foods did not exceed the prescribed overall migration limit (10 mg/dm2).
Collapse
Affiliation(s)
- Satti Venu Gopala Kumari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
12
|
Napiórkowska A, Szpicer A, Wojtasik-Kalinowska I, Perez MDT, González HD, Kurek MA. Microencapsulation of Juniper and Black Pepper Essential Oil Using the Coacervation Method and Its Properties after Freeze-Drying. Foods 2023; 12:4345. [PMID: 38231792 DOI: 10.3390/foods12234345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Essential oils are mixtures of chemical compounds that are very susceptible to the effects of the external environment. Hence, more attention has been drawn to their preservation methods. The aim of the study was to test the possibility of using the classical model of complex coacervation for the microencapsulation of essential oils. Black pepper (Piper nigrum) and juniper (Juniperus communis) essential oils were dissolved in grape seed (GSO) and soybean (SBO) oil to minimize their loss during the process, and formed the core material. Various mixing ratios of polymers (gelatin (G), gum Arabic (GA)) were tested: 1:1; 1:2, and 2:1. The oil content was 10%, and the essential oil content was 1%. The prepared coacervates were lyophilized and then screened to obtain a powder. The following analyses were determined: encapsulation efficiency (EE), Carr index (CI), Hausner ratio (HR), solubility, hygroscopicity, moisture content, and particle size. The highest encapsulation efficiency achieved was within the range of 64.09-59.89%. The mixing ratio G/GA = 2:1 allowed us to obtain powders that were characterized by the lowest solubility (6.55-11.20%). The smallest particle sizes, which did not exceed 6 μm, characterized the powders obtained by mixing G/GA = 1:1. All powder samples were characterized by high cohesiveness and thus poor or very poor flow (CI = 30.58-50.27, HR = 1.45-2.01).
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Iwona Wojtasik-Kalinowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
13
|
Soni M, Yadav A, Maurya A, Das S, Dubey NK, Dwivedy AK. Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods 2023; 12:4017. [PMID: 37959136 PMCID: PMC10648556 DOI: 10.3390/foods12214017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Preservation of foods, along with health and safety issues, is a growing concern in the current generation. Essential oils have emerged as a natural means for the long-term protection of foods along with the maintenance of their qualities. Direct applications of essential oils have posed various constraints to the food system and also have limitations in application; hence, encapsulation of essential oils into biopolymers has been recognized as a cutting-edge technology to overcome these challenges. This article presents and evaluates the strategies for the development of encapsulated essential oils on the basis of fascination with the modeling and shuffling of various biopolymers, surfactants, and co-surfactants, along with the utilization of different fabrication processes. Artificial intelligence and machine learning have enabled the preparation of different nanoemulsion formulations, synthesis strategies, stability, and release kinetics of essential oils or their bioactive components from nanoemulsions with improved efficacy in food systems. Different mathematical models for the stability and delivery kinetics of essential oils in food systems have also been discussed. The article also explains the advanced application of modeling-based encapsulation strategies on the preservation of a variety of food commodities with their intended implication in food and agricultural industries.
Collapse
Affiliation(s)
| | | | | | | | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; (M.S.); (A.Y.); (A.M.); (S.D.); (N.K.D.)
| |
Collapse
|
14
|
Bayraktar O, Oder G, Erdem C, Kose MD, Cheaburu-Yilmaz CN. Selective Encapsulation of the Polyphenols on Silk Fibroin Nanoparticles: Optimization Approaches. Int J Mol Sci 2023; 24:ijms24119327. [PMID: 37298277 DOI: 10.3390/ijms24119327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The present study proposes a method for designing small bioactive nanoparticles using silk fibroin as a carrier to deliver hydrophobic polyphenols. Quercetin and trans-resveratrol, widely distributed in vegetables and plants, are used here as model compounds with hydrophobic properties. Silk fibroin nanoparticles were prepared by desolvation method and using various concentrations of ethanol solutions. The optimization of the nanoparticle formation was achieved by applying Central Composite Design (CCD) and the response surface methodology (RSM). The effects of silk fibroin and ethanol solution concentrations together with the pH on the selective encapsulation of phenolic compounds from a mixture were reported. The obtained results showed that nanoparticles with an average particle size of 40 to 105 nm can be prepared. The optimized system for the selective encapsulation of the polyphenols on the silk fibroin substrate was determined to be 60% ethanol solution and 1 mg/mL silk fibroin concentration at neutral pH. The selective encapsulation of the polyphenols was achieved, with the best results being obtained in the case of resveratrol and quercetin and encapsulation of gallic and vanillic acids being rather poor. Thin-layer chromatography confirmed the selective encapsulation and the loaded silk fibroin nanoparticles exhibited antioxidant activity.
Collapse
Affiliation(s)
- Oguz Bayraktar
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Gizem Oder
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Cansu Erdem
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Merve Deniz Kose
- Department of Chemical Engineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Catalina N Cheaburu-Yilmaz
- Laboratory of Physical Chemistry of Polymers, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylul University, 35390 Izmir, Turkey
| |
Collapse
|
15
|
Advances and trends in encapsulation of essential oils. Int J Pharm 2023; 635:122668. [PMID: 36754179 DOI: 10.1016/j.ijpharm.2023.122668] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
There is a huge concern regarding the potential carcinogenic and mutagenic risks associated with the usage of synthetic chemicals as preservatives in various consumer products such as food and pharmaceutical formulations. In this aspect, there is a need for the development of alternative natural preservatives to replace these synthetic chemicals. More recently, naturally occurring essential oils have emerged as popular ingredients owing to their unique characteristics like antioxidant and antimicrobial activity, to enrich and enhance the functional properties of consumer products. However, due to their high volatility and hydrophobicity, their functionality is lost and their incorporation in aqueous products is challenging. One of the promising strategies to overcome this challenge is encapsulation which involves the entrapment of the essential oil inside a biocompatible material for its controlled release and increased bioavailability. Also, the choice of encapsulation method depends on the component to be encapsulated and the shell material. In this review, encapsulation in various colloidal systems that facilitate the potential delivery of essential oils is discussed. The focus is on encapsulation techniques along with their advantages and disadvantages, encapsulation efficiency, and in vitro release studies.
Collapse
|
16
|
Wang Y, Li M, Wen X, Tao H, Wang K, Fu R, Tao H, Wang F, Chen N, Ni Y. Conformational changes and the formation of new bonds achieving robust nanoemulsions by electrostatic interactions between whey protein isolate and chondroitin sulfate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Edible oil to powder technologies: Concepts and advances. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
18
|
Evaluation of Encapsulation of Residual Oil from Pressed Sesame Seed Cake by Coacervation and Subsequent Spray- and Freeze-Drying Method. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
19
|
English M, Okagu OD, Stephens K, Goertzen A, Udenigwe CC. Flavour encapsulation: A comparative analysis of relevant techniques, physiochemical characterisation, stability, and food applications. Front Nutr 2023; 10:1019211. [PMID: 36937359 PMCID: PMC10017510 DOI: 10.3389/fnut.2023.1019211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Flavour is an important component that impacts the quality and acceptability of new functional foods. However, most flavour substances are low molecular mass volatile compounds, and direct handling and control during processing and storage are made difficult due to susceptibility to evaporation, and poor stability in the presence of air, light, moisture and heat. Encapsulation in the form of micro and nano technology has been used to address this challenge, thereby promoting easier handling during processing and storage. Improved stability is achieved by trapping the active or core flavour substances in matrices that are referred to as wall or carrier materials. The latter serve as physical barriers that protect the flavour substances, and the interactions between carrier materials and flavour substances has been the focus of many studies. Moreover, recent evidence also suggests that enhanced bioavailability of flavour substances and their targeted delivery can be achieved by nanoencapsulation compared to microencapsulation due to smaller particle or droplet sizes. The objective of this paper is to review several relevant aspects of physical-mechanical and physicochemical techniques employed to stabilize flavour substances by encapsulation. A comparative analysis of the physiochemical characterization of encapsulates (particle size, surface morphology and rheology) and the main factors that impact the stability of encapsulated flavour substances will also be presented. Food applications as well as opportunities for future research are also highlighted.
Collapse
Affiliation(s)
- Marcia English
- Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
- *Correspondence: Marcia English,
| | - Ogadimma Desmond Okagu
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Kristen Stephens
- Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
| | - Alex Goertzen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chibuike C. Udenigwe
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Chibuike C. Udenigwe,
| |
Collapse
|
20
|
Microencapsulation of Rose Essential Oil Using Perilla Protein Isolate-Sodium Alginate Complex Coacervates and Application of Microcapsules to Preserve Ground Beef. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Hemp protein isolate – gum Arabic complex coacervates as a means for oregano essential oil encapsulation. Comparison with whey protein isolate – gum Arabic system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Chen K, Zhang M, Mujumdar AS, Wang M. Encapsulation of different spice essential oils in quinoa protein isolate-gum Arabic coacervates for improved stability. Carbohydr Polym 2022; 300:120250. [DOI: 10.1016/j.carbpol.2022.120250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
23
|
Tian Q, Zhou W, Cai Q, Pan X, Ma G, Lian G. In situ complex coacervation supported by self-coated polydopamine interlayer on uniform-sized essential oils droplet. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Optimization of Wall Material Composition for Production of Spray-dried Sacha Inchi Oil Microcapsules with Desirable Physicochemical Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Napiórkowska A, Kurek M. Coacervation as a Novel Method of Microencapsulation of Essential Oils-A Review. Molecules 2022; 27:molecules27165142. [PMID: 36014386 PMCID: PMC9416238 DOI: 10.3390/molecules27165142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
These days, consumers are increasingly "nutritionally aware". The trend of "clean label" is gaining momentum. Synthetic additives and preservatives, as well as natural ones, bearing the E symbol are more often perceived negatively. For this reason, substances of natural origin are sought tfor replacing them. Essential oils can be such substances. However, the wider use of essential oils in the food industry is severely limited. This is because these substances are highly sensitive to light, oxygen, and temperature. This creates problems with their processing and storage. In addition, they have a strong smell and taste, which makes them unacceptable when added to the product. The solution to this situation seems to be microencapsulation through complex coacervation. To reduce the loss of essential oils and the undesirable chemical changes that may occur during their spray drying-the most commonly used method-complex coacervation seems to be an interesting alternative. This article collects information on the limitations of the use of essential oils in food and proposes a solution through complex coacervation with plant proteins and chia mucilage.
Collapse
|
26
|
Tavares L, Zapata Noreña CP, Barros HL, Smaoui S, Lima PS, Marques de Oliveira M. Rheological and structural trends on encapsulation of bioactive compounds of essential oils: A global systematic review of recent research. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Encapsulated-based films for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and healthy ingredients. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
The Physicochemical Properties and Antioxidant Activity of Spirulina ( Artrhospira platensis) Chlorophylls Microencapsulated in Different Ratios of Gum Arabic and Whey Protein Isolate. Foods 2022; 11:foods11121809. [PMID: 35742007 PMCID: PMC9223014 DOI: 10.3390/foods11121809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Spirulina (Artrhospira platensis) is rich in chlorophylls (CH) and is used as a potential natural additive in the food industry. In this study, the CH content was extracted from spirulina powder after ultrasound treatment. Microcapsules were then prepared at different ratios of gum Arabic (GA) and whey protein isolate (WPI) through freeze-drying to improve the chemical stability of CH. As a result, a* and C* values of the microcapsules prepared from GA:WPI ratios (3:7) were −8.94 ± 0.05 and 15.44 ± 0.08, respectively. The GA fraction increased from 1 to 9, and encapsulation efficiency (EE) of microcapsules also increased by 9.62%. Moreover, the absorption peaks of CH at 2927 and 1626 cm−1 in microcapsules emerged as a redshift detected by FT-IR. From SEM images, the morphology of microcapsules changed from broken glassy to irregular porous flake-like structures when the GA ratio increased. In addition, the coated microcapsules (GA:WPI = 3:7) showed the highest DPPH free radical scavenging activity (SADPPH) (56.38 ± 0.19) due to low moisture content and better chemical stability through thermogravimetric analysis (TGA). Conclusively, GA and WPI coacervates as the wall material may improve the stability of CH extracted from spirulina.
Collapse
|
29
|
Rheological characterization of β-lactoglobulin/lactoferrin complex coacervates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Suwannasang S, Zhong Q, Thumthanaruk B, Vatanyoopaisarn S, Uttapap D, Puttanlek C, Rungsardthong V. Physicochemical properties of yogurt fortified with microencapsulated Sacha Inchi oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Qiu L, Zhang M, Adhikari B, Chang L. Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Tavares L, Smaoui S, Pinilla CMB, Ben Hlima H, Lopes Barros H. Ginger: a systematic review of clinical trials and recent advances in encapsulation of its bioactive compounds. Food Funct 2022; 13:1078-1091. [PMID: 35080542 DOI: 10.1039/d1fo02998c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Recently, the numbers of studies on natural products have considerably increased owing to their exceptional biological activities and health benefits. Their pharmacological attributes have played an immense role in detecting natural and safe alternative therapeutics, consequently extending their industrial applications. In this line, ginger (Zingiber officinale) has been gaining wide attention owing to its bioactive compounds, such as phenolic and terpene compounds. Ginger has a great pharmacological and biological potential in the prevention and treatment of various diseases, namely colds, nausea, arthritis, migraines and hypertension. However, these bioactive compounds are unstable and susceptible to degradation, volatilization and oxidation during extraction and processing, mainly owing to their exposure to environments with adverse conditions, such as high temperature, the presence of O2 and light. In this sense, this current review covers a wide range of topics, starting from the chemical profile and biological properties of ginger bioactive compounds (GBCs), their clinical effectiveness for the treatment of diseases and the application of different encapsulation methods (molecular inclusion, spray drying, complex coacervation, ionic strength and nanoemulsions) to protect and improve their application in food products. This work summarizes the fundamental principles of, recent progress in and effectiveness of different methods regarding the physicochemical, structural and functional properties of encapsulated GBCs. The potential use of encapsulated GBCs as a promising active ingredient to be applied in different food products is discussed in detail.
Collapse
Affiliation(s)
- Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, no. 9500, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, PO Box 1177, 3018 Sfax, Tunisia.
| | - Cristian Mauricio Barreto Pinilla
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, no. 9500, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hajer Ben Hlima
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, 3038, University of Sfax, Tunisia
| | - Hélio Lopes Barros
- Faculty of Pharmacy of the University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
33
|
Tiwari S, Upadhyay N, Singh BK, Singh VK, Dubey NK. Facile Fabrication of Nanoformulated Cinnamomum glaucescens Essential Oil as a Novel Green Strategy to Boost Potency Against Food Borne Fungi, Aflatoxin Synthesis, and Lipid Oxidation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02739-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Premjit Y, Pandhi S, Kumar A, Rai DC, Duary RK, Mahato DK. Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling. Food Res Int 2022; 151:110879. [PMID: 34980409 DOI: 10.1016/j.foodres.2021.110879] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
Food flavors are volatile compounds that impact the human sensory perception profoundly and find extensive applications in various food products. Because of their volatility and high sensitivity to pH, temperature, oxidation, and external conditions, they require adequate protection to last for a longer duration. Encapsulation plays a critical role in preserving food flavors by enhancing their thermal and oxidative stability, overcoming volatility limitations, and regulating their rapid release with improved bioavailability in food products. The current review focuses on the recent developments in food flavor encapsulation techniques, such as electrospinning/spraying, cyclodextrin inclusion complexes, coacervation, and yeast cell micro-carriers. The review also comprehensively discusses the role of encapsulants in achieving controlled flavor release, the mechanisms involved, and the mathematical modelling for flavor release. Specific well-established nanoencapsulation techniques render better encapsulation efficiency and controlled release of flavor compounds. The review examined specific emerging methods for flavor encapsulation, such as yeast cell encapsulation, which require further exploration and development. This article provides readers with up-to-date information on different encapsulation processes and coating methods used for flavor encapsulation.
Collapse
Affiliation(s)
- Yashaswini Premjit
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Chandra Rai
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Raj Kumar Duary
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| |
Collapse
|
35
|
Ferreira S, Nicoletti VR. Use of a tubular heat exchanger to achieve complex coacervation in a semi-continuous process: Effects of capsules curing temperature and shear rate. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Plati F, Papi R, Paraskevopoulou A. Characterization of Oregano Essential Oil ( Origanum vulgare L. subsp. hirtum) Particles Produced by the Novel Nano Spray Drying Technique. Foods 2021; 10:foods10122923. [PMID: 34945475 PMCID: PMC8700915 DOI: 10.3390/foods10122923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 01/31/2023] Open
Abstract
Oregano essential oil (OEO), due to its wide variety of biological activities, could be a “green” alternative to chemical preservatives. On the other hand, the difficulties in its use or storage have turned researchers’ interest in encapsulation strategies as a way to face stability and handling issues. Fabrication of OEO-loaded particles, using nano spray drying technique (NSD) and whey protein isolate-maltodextrin mixtures (1:1, 1:3) as wall materials appears to be a novel and promising strategy. The obtained particles were characterized in terms of volatile composition, encapsulation efficiency, and physicochemical, molecular, morphological, and antibacterial properties. The results confirmed that encapsulation of OEO using NSD achieved high levels of powder recovery (>77%) and encapsulation efficiency (>98%) while assisting in the retention of the main bioactive compounds. The partial replacement of WPI by MD significantly affected particles’ physical properties. FTIR analyses revealed the possible structural stabilization of core and wall materials, while SEM verified the very fine size and spherical shape. Finally, antibacterial studies demonstrated their activity against Escherichia coli and Staphylococcus aureus, which is much stronger in comparison with that of pure OEO, proving the positive effect of NSD and particles’ potential in future food applications.
Collapse
Affiliation(s)
- Fotini Plati
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| | - Rigini Papi
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-23-1099-7832
| |
Collapse
|
37
|
The Improved Properties of Zein Encapsulating and Stabilizing Sacha Inchi Oil by Surfactant Combination of Lecithin and Tween 80. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02706-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Tavares L, Noreña CPZ. Characterization of rheological properties of complex coacervates composed by whey protein isolate, chitosan and garlic essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Tavares L, Santos L, Noreña CPZ. Microencapsulation of organosulfur compounds from garlic oil using β-cyclodextrin and complex of soy protein isolate and chitosan as wall materials: A comparative study. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.05.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Effect of Tannic Acid Concentration on the Physicochemical, Thermal, and Antioxidant Properties of Gelatin/Gum Arabic–Walled Microcapsules Containing Origanum onites L. Essential Oil. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Cebi N, Arici M, Sagdic O. The famous Turkish rose essential oil: Characterization and authenticity monitoring by FTIR, Raman and GC-MS techniques combined with chemometrics. Food Chem 2021; 354:129495. [PMID: 33743448 DOI: 10.1016/j.foodchem.2021.129495] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
There is a necessity for rapid, robust, easy, accurate and cost-effective methodologies for the quality control of essential oils from medicinal and aromatic plants. Rosa damascena essential oil is a high-value natural product with its unique quality properties and economic importance. This research evaluated the capability of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and gas chromatography-mass spectrometry (GC-MS) techniques combined with chemometrics for determination of the authenticity of R. damascena essential oil. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were successfully employed with 100% accuracy for discrimination of authentic R. damascena essential oil samples from fraudulent commercial samples. Consistent results were obtained by FTIR, Raman and GC-MS techniques. Two of twenty commercial samples were determined as authentic R. damascena essential oil samples using the three analytical techniques. Findings showed that FTIR and Raman spectroscopy combined with chemometrics could be used as reliable, robust, rapid, accurate and low-cost analytical techniques for quality evaluation of R. damascena essential oil.
Collapse
Affiliation(s)
- Nur Cebi
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34210 Istanbul, Turkey.
| | - Muhammet Arici
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34210 Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34210 Istanbul, Turkey
| |
Collapse
|
42
|
Design of Sodium Alginate/Gelatin-Based Emulsion Film Fused with Polylactide Microparticles Charged with Plant Extract. MATERIALS 2021; 14:ma14040745. [PMID: 33562580 PMCID: PMC7915926 DOI: 10.3390/ma14040745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/29/2022]
Abstract
This study aimed at designing emulsion films based on sodium alginate, gelatin, and glycerol, and their modification by the addition of lipids (cottonseed oil and beeswax). Film composition with the most promising properties was further modified by the incorporation of polylactide (PLA) microparticles with Calendula officinalis flower extract. PLA microspheres were obtained by the emulsion/solvent evaporation method. The size distribution of oily particles in emulsions was investigated. Mechanical properties, moisture content, UV-Vis spectra, and the color of films were analyzed, while biophysical skin parameters were assessed after their application to the skin. Moreover, the contact angles were measured, and the surface free energy of polymeric films was determined. An investigation of the amount of Calendula officinalis flower extract which can be incorporated into PLA microparticles was performed. The modification of the composition of films significantly influenced their physicochemical properties. The selected active ingredient in the form of plant extract was successfully incorporated into polymeric microparticles that were further added into the developed emulsion film. The condition of the skin after the application of obtained emulsion films improved. The prepared materials, especially containing microparticles with plant extract, can be considered for designing new cosmetic forms, such as cosmetic masks, as well as new topical formulations for pharmaceutical delivery.
Collapse
|
43
|
Fabrication, Characterization, and Antifungal Assessment of Jasmine Essential Oil-Loaded Chitosan Nanomatrix Against Aspergillus flavus in Food System. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Tavares L, Noreña CPZ. Characterization of the physicochemical, structural and thermodynamic properties of encapsulated garlic extract in multilayer wall materials. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|