1
|
Wang D, Liu X, Hong W, Xiao T, Xu Y, Fang X, Tang H, Zheng Q, Meng X. Muscone abrogates breast cancer progression through tumor angiogenic suppression via VEGF/PI3K/Akt/MAPK signaling pathways. Cancer Cell Int 2024; 24:214. [PMID: 38898449 PMCID: PMC11188526 DOI: 10.1186/s12935-024-03401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Angiogenesis strongly reflects poor breast cancer outcome and an important contributor to breast cancer (BC) metastasis; therefore, anti-angiogenic intervention is a potential tool for cancer treatment. However, currently used antibodies against vascular endothelial growth factor A (VEGFA) or inhibitors that target the VEGFA receptor are not effective due to weak penetration and low efficiency. Herein, we assessed the anti-BC angiogenic role of muscone, a natural bioactive musk constituent, and explored possible anti-cancer mechanisms of this compound. METHODS CCK-8, EdU, scratch and Transwell assessments were employed to detect the muscone-mediated regulation of breast cancer (BC) and human umbilical vein endothelial cells (HUVECs) proliferation and migration. Tube formation, matrigel plug assay and zebrafish assay were employed for assessment of regulation of tumor angiogenesis by muscone. In vivo xenograft mouse model was constructed to compare microvessel density (MVD), vascular leakage, vascular maturation and function in muscone-treated or untreated mice. RNA sequencing was performed for gene screening, and Western blot verified the effect of the VEGFA-VEGFR2 pathway on BC angiogenic inhibition by muscone. RESULTS Based on our findings, muscone suppressed BC progression via tumor angiogenic inhibition in cellular and animal models. Functionally, muscone inhibited BC cell proliferation and migration as well as tumor cell-conditioned medium-based endothelial cell proliferation and migration. Muscone exhibited a strong suppressive influence on tumor vasculature in cellular and animal models. It abrogated tumor cell growth in a xenograft BC mouse model and minimized tumor microvessel density and hypoxia, and increased vascular wall cell coverage and perfusion. Regarding the mechanism of action, we found that muscone suppressed phosphorylation of members of the VEGF/PI3K/Akt/MAPK axis, and it worked synergistically with a VEGFR2 inhibitor, an Akt inhibitor, and a MAPK inhibitor to further inhibit tube formation. CONCLUSION Overall, our results demonstrate that muscone may proficiently suppress tumor angiogenesis via modulation of the VEGF/PI3K/Akt/MAPK axis, facilitating its candidacy as a natural small molecule drug for BC treatment.
Collapse
Affiliation(s)
- Danhong Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Xiaozhen Liu
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Weimin Hong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Tianzheng Xiao
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Yadan Xu
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Xiang Fang
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
- College of Clinical Medicine, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Hongchao Tang
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Qinghui Zheng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China.
| | - Xuli Meng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
2
|
Shen G, Zhou Z, Guo Y, Li L, Zeng J, Wang J, Zhao J. Cholinergic signaling of muscarinic receptors directly involves in the neuroprotection of muscone by inducing Ca 2+ antagonism and maintaining mitochondrial function. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117192. [PMID: 37734472 DOI: 10.1016/j.jep.2023.117192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk, a traditional Chinese medicine, is broadly used in inducing resuscitation and refreshing the mind, activating blood and alleviating pain. It is commonly used for the treatment of ischemic stroke, and muscone is its core medicinal component. AIM OF THE STUDY The aim of this study was to explore whether muscone ameliorates neuronal damage through cholinergic signaling of muscarinic receptors. MATERIALS AND METHODS The effects of muscone were tested in a rat model of middle cerebral artery occlusion (MCAO) as well as injured neurons induced by oxygen-glucose deprivation (OGD) in PC12 cells. Cell counting kit 8 (CCK8) assay was used to measure the cell viability, and the production of lactate dehydrogenase (LDH) and adenosine-triphosphate (ATP) were examined by kit. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), tetramethylrhodamine ethyl ester (TMRE) and Fluo-4 acetoxymethyl ester (Fluo-4 AM) staining were used to demonstrate effect of muscone on the reactive oxygen species (ROS) level, mitochondria membrane potential (MMP) and intracellular Ca2+ measurement in cells respectively, in which all of those staining was visualized by laser confocal microscope. For in vivo experiments, rats' cerebral blood flow was measured using laser Doppler blood flowmetry to evaluate the MCAO model, and a modified neurological severity score (mNSS) was used to assess the recovery of neurological function. Calculate infarct rate was measured by 2,3,5-Triphenyl Tetrazolium Chloride (TTC) staining. Except DCFH-DA and Fluo-4 AM staining, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolylcarbocyanine iodide (JC-1) staining was used to observe intracellular Ca2+ measurement in brain cells. Protein levels in cells and tissues were detected by Western blot. RESULTS Pretreatment with muscone significantly improved the cell viability, lactic acid production, mitochondrial membrane potential collapse and function, Ca2+ overload, ROS generation, and cell apoptosis in OGD PC12 cells. Muscone also regulated PI3K, ERK and AKT signal pathways by activating cholinergic signaling of muscarinic receptors in PC12 cells induced with OGD. More importantly, the blocking of cholinergic signaling of muscarinic receptors by atropine significantly reduces the neuroprotective effects of muscone, including the cell viability, Ca2+ efflux, and mitochondrial repair. Furthermore, muscone was found to effectively alleviate mitochondrial dysfunction and elevated levels of ROS induced by the MCAO in the brain tissue. Notably, this beneficial effect of muscone was attenuated by atropine but not by (+)-Sparteine. CONCLUSIONS Our study indicates that muscone exerts its neuroprotective effects by activating muscarinic receptors of cholinergic signaling, thus providing a promising therapeutic target for the treatment of OGD-induced nerve injury in stroke. The findings suggest that these treatments may hold potential benefits for stroke patients.
Collapse
Affiliation(s)
- Gang Shen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Zongyuan Zhou
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yanlei Guo
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Jianbo Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China.
| |
Collapse
|
3
|
Liu YJ, Xu JJ, Yang C, Li YL, Chen MW, Liu SX, Zheng XH, Luo P, Li R, Xiao D, Shan ZG. Muscone inhibits angiotensin II-induced cardiac hypertrophy through the STAT3, MAPK and TGF-β/SMAD signaling pathways. Mol Biol Rep 2023; 51:39. [PMID: 38158445 PMCID: PMC10756871 DOI: 10.1007/s11033-023-08916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Muscone is a chemical monomer derived from musk. Although many studies have confirmed the cardioprotective effects of muscone, the effects of muscone on cardiac hypertrophy and its potential mechanisms are unclear.The aim of the present study was to investigate the effect of muscone on angiotensin (Ang) II-induced cardiac hypertrophy. METHODS AND RESULTS In the present study, we found for the first time that muscone exerted inhibitory effects on Ang II-induced cardiac hypertrophy and cardiac injury in mice. Cardiac function was analyzed by echocardiography measurement, and the degree of cardiac fibrosis was determined by the quantitative real-time polymerase chain reaction (qRT-PCR), Masson trichrome staining and western blot assay. Secondly, qRT-PCR experiment showed that muscone attenuated cardiac injury by reducing the secretion of pro-inflammatory cytokines and promoting the secretion of anti-inflammatory cytokines. Moreover, western blot analysis found that muscone exerted cardio-protective effects by inhibiting phosphorylation of key proteins in the STAT3, MAPK and TGF-β/SMAD pathways. In addition, CCK-8 and determination of serum biochemical indexes showed that no significant toxicity or side effects of muscone on normal cells and organs. CONCLUSIONS Muscone could attenuate Ang II-induced cardiac hypertrophy, in part, by inhibiting the STAT3, MAPK, and TGF-β/SMAD signaling pathways.
Collapse
Affiliation(s)
- Yi-Jiang Liu
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Jia-Jia Xu
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Cui Yang
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Yan-Lin Li
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Min-Wei Chen
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Shi-Xiao Liu
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Xiang-Hui Zheng
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
- The Third Clinical Medical College, Fujian Medical University, Fujian, China
| | - Ping Luo
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Rui Li
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Di Xiao
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Zhong-Gui Shan
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
4
|
Gu X, Bao N, Zhang J, Huang G, Zhang X, Zhang Z, Du Y, Meng H, Liu J, Wu P, Wang X, Wang G. Muscone ameliorates myocardial ischemia‒reperfusion injury by promoting myocardial glycolysis. Heliyon 2023; 9:e22154. [PMID: 38045159 PMCID: PMC10692826 DOI: 10.1016/j.heliyon.2023.e22154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Objective The incidence of acute myocardial infarction (AMI) is increasing yearly. With the use of thrombolysis or percutaneous coronary intervention (PCI), the mortality rate of acute myocardial infarction has been significantly reduced. However, reperfusion can cause additional myocardial injury. There is still a lack of effective drugs to treat I/R injury, and it is urgent to find new therapeutic drugs. Methods In this study, network pharmacology was used to predict potential targets and biological processes involved in Muscone-mediated treatment of acute myocardial infarction. To model ischemia‒reperfusion injury, a hypoxia-reoxygenation model and in vivo ischemia‒reperfusion injury C57BL/6 mice model was constructed. Mice were treated with Muscone i.p. for 4 weeks. We detected the cardiac function on day 28.The expression levels of the apoptotic proteins Caspase-3 and Bax and the anti-apoptotic protein Bcl-2 were detected by immunoblotting after Muscone treatment of AC16 cells and in vivo. Additionally, the gene expression levels of the PUMA and p53 were analyzed by qRT‒PCR. Molecular docking was used to evaluate the binding energy between Muscone and NLRP3-related proteins. Immunoblotting and qRT‒PCR were used to assess the expression levels of NLRP3 signaling pathway-related proteins (NLRP3, ASC, and Caspase-1) and the NLRP3 gene, respectively. Moreover, the extracellular acidification rate of AC16 cells was measured using the Seahorse system to evaluate glycolysis levels after Muscone treatment. The expression of the key glycolytic enzyme PKM2 was analyzed by immunoblotting and qRT‒PCR. Finally, ChIP‒qPCR was performed to determine the levels of histone modifications (H3K4me3, H3K27me3, and H2AK119Ub) in the PKM2 promoter region. Results GO functional enrichment analysis revealed that muscone was involved in regulating the biological processes (BP) of AMI, which mainly included negative regulation of the apoptosis signaling pathway, the response to lipopolysaccharide, and blood pressure regulation. The cellular components (CC) involved in muscone-mediated regulation of AMI mainly included lipid rafts, membrane microdomains, and membrane regions. The molecular functions (MF) involved in muscone-mediated regulation of AMI mainly included oxidoreductase activity, nuclear receptor activity, and transcription factor activity. In vitro results indicated that muscone treatment could inhibit the expression levels of Bax and Caspase-3 in AC16 cells after ischemia‒reperfusion while increasing the expression level of the antiapoptotic protein Bcl-2. Muscone significantly suppressed the transcription levels of p53 and PUMA in AC16 cells. Molecular docking suggested that muscone could bind well with the Cryo-EM structure of NEK7(PDB ID:6NPY). Further investigation of inflammatory pathways revealed that muscone could inhibit the expression level of NLRP3 in AC16 cells and reduce the expression levels of Caspase-1 and Caspase recruitment domain. Fluorescent quantitative PCR experiments showed that muscone significantly inhibited the transcription of NLRP3. Moreover, we found that muscone could enhance the glycolytic efficiency of AC16 cells, which may be related to the increased protein expression of PKM2 in AC16 cells. Fluorescent quantitative PCR showed that muscone could increase the transcription level of PKM2. Chromatin immunoprecipitation assays showed that muscone treatment increased the expression level of H3K4me3 in the PKM2 promoter region and inhibited the levels of H3K27me3 and H2AK119Ub in the PKM2 promoter region. Conclusion Muscone promoted myocardial glycolysis and inhibited NLRP3 pathway activation to improve myocardial ischemia‒reperfusion injury.
Collapse
Affiliation(s)
- Xin Gu
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Neng Bao
- Department of Nephrology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Jing Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Guangyi Huang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Xiaodong Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Zhixuan Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Yinqiang Du
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215008, China
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Jiabao Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Peng Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Xiaoyan Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Guangyan Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| |
Collapse
|
5
|
Ge Y, Chen Y, Guo C, Luo H, Fu F, Ji W, Wu C, Ruan H. Pyroptosis and Intervertebral Disc Degeneration: Mechanistic Insights and Therapeutic Implications. J Inflamm Res 2022; 15:5857-5871. [PMID: 36263145 PMCID: PMC9575467 DOI: 10.2147/jir.s382069] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Low back pain (LBP) is a common problem worldwide, resulting in great patient suffering and great challenges for the social health system. Intervertebral disc (IVD) degeneration (IVDD) is widely acknowledged as one of the key causes of LBP. Accumulating evidence suggests that aberrant pyroptosis of IVD cells is involved in the pathogenesis of IVDD progression, however, the comprehensive roles of pyroptosis in IVDD have not been fully established, leaving attempts to treat IVDD with anti-pyroptosis approaches questionable. In this review, we summarize the characteristics of pyroptosis and emphasize the effects of IVD cell pyroptosis on the pathological progression of IVDD, including secretion of cytokines, nucleus pulposus cell apoptosis and autophagy, accelerated extracellular matrix degradation, annulus fibrosus rupture, cartilage endplate calcification, vascularization, sensory and sympathetic fiber neoinnervation, and infiltrating lymphatic vessels. Finally, we discuss several interventions used to treat IVDD by targeting pyroptosis. This review provides novel insights into the crucial role of IVD cell pyroptosis in IVDD pathogenesis, and could be informative for developing novel therapeutic approaches for IVDD and LBP.
Collapse
Affiliation(s)
- Yuying Ge
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Chijiao Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fangda Fu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China
| | - Weifeng Ji
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China
| | - Chengliang Wu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China,Correspondence: Chengliang Wu, Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, People’s Republic of China, Email
| | - Hongfeng Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China,Hongfeng Ruan, Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, People’s Republic of China, Email
| |
Collapse
|
6
|
Han B, Zhao Y, Yao J, Li N, Fang T, Wang Y, Meng Z, Liu W. Proteomics on the role of muscone in the "consciousness-restoring resuscitation" effect of musk on ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115475. [PMID: 35718056 DOI: 10.1016/j.jep.2022.115475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk is a representative drug of aroma-relieving traditional Chinese medicine, and it is a commonly used traditional Chinese medicine for the treatment of ischemic stroke. Muscone is the core medicinal component of musk. AIM OF THE STUDY We sought to identify the target of muscone in the treatment of ischemic stroke using network pharmacology, an animal model of ischemic stroke, and differential proteomics. MATERIALS AND METHODS The drug targets of muscone in the treatment of ischemic stroke were predicted and analyzed using information derived from sources such as the Traditional Chinese Medicine Systems Pharmacology database and Swiss Target Prediction tool. The animal model of focal cerebral ischemia was established by suture-based occlusion of the middle cerebral artery of rats. The rats were divided into six groups: sham-operated control, model, musk, muscone1, muscone2, and muscone3. Neurological deficit scores were calculated after intragastric administration of musk or muscone. The microcirculation blood flow of the pia mater was detected using a laser speckle blood flow meter. The cerebral infarction rate was detected by 2,3,5-triphenyltetrazolium chloride staining. The necrosis rate of the cerebral cortex and the hippocampal neurons was detected by hematoxylin and eosin staining. Blood-brain barrier damage was detected by the Evans blue method. Quantitative proteomics analysis in the sham-operated control, model, and muscone groups was performed using tandem-mass-tags. Considering fold changes exceeding 1.2 as differential protein expression, the quantitative values were compared among groups by analysis of variance. Furthermore, a protein-protein interaction network was constructed, and differentially expressed proteins were analyzed by gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. RESULTS Network pharmacology identified 339 targets for the intersection of 17 components of musk and cerebral ischemia-reperfusion injury. The GO and KEGG enrichment items mainly identified regulation of neuronal synaptic structure and transfer function, synaptic neurotransmitters, and receptor activity. Zoopery showed that the model group had a higher behavioral score, cerebral infarction rate, cortical and hippocampal neuron death rate, Evans blue exudation in the brain, and bilateral pia mater microcirculation blood flow differences than the sham-operated control group (P <0.01). Compared with the model group, the behavioral score, infarction rate, hippocampal neuronal mortality, and Evans blue content decreased significantly in the musk, muscone2, and muscone3 groups (P <0.05). Proteomic analysis showed that 160 genes were differentially expressed among the sham-operated control, model, and muscone groups. GO items with high enrichment included neuronal synapses, postsynaptic signal transduction, etc. KEGG items with high enrichment included cholinergic synapses, calcium signaling pathway, dopaminergic synapses, etc. Protein interaction analysis revealed that the top three protein pairs were Ndufa10/Ndufa6, Kcna2/Kcnab2, and Gsk3b/Traf6. CONCLUSIONS Muscone can reduce neuronal necrosis, protect the blood-brain barrier, and improve the neurological damage caused by cerebral ischemia via molecular mechanisms mainly involving the regulation of neuronal synaptic connections. Muscone is an important active component responsible for the "consciousness-restoring resuscitation" effect of musk on ischemic stroke.
Collapse
Affiliation(s)
- Bingbing Han
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Yangang Zhao
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine Shandong, 266109, PR China.
| | - Jing Yao
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Na Li
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Tianhe Fang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Yuan Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Shandong, 250109, PR China.
| | - Wei Liu
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| |
Collapse
|
7
|
Ren W, Zhao F, Han Y, Liu Z, Zhai J, Jia K. Muscone improves hypoxia/reoxygenation (H/R)-induced neuronal injury by blocking HMGB1/TLR4/NF-κB pathway via modulating microRNA-142. PeerJ 2022; 10:e13523. [PMID: 35860039 PMCID: PMC9290999 DOI: 10.7717/peerj.13523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
Previous reports have indicated that natural muscone has neuroprotective effects against cerebral hypoxia injury; however, little is known in regards to its pharmacological mechanism. In this study, we tried to evaluate the neuroprotective effects and mechanisms of muscone against cerebral hypoxia injury using an in vitro model. The cerebral hypoxia injury cell model was produced by hypoxia/reoxygenation (H/R). The cell viability and apoptosis were measured using the cell counting Kit-8 and the Annexin V-FITC/PI Apoptosis Detection kit, respectively. To screen microRNAs regulated by muscone, we analyzed the gene expression datasets of GSE84216 retrieved from gene expression omnibus (GEO). Here, it was demonstrated that muscone treatment significantly alleviated the cell apoptosis, oxidative stress and inflammation in H/R-exposed neurons. Subsequently, through analyzing GSE84216 from the GEO database, miR-142-5p was markedly upregulated by treatment of muscone in this cell model of cerebral hypoxia injury. Further experiments revealed that downregulation of miR-142-5p eliminated the neuroprotective effects of muscone against H/R induced neuronal injury. Additionally, high mobility group box 1 (HMGB1), an important inflammatory factor, was identified as a direct target of miR-142-5p in neurons. Meanwhile, we further demonstrated that muscone could reduce the expression of HMGB1 by upregulating miR-142-5p expression, which subsequently resulted in the inactivation of TLR4/NF-κB pathway, finally leading to the improvement of cell injury in H/R-exposed neurons. Overall, we demonstrate for the first time that muscone treatment alleviates cerebral hypoxia injury in in vitro experiments through blocking activation of the TLR4/NF-κB signaling pathway by targeting HMGB1, suggesting that muscone may serve as a potential therapeutic drug for treating cerebral hypoxia injury.
Collapse
|
8
|
Lian B, Cai L, Zhang Z, Lin F, Li Z, Zhang XK, Jiang F. The anti-inflammatory effect of Pien Tze Huang in non-alcoholic fatty liver disease. Biomed Pharmacother 2022; 151:113076. [PMID: 35550529 DOI: 10.1016/j.biopha.2022.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease that may progress to nonalcoholic steatohepatitis (NASH), hepatic tissue fibrosis, liver cirrhosis, and hepatocellular carcinoma. In this study, we investigated the effects of Pien Tze Huang (PTH), a well-known traditional Chinese herbal formula with liver protective effect, in methionine-choline deficient diet (MCD)- and high-fat diet (HFD)-induced NASH mouse models. Our results showed that PTH could exert hepatoprotective effects by improving liver weight and steatosis and reducing the fibrosis and serum levels of alanine transaminase (ALT) and aspartate transaminase (AST) in both animal models. The effects of PTH was accompanied with the reduction of infiltrated macrophages, the inhibition of the expression of cytokines, and the induction of adiponectin expression. Mechanistically, we found that PTH could inhibit the activation of proinflammatory transcription factor nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor of κBα (IκBα). These results demonstrate that PTH can improve NAFLD largely due to its suppression of the NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Baohuan Lian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.; NucMito Pharmaceuticals Co. Ltd., Xiamen, 361101, China
| | - Lijun Cai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhaoqiang Zhang
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Fen Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zongxi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiao-Kun Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China..
| | - Fuquan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China..
| |
Collapse
|
9
|
Zhang H, Ye J, Wang X, Liu Z, Chen T, Gao J. Muscone Inhibits the Excessive Inflammatory Response in Myocardial Infarction by Targeting TREM-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9112479. [PMID: 35591864 PMCID: PMC9113894 DOI: 10.1155/2022/9112479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022]
Abstract
The inhibitory effect of muscone on the hyperinflammatory response after myocardial ischemia reperfusion injury (MIRI) was investigated, and the target and signal pathways of muscone were explored. The levels of inflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor alpha were detected through qRT-PCR and ELISA. The expression levels of p38 and NF-κB signaling pathway-related proteins were detected through Western blot. TREM-1 siRNA was transfected into macrophages in vitro. The rat model of myocardial ischemia was established and used in studying the inhibitory effect of muscone on the inflammatory response and its protective effect muscone on myocardial apoptosis. The expression of TREM-1 was upregulated during myocardial ischemia. Knocking down TREM-1 decreased the increase in inflammatory cytokines in the supernatant of macrophages induced by rmHMGB1 (1 μg/mL) and rmHSP60 (1 mol/mL). In addition, knocking down TREM-1 decreased p38 and NF-κB signaling activation. Muscone can protect myocardial cells by inhibiting the expression of TREM-1 and the inflammatory response after myocardial infarction. Further study showed that muscone inhibited the production of DAM-triggered (damage-associated molecular pattern trigger) inflammatory cytokines. In addition, muscone inhibited the activation of p38 and NF-κB signals under DAM-induced conditions. Muscone and TREM-1 gene knockout reduced cell apoptosis and provided protection against MIRI by inhibiting p38 and NF-κB signaling activation. Mechanism studies showed that muscone inhibited the production and release of inflammatory cytokines by inhibiting TREM-1, and thereby reducing the inflammatory response and providing protection against MIRI.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jian Ye
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xu Wang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Tao Chen
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Junqing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
10
|
Lv S, Lei Z, Yan G, Shah SA, Ahmed S, Sun T. Chemical compositions and pharmacological activities of natural musk (Moschus) and artificial musk: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114799. [PMID: 34748869 DOI: 10.1016/j.jep.2021.114799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural musk (Moschus), derived naturally from male musk deer (Moschus berezovskii Flerov, Moschus sifanicus Przewalski, or Moschus moschiferus Linnaeus), has long been an important component of traditional Chinese medicine (TCM), and was used as resuscitation, blood circulation, and collateral drainage. detumescence and pain relief. Artificial musk was researched and applied into TCM as natural musk being as unsustainable resources. AIM OF THE STUDY We mainly summarized chemical compositions, pharmacological activities and mechanism of action of natural and artificial musk, and designed to serve as a foundation for further research into musk chemical compositions and pharmacological effect. MATERIALS AND METHODS Those mainstream scientific databases including Google Scholar, ScienceDirect, SpringerLink, CNKI, Wiley Online Library, web of science, were used for searching with below "Keywords", as well as literature-tracking. Literatures spanned 1962 to 2021, and involved into Chinese, English, Janpanese, Korean. RESULTS Natural musk contains some very desirable but scarce compounds, as well as their biological features, which led to the development of artificial musk. The chemical ingredients, pharmacological activities, and mechanisms of action of natural and artificial musk are summarized and compared in this paper. Polypeptide and protein, muscone, musclide, steroids, muscopyridine, and other chemical constituents of musk demonstrated important therapeutic properties against inflammation, immune system disorders, neurological disorders, cardiovascular system disorders, and so on. The mechanism of action contributed to effect on mediators, acceptors and relative signal pathways. CONCLUSIONS Natural and artificial musk were revealed having some activated compounds, and showed excellent pharmacological effect. Meantime, above two sides of natural and artificial musk ought to get further research.
Collapse
Affiliation(s)
- Shuquan Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China; School of Environmental and Biological Engineering, Wuhan Technology and Business University, NO. 3 Huangjiahu West Road, Wuhan 430065, PR China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Zhixin Lei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.
| | - Ge Yan
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, NO. 3 Huangjiahu West Road, Wuhan 430065, PR China
| | - Sayed Afzal Shah
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.
| |
Collapse
|
11
|
MA Z, ZHOU J, JIANG H, YU P, DAI F, LIU J. Yiqi Huoxue Recipe alleviates intervertebral disc degeneration by suppressing interleukin-17, nucleus pulposus cell apoptosis and promoting SOX9/β-catenin pathway. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.86421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Zhijia MA
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| | - Jingwen ZHOU
- Jiangsu Province Hospital of Traditional Chinese Medicine, P.R. China
| | - Hong JIANG
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| | - Pengfei YU
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| | - Feng DAI
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| | - Jintao LIU
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| |
Collapse
|
12
|
Liu K, Xie L, Deng M, Zhang X, Luo J, Li X. Zoology, chemical composition, pharmacology, quality control and future perspective of Musk (Moschus): a review. Chin Med 2021; 16:46. [PMID: 34147113 PMCID: PMC8214773 DOI: 10.1186/s13020-021-00457-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Musk, the dried secretion from the musk sac gland which is located between the navel and genitals of mature male musk deer, is utilized as oriental medicine in east Asia. It has been utilized to treat conditions such as stroke, coma, neurasthenia, convulsions, and heart diseases in China since ancient times. This paper aims to provide a comprehensive overview of musk in zoology, chemical composition, pharmacology, clinical applications, and quality control according to the up-to-date literature. Studies found that musk mainly contains macrocyclic ketones, pyridine, steroids, fatty acids, amino acids, peptides, and proteins, whilst the main active ingredient is muscone. Modern pharmacological studies have proven that musk possesses potent anti-inflammatory effects, neuroprotective effects, anti-cancer effects, antioxidant effects, etc. Moreover, muscone, the main active ingredient, possesses anti-inflammatory, neuroprotective, antioxidant, and other pharmacological effects. In the quality control of musk, muscone is usually the main detection indicator, and the common analytical method is GC, and researchers have established novel and convenient methods such as HPLC-RI, RP-UPLC-ELSD, and Single-Sweep Polarography. In addition, quality evaluation methods based on steroids and the bioactivity of musk have been established. As for the identification of musk, due to various objective factors such as the availability of synthetic Muscone, it is not sufficient to rely on muscone alone as an identification index. To date, some novel technologies have also been introduced into the identification of musk, such as the electronic nose and DNA barcoding technology. In future research, more in vivo experiments and clinical studies are encouraged to fully explain the pharmacological effects and toxicity of musk, and more comprehensive methods are needed to evaluate and control the quality of musk.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| |
Collapse
|
13
|
Post-Marketing Surveillance of Qishe Pill () Use for Management of Neck Pain in a Chinese Patient Cohort to Determine its Safety, Tolerability and Effectiveness. Chin J Integr Med 2021; 27:408-416. [PMID: 33881718 DOI: 10.1007/s11655-021-2868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate the safety and effectiveness of Qishe Pill () on neck pain in real-world clinical practice. METHODS A multi-center, prospective, observational surveillance in 8 hospitals across Shanghai was conducted. During patients receiving 4-week Qishe Pill medication, Visual Analogue Scale (VAS) and Neck Disability Index (NDI) assessments have been used to assess their pain and function, while safety monitoring have been observed after 2 and 4 weeks. RESULTS Results from 2,023 patients (mean age 54.5 years) suggest that the drug exposure per unit of body mass was estimated at 3.41 ± 0.62 g/kg. About 8.5% (172/2,023) of all participants experienced adverse events (AEs), while 3.8% (78/2,023) of all participants experienced adverse reaction. The most common AEs were gastrointestinal events and respiratory events. The VAS score (pain) and NDI score (function) significantly decreased after 4-week treatment. An effect-quantitative analysis was also conducted to show that the normal clinical dosage may be consider as 3-4 g/kg, at which dosage the satisfactory pain-relief effect may achieve by 40-mm reduction in VAS. CONCLUSION These findings showed that patients with cervical radiculopathy who received Qishe Pill experienced significant improvement on pain and function. (Registration No. NCT01875562).
Collapse
|
14
|
Wang J, Xing H, Qin X, Ren Q, Yang J, Li L. Pharmacological effects and mechanisms of muscone. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113120. [PMID: 32668321 DOI: 10.1016/j.jep.2020.113120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Musk, the dried secretion from the preputial follicles of the male musk deer (genus Moschus), possesses various pharmacological activities and has been used extensively in traditional Chinese medicine for thousands of years. Muscone is the main active ingredient of musk and exerts pharmacological effects similar to those of musk. Although muscone was notably used to treat various disorders and diseases, such as neurological disorders, chronic inflammation and ischemia-reperfusion injury, most of the mechanisms of the pharmacological action of muscone remain unclear because of slow progress in research before the 21st century. In recent years, the pharmacological activities and mechanisms of muscone have been clarified. The present article summarizes the pharmacological and biological studies on cerebrovascular disease, cardiovascular disease, neurological effects, cancer and others and the associated mechanisms of the action of muscone to date.
Collapse
Affiliation(s)
- Jun Wang
- Health Management Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Hui Xing
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Xiaomin Qin
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Qun Ren
- Health Management Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Jiang Yang
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China; Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.
| | - Lin Li
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China.
| |
Collapse
|
15
|
Zhou LY, Yao M, Tian ZR, Liu SF, Song YJ, Ye J, Li G, Sun YL, Cui XJ, Wang YJ. Muscone suppresses inflammatory responses and neuronal damage in a rat model of cervical spondylotic myelopathy by regulating Drp1-dependent mitochondrial fission. J Neurochem 2020; 155:154-176. [PMID: 32215908 DOI: 10.1111/jnc.15011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is a common cause of disability with few treatments. Aberrant mitochondrial dynamics play a crucial role in the pathogenesis of various neurodegenerative diseases. Thus, regulation of mitochondrial dynamics may offer therapeutic benefit for the treatment of CSM. Muscone, the active ingredient of an odoriferous animal product, exhibits anti-inflammatory and neuroprotective effects for which the underlying mechanisms remain obscure. We hypothesized that muscone might ameliorate inflammatory responses and neuronal damage by regulating mitochondrial dynamics. To this end, the effects of muscone on a rat model of chronic cervical cord compression, as well as activated BV2 cells and injured neurons, were assessed. The results showed that muscone intervention improved motor function compared with vehicle-treated rats. Indeed, muscone attenuated pro-inflammatory cytokine expression, neuronal-apoptosis indicators in the lesion area, and activation of the nod-like receptor family pyrin domain-containing 3 inflammasome, nuclear transcription factor-κB, and dynamin-related protein 1 in Iba1- and βIII-tubulin-labeled cells. Compared with vehicle-treated rats, compression sites of muscone-treated animals exhibited elongated mitochondrial morphologies in individual cell types and reduced reactive oxygen species. In vitro results indicated that muscone suppressed microglial activation and neuronal damage by regulating related-inflammatory or apoptotic molecules. Moreover, muscone inhibited dynamin-related protein 1 activation in activated BV2 cells and injured neurons, whereby it rescued mitochondrial fragmentation and reactive oxygen species production, which regulate a wide range of inflammatory and apoptotic molecules. Our findings reveal that muscone attenuates neuroinflammation and neuronal damage in rats with chronic cervical cord compression by regulating mitochondrial fission events, suggesting its promise for CSM therapy.
Collapse
Affiliation(s)
- Long-Yun Zhou
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Rui Tian
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Fen Liu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Lu L, Wu C, Lu BJ, Xie D, Wang Z, Bahaji Azami NL, An YT, Wang HJ, Ye G, Sun MY. BabaoDan cures hepatic encephalopathy by decreasing ammonia levels and alleviating inflammation in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112301. [PMID: 31622746 DOI: 10.1016/j.jep.2019.112301] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE BabaoDan (BBD) is a famous traditional Chinese formula frequently used in TCM clinics to eliminate jaundice and treat infectious viral hepatitis. This paper assesses BBD's preventive and therapeutic effects on hepatic encephalopathy after liver cirrhosis (CHE) and acute liver failure (AHE) in rats and explains its possible mechanism of action. METHODS CHE rat model was established by injection of carbon tetrachloride (CCl4) twice a week for a total of 9 weeks and then by injection of thioacetamide (TAA) to induce hepatic encephalopathy. AHE rat model was established by injection of TAA once a day for a total of 3 days. In CHE rat model, BBD was gavaged once a day at the end of the 6th week until the experiment ended. In AHE rat model,BBD was gavaged once a day 3 days before TAA injection until the experiment ended. The preventive and therapeutic effects of BBD on brain dysfunction, as well as liver injury, pathology and fibrosis were evaluated in vivo. The role of BBD in the regulation of inflammatory factors and myeloid differentiation factor 88/Toll-like receptor 4/nuclear factor kappa-B (TLR4/MyD88/NK-κ B) pathway was detected in both liver and brain in vivo. The rat bone marrow derived macrophages (BMDMs) were activated by Lipopolysaccharide (LPS), and the role of BBD in the regulation of inflammatory factors and NK-κ B pathway were detected in vitro. RESULTS In CHE rat model: BBD significantly improved the total distance as well as the activity rate of rats. BBD also improved the learning and memory abilities of rats compared with the control group. In addition, BBD effectively decreased ammonia levels and significantly decreased the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBil) and total bile acid (TBA), as well as improved the levels of total protein (TP) and albumin (Alb). In the liver, BBD not only inhibited the gene expressions of tumor necrosis factor alpha (TNF-α), interleukini-6 (IL-6), TLR4, MyD88, and NF-κ B but also inhibited the protein expressions of TLR4, MyD88, NK-κ B and TNF-α. In the brain, BBD inhibited the gene expressions of iNOS, IL-6, TNF-α, TLR-4, MyD88, and NF-κ B, as well as inhibited the protein expressions of TLR4, MyD88, P65 TNF-α and ionized calcium binding adapter molecule 1 (Iba-1). BBD also decreased NO and TNF-α in the blood. IN AHE RAT MODEL BBD improved neurological scores, blood ammonia levels and the brain inflammatory gene expressions of iNOS, TNF-α and IL-1β. BBD also improved liver function biomarkers such as ALT, TBil, TBA, TP, ALB and inflammatory and apoptotic gene expressions of TNF-α, IL-1β, IL-6, Bax, Bcl-2, caspase-9, caspase-3 and NF-κ B. In LPS-activated rat BMDMs, BBD decreased NO and TNF-α production in BMDM culture supernatant. In addition, BBD inhibited the gene expressions of TNF-α, IL-1 β and IL-6 as well as the phosphorylation of P65. CONCLUSION BBD can prevent and cure hepatic encephalopathy (HE) derived from both chronic and acute liver diseases. BBD can reduce hyperammonemia as well as the systematic and neurological inflammation. Inflammation is likely an important target of BBD to treat HE. The anti-inflammatory role of BBD may lie in its regulation of the TLR4/MyD88/NF-κ B pathways.
Collapse
Affiliation(s)
- Lu Lu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chao Wu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing-Jie Lu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zheng Wang
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nisma Lena Bahaji Azami
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong-Tong An
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, 201203, China.
| | - Hui-Jun Wang
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, 201203, China.
| | - Guan Ye
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, 201203, China.
| | - Ming-Yu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
|
18
|
Therapeutic Potential of Pien-Tze-Huang: A Review on Its Chemical Composition, Pharmacology, and Clinical Application. Molecules 2019; 24:molecules24183274. [PMID: 31505740 PMCID: PMC6767116 DOI: 10.3390/molecules24183274] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Pien-Tze-Huang (PTH) is a famous and commonly used traditional Chinese medicine formula in China. It was first formulated by a royal physician of the Ming Dynasty (around 1555 AD). Recently, PTH has attracted attention worldwide due to its beneficial effects against various diseases, especially cancer. This paper systematically reviewed the up-to-date information on its chemical composition, pharmacology, and clinical application. A range of chemical compounds, mainly ginsenosides and bile acids, have been identified and quantified from PTH. Pharmacological studies indicated that PTH has beneficial effects against various cancers, hepatopathy, and ischemic stroke. Furthermore, PTH has been used clinically to treat various diseases in China, such as colorectal cancer, liver cancer, and hepatitis. In summary, PTH is a potential agent with extensive therapeutic effects for the treatment of various diseases. However, the lack of information on the side effects and toxicity of PTH is a non-negligible issue, which needs to be seriously studied in the future.
Collapse
|
19
|
Protective effect of Ketone musk on LPS/ATP-induced pyroptosis in J774A.1 cells through suppressing NLRP3/GSDMD pathway. Int Immunopharmacol 2019; 71:328-335. [PMID: 30952097 DOI: 10.1016/j.intimp.2019.03.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Pyroptosis is a different type of proinflammatory and lytic mode of cell death from apoptosis and necrosis, which play a killer and cleaner to the pathogenic microorganisms as an immune response when the host is infected by pathogenic microorganisms. Ketone musk (KM) is a component of the native musk, which is widely used to medicine and chemical engineering. In this research, we studied whether KM can suppress the pyroptosis in J774A.1 cells induced by lipopoysaccharide (LPS)/Adenosine Triphosphate (ATP) stimulation. The results showed that KM increased the viability of LPS/ATP-stimulated cells, decreased the production of interleukin (IL)-1β/18, and suppressed the activation of caspased-1 and NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome and gasdermin D (GSDMD). Our present study demonstrated that KM inhibited LPS/ATP-induced pyroptosis and the release of IL-1β/18 in J774A.1 cells by inhibiting the activation of GSDMD and caspase-1 and the assembly of NLRP3 inflammasome. Our finding may be of significance on investigating that KM has a positive potential application in the treatment of pyroptosis-mediated diseases.
Collapse
|
20
|
Du Y, Gu X, Meng H, Aa N, Liu S, Peng C, Ge Y, Yang Z. Muscone improves cardiac function in mice after myocardial infarction by alleviating cardiac macrophage-mediated chronic inflammation through inhibition of NF-κB and NLRP3 inflammasome. Am J Transl Res 2018; 10:4235-4246. [PMID: 30662666 PMCID: PMC6325512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Muscone is the main active monomer of traditional Chinese medicine musk. Previous studies have reported a variety of beneficial effects of muscone. However, the effects of muscone on chronic inflammation after myocardial infarction (MI) are rarely reported. This study evaluated the anti-inflammatory effects of muscone on myocardial infarction by establishing a MI model in mice. We found that muscone remarkably decreased the levels of inflammatory cytokines (IL-1β, TNF-α and IL-6), and ultimately improved cardiac function and survival rate. Furthermore, the main anti-inflammatory effect of muscone was alleviating cardiac macrophage-mediated inflammatory response in heart tissues after MI. Bone marrow-derived macrophages (BMDMs) induced with lipopolysaccharide (LPS) were used as an in vitro inflammation model to further clarify anti-inflammatory mechanisms of muscone. Muscone significantly downregulated the levels of LPS-induced inflammatory cytokines and inhibited NF-κB and NLRP3 inflammasome activation in BMDMs. Moreover, ROS and antioxidant indices in LPS-induced BMDMs were also ameliorated after muscone treatment. To sum up, our study found that muscone alleviated cardiac macrophage-mediated chronic inflammation by inhibiting NF-κB and NLRP3 inflammasome activation, thereby improving cardiac function in MI mice. Besides, the inhibitory effect of muscone on inflammation may be related to the scavenging of ROS. It is suggested that muscone may serve as a promising and effective drug for post-MI treatment.
Collapse
Affiliation(s)
- Yingqiang Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Xin Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Nan Aa
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Shuiyuan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Chengyi Peng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|
21
|
Molecular mechanism of activation of human musk receptors OR5AN1 and OR1A1 by ( R)-muscone and diverse other musk-smelling compounds. Proc Natl Acad Sci U S A 2018; 115:E3950-E3958. [PMID: 29632183 DOI: 10.1073/pnas.1713026115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding olfaction at the molecular level is challenging due to the lack of crystallographic models of odorant receptors (ORs). To better understand the molecular mechanism of OR activation, we focused on chiral (R)-muscone and other musk-smelling odorants due to their great importance and widespread use in perfumery and traditional medicine, as well as environmental concerns associated with bioaccumulation of musks with estrogenic/antiestrogenic properties. We experimentally and computationally examined the activation of human receptors OR5AN1 and OR1A1, recently identified as specifically responding to musk compounds. OR5AN1 responds at nanomolar concentrations to musk ketone and robustly to macrocyclic sulfoxides and fluorine-substituted macrocyclic ketones; OR1A1 responds only to nitromusks. Structural models of OR5AN1 and OR1A1 based on quantum mechanics/molecular mechanics (QM/MM) hybrid methods were validated through direct comparisons with activation profiles from site-directed mutagenesis experiments and analysis of binding energies for 35 musk-related odorants. The experimentally found chiral selectivity of OR5AN1 to (R)- over (S)-muscone was also computationally confirmed for muscone and fluorinated (R)-muscone analogs. Structural models show that OR5AN1, highly responsive to nitromusks over macrocyclic musks, stabilizes odorants by hydrogen bonding to Tyr260 of transmembrane α-helix 6 and hydrophobic interactions with surrounding aromatic residues Phe105, Phe194, and Phe207. The binding of OR1A1 to nitromusks is stabilized by hydrogen bonding to Tyr258 along with hydrophobic interactions with surrounding aromatic residues Tyr251 and Phe206. Hydrophobic/nonpolar and hydrogen bonding interactions contribute, respectively, 77% and 13% to the odorant binding affinities, as shown by an atom-based quantitative structure-activity relationship model.
Collapse
|
22
|
Jin Y, Wei F, Dai X, Qi M, Ma Y. Anti-inflammatory effect of 4-methylcyclopentadecanone in rats submitted to ischemic stroke. Fundam Clin Pharmacol 2018; 32:270-278. [PMID: 29344983 DOI: 10.1111/fcp.12348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/31/2017] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the anti-inflammatory effect of 4-methylcyclopentadecanone (4-MCPC) in rats suffering from a cerebral ischemia/reperfusion (I/R) injury. In this study, the focal cerebral ischemia in rats was induced by middle cerebral artery occlusion (MCAO) for 2 h, and the rats were treated with 4-MCPC (8 mg/kg) just 0.5 h before reperfusion. The ischemic infarct volume was recorded 24 h after the MCAO. In addition, myeloperoxidase (MPO) activity and TNF-α and IL-1β levels in the ischemic cerebral cortex were determined by ELISA, while nuclear translocation of NF-κB p65 subunit and expression of p-IκBα were investigated by Western blotting. Our results showed that 4-MCPC treatment decreased infarct volume significantly, compared with I/R group (16.8%±7.5% vs. 39.7%±10.9%); it reduced MPO activity (0.43 ± 0.10 vs. 1.00 ± 0.51 U/g) and expression levels of TNF-α (18.90 ± 3.65 vs. 35.87 ± 4.87 ng/g) and IL-1β (1.68 ± 0.23 vs. 2.67 ± 0.38 ng/g) in ischemic brain tissues of rats. Further study revealed that 4-MCPC treatment markedly reduced nuclear translocation of NF-κB p65 subunit and expression of p-IκBα in ischemic cerebral cortex. Taken together, our results suggest that 4-MCPC protects against cerebral I/R injury and displays anti-inflammatory actions through inhibition of the NF-κB signal pathway.
Collapse
Affiliation(s)
- Yan Jin
- Shandong Provincial Key Laboratory of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, 250101, Jinan, China.,Shandong Freda Pharmaceutical Group Co., Ltd., 250101, Jinan, China
| | - Fang Wei
- Weifang People's Hospital, 261000, Weifang, China
| | - Xiaoli Dai
- Shandong Provincial Key Laboratory of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, 250101, Jinan, China
| | - Min Qi
- Shandong Provincial Key Laboratory of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, 250101, Jinan, China
| | - Yukui Ma
- Shandong Provincial Key Laboratory of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, 250101, Jinan, China
| |
Collapse
|
23
|
Therapeutic Potential of Pien Tze Huang on Experimental Autoimmune Encephalomyelitis Rat. J Immunol Res 2018; 2018:2952471. [PMID: 29682587 PMCID: PMC5848133 DOI: 10.1155/2018/2952471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/31/2017] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). There is still lack of commercially viable treatment currently. Pien Tze Huang (PZH), a traditional Chinese medicine, has been proved to have anti-inflammatory, neuroprotective, and immunoregulatory effects. This study investigated the possible therapeutic effects of PZH on experimental autoimmune encephalomyelitis (EAE) rats, a classic animal model of MS. Male Lewis rats were immunized with myelin basic protein (MBP) peptide to establish an EAE model and then treated with three doses of PZH. Clinical symptoms, organ coefficient, histopathological features, levels of proinflammatory cytokines, and chemokines as well as MBP and Olig2 were analyzed. The results indicated that PZH ameliorated the clinical severity of EAE rats. It also remarkably reduced inflammatory cell infiltration in the CNS of EAE rats. Furthermore, the levels of IL-17A, IL-23, CCL3, and CCL5 in serum and the CNS were significantly decreased; the p-P65 and p-STAT3 levels were also downregulated in the CNS, while MBP and Olig2 in the CNS of EAE rats had a distinct improvement after PZH treatment. In addition, PZH has no obvious toxicity at the concentration of 0.486 g/kg/d. This study demonstrated that PZH could be used to treat MS.
Collapse
|
24
|
Hwang JH, Kang SY, Kang AN, Jung HW, Jung C, Jeong JH, Park YK. MOK, a pharmacopuncture medicine, regulates thyroid dysfunction in L-thyroxin-induced hyperthyroidism in rats through the regulation of oxidation and the TRPV1 ion channel. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:535. [PMID: 29246135 PMCID: PMC5732465 DOI: 10.1186/s12906-017-2036-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
Background In this study, we evaluated the therapeutic effect of MOK, a pharmacopuncture medicine, on thyroid dysfunction in L-thyroxin (LT4)-induced hyperthyroidism rats. Methods The experimental hyperthyroidism model was prepared by the intraperitoneal injection of LT4 (0.5 mg/kg) once daily for 2 weeks in SD rats. MOK extract was injected at doses of 0.3 or 3 mg/kg on acupuncture points in the thyroid glands of LT4-induced hypothyroidism rats once a day for 2 weeks. The body temperature, body weight, and food/water intake were measured once a week for 2 weeks. The levels of thyroid hormones, total cholesterol, LDL-cholesterol, GOT, and GPT were measured in the sera of rats using ELISA and an automatic blood analyzer. The histological changes of thyroid tissues were observed by H&E staining. The expression of thermo-regulating protein, TRPV1 was determined by western blot in dorsal root ganglion (DRG) and brain tissues. We also measured the contents of GSH in the liver and antioxidant enzymes, SOD, and catalase in the liver, heart, and brain tissues by enzyme-based assay and Western blot, respectively. Results The acupuncture of MOK extract on the thyroid gland of LT4-induced hyperthyroidism rats significantly decreased the body temperature, and did not change body weight and food and water intakes. MOK acupuncture significantly increased the level of TSH, and decreased the levels of T3 and T4 in hyperthyroidism rats. The expression of TRPV1 was inhibited in both DRG and brain tissues after MOK acupuncture, and the levels of GOT, GPT, total cholesterol, and LDL-cholesterol were also decreased. MOK acupuncture also inhibited the pathological feature with follicular lining epithelial thicknesses and increased follicular colloid depositions in the thyroid glands of hypothyroidism. MOK acupuncture significantly increased hepatic GSH levels and decreased the expression of SOD and catalase in the liver, heart, and brain tissues of hyperthyroidism rats. Conclusions These results suggest that the pharmacopuncture with MOK extract in hyperthyroidism can improve the pathophysiological changes through regulating the body temperature, thyroid hormones imbalance, lipid accumulation, and oxidation. This anti-hyperthyroidism effect of MOK pharmacopuncture is thought to be related to the control of thermo-regulating protein TRPV1 in DRG and brain.
Collapse
|
25
|
Guo YJ, Luo SH, Tang MJ, Zhou ZB, Yin JH, Gao YS, Dang XQ. Muscone exerts protective roles on alcohol-induced osteonecrosis of the femoral head. Biomed Pharmacother 2017; 97:825-832. [PMID: 29136757 DOI: 10.1016/j.biopha.2017.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/29/2017] [Accepted: 11/03/2017] [Indexed: 01/24/2023] Open
Abstract
Long-term alcohol abuse causes musculoskeletal disorders, among of which, alcohol-induced osteonecrosis of the femoral head (ONFH) is of concern due to its significant and severe complications. A variety of methods have been attempted to prevent alcohol-induced ONFH, and monomers extracted from Chinese herbs might benefit the disease profoundly. In the current study, muscone, the main ingredient of musk, was used to prevent alcohol-induced ONFH. In vitro, ethanol was used to affect the potential of osteogenesis and proliferation of human bone mesenchymal stem cells (hBMSCs), and beneficial role of muscone was investigated on hBMSCs. In vivo, following the establishment of alcohol-induced ONFH, muscone was employed to treat the diseased rats, which were analyzed by micro-CT scanning and a series of histologic staining. As a result, we found ethanol could significantly suppress osteogenic differentiation of hBMSCs, while muscone held the potential to promote ALP activity and mRNA expressions of COL1 and OCN under ethanol treatment. Meanwhile, imaging analysis revealed muscone could restore BV/TV ratio and bone mineral density of the necrotic femoral head, and the protective role of muscone on alcohol-induced ONFH was further confirmed by histologic examinations. Our study confirmed the protective effect of muscone against alcohol-induced ONFH both in vitro and in vivo. Therefore, muscone may be considered as a valuable therapeutic natural drug for alcohol-induced ONFH in humans.
Collapse
Affiliation(s)
- Yan-Jie Guo
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710004, Shaanxi Province, China; Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shi-Hua Luo
- Department of Traumatology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ming-Jie Tang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710004, Shaanxi Province, China; Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zu-Bin Zhou
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jun-Hui Yin
- Shanghai Institute of Microsurgery on Extremities, Shanghai 200233, China
| | - You-Shui Gao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Xiao-Qian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
26
|
Xu W, Zhang Y, Zhou C, Tai Y, Zhang X, Liu J, Sha M, Huang M, Zhu Y, Peng J, Lu JJ. Simultaneous quantification six active compounds in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study of Pien-Tze-Huang. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:314-321. [PMID: 28778039 DOI: 10.1016/j.jchromb.2017.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
Pien-Tze-Huang (PZH) is a popular traditional Chinese medicine (TCM) formula in China, but its pharmacokinetics has not been investigated yet. To better study the pharmacokinetic behaviors of PZH, an optimal ultra-performance liquid chromatography with triple quadrupole mass spectrometry (UPLC-MS/MS) method was developed for rapid quantification of six compounds (notoginsenoside R1, ginsenosides Re, Rg1, Rb1, Rd, and muscone) in rat plasma after oral administration of PZH. All analytes were extracted by protein precipitation with acetonitrile and separated on a Waters Acquity Cortecs C18 column within 3.9min, and detected by multiple-reaction monitoring in positive ion mode. This proposed method exhibited good linearity (r≥0.9932) with a lower quantification limits of 0.558-1.566ng/mL for all analytes. The intra- and inter-day precisions were within 8.24%, and the accuracy was within -10.05 to 9.87% for each analyte. The extraction recovery for each analyte ranged from 80.02 to 96.12%. This UPLC-MS/MS method was successfully applied to the pharmacokinetic study for PZH in rats.
Collapse
Affiliation(s)
- Wen Xu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Yiping Zhang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Caijie Zhou
- Shenzhen Key Laboratory of ENT, Institute of ENT, Longgang ENT Hospital, Shenzhen 518172, China
| | - Yanni Tai
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaoqing Zhang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jie Liu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Mei Sha
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Mingqing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Yanlin Zhu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jin-Jian Lu
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
27
|
Liu S, Cheng Y, Rao M, Tang M, Dong Z. Muscone Induces CYP1A2 and CYP3A4 Enzyme Expression in L02 Human Liver Cells and CYP1A2 and CYP3A11 Enzyme Expression in Kunming Mice. Pharmacology 2017; 99:205-215. [PMID: 28110334 DOI: 10.1159/000455154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022]
Abstract
AIM To examine the effect of synthetic muscone on the expression of CYP1A2 and CYP3A4 enzymes in human liver L02 cells and in the liver tissue of Kunming mice. METHODS The L02 hepatic cell line was used to study the effect of low (10-4 μmol/L), middle (10-3 μmol/L), and high concentrations (10-2 μmol/L) of muscone on the expression of CYP1A2 and CYP3A4 enzymes. In addition, the cytochrome P450 (CYP) expression was investigated in Kunming mice after the administration of 10 mg/kg (low), 50 mg/kg (middle), and 100 mg/kg (high) dose of muscone for 6 days. A mixture of phenobarbital (30 mg/kg) and β-napthoflavone (80 mg/kg) was used as positive control and the effects of the compounds on CYP expression were investigated at the end of 6- and 12-day periods. RESULTS Muscone induced the expression of CYP1A2 (middle and low concentrations) and of CYP3A4 (high concentration) enzymes in L02 cells. In vivo, administration of muscone in Kunming mice revealed significant weight reduction at the end of 6- and 12-day periods (middle and high doses, respectively), compared to the control group (p < 0.05). Liver toxicity scores indicated that the liver injuries in the positive control and high doses of muscone group were significantly higher in the 6- and 12-day periods, compared to those in the blank control group (p < 0.05). Furthermore, muscone induced CYP1A2 and CYP3A11 expressions in Kunming mice at the middle dose and all doses during the 12-day period as demonstrated by immunoblotting experiments. A low dose of mucone induced the CYP enzyme expression more rapidly, whereas a high dose of muscone caused the longest inductive effect. The results were confirmed by immunohistochemistry experiments and real-time PCR studies, where similar patterns of muscone-mediated inductive effects were noted. CONCLUSIONS Muscone induces CYP1A2 and CYP3A4 expression in liver cells in vitro and in vivo. In addition, it exhibits liver toxicity in Kunming mice at concentrations higher than 50 mg/kg. The CYP-inductive effect that is caused by muscone encompasses a 6- to 12-day period of activity after drug administration as demonstrated by follow-up in vivo studies.
Collapse
Affiliation(s)
- Sha Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
28
|
Identification and quantification of the anti-inflammatory constituents in Pian-Tze-Huang by liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1027:27-39. [DOI: 10.1016/j.jchromb.2016.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 02/06/2023]
|
29
|
Fu Y, Zhang L, Hong Z, Zheng H, Li N, Gao H, Chen B, Zhao Y. Methanolic Extract of Pien Tze Huang Induces Apoptosis Signaling in Human Osteosarcoma MG63 Cells via Multiple Pathways. Molecules 2016; 21:283. [PMID: 26938521 PMCID: PMC6274404 DOI: 10.3390/molecules21030283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 12/26/2022] Open
Abstract
Pien Tze Huang (PZH) is a well-known traditional Chinese formulation and has long been used as an alternative remedy for cancers in China and Southeast Asia. Recently, antitumor activity of PZH on several tumors have been increasingly reported, but its antitumor activity and the possible action mechanism on osteosarcoma remains unclear. After treatment with PZH, cell viability of MG-63 cells was dose-dependently inhibited compared to control cells. Moreover, a DNA ladder characteristic of apoptosis was observed in the cells treated with PZH, especially 500 μg/mL, 750 μg/mL. Further investigation showed that PZH treatments led to activation of caspase cascades and changes of apoptotic mediators Bcl2, Bax, and Bcl-xL expression. In addition, our results suggested that PZH activated PI3K/Akt signal pathway, and the phosphorylation of Akt and ERK1/2 were associated with the induction of apoptotic signaling. These results revealed that PZH possesses antitumoral activity on human osteosarcoma MG63 cells by manipulating apoptotic signaling and multiple pathways. It is suggested that PZH alone or combined with regular antitumor drugs may be beneficial as osteosarcoma treatments.
Collapse
Affiliation(s)
- Yong Fu
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Li Zhang
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Zhenqiang Hong
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Haiyin Zheng
- Integrative Medicine College, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou 350122, China.
| | - Nan Li
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Hongjian Gao
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Boyi Chen
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yi Zhao
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
30
|
Sun YL, Hou T, Liu SF, Zhang ZL, Zhang N, Yao M, Yang L, Shi Q, Cui XJ, Wang YJ. Population pharmacokinetic modeling of the Qishe pill in three major traditional Chinese medicine-defined constitutional types of healthy Chinese subjects: study protocol for a randomized controlled trial. Trials 2015; 16:64. [PMID: 25885543 PMCID: PMC4351929 DOI: 10.1186/s13063-015-0568-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High incidences of neck pain morbidity are challenging in various situations for populations based on their demographic, physiological and pathological characteristics. Chinese proprietary herbal medicines, as Complementary and Alternative Medicine (CAM) products, are usually developed from well-established and long-standing recipes formulated as tablets or capsules. However, good quantification and strict standardization are still needed for implementation of individualized therapies. The Qishe pill was developed and has been used clinically since 2009. The Qishe pill's personalized medicine should be documented and administered to various patients according to the ancient TCM system, a classification of personalized constitution types, established to determine predisposition and prognosis to diseases as well as therapy and life-style administration. Therefore, we describe the population pharmacokinetic profile of the Qishe pill and compare its metabolic rate in the three major constitution types (Qi-Deficiency, Yin-Deficiency and Blood-Stasis) to address major challenges to individualized standardized TCM. METHODS/DESIGN Healthy subjects (N = 108) selected based on constitutional types will be assessed, and standardized pharmacokinetic protocol will be used for assessing demographic, physiological, and pathological data. Laboratory biomarkers will be evaluated and blood samples collected for pharmacokinetics(PK) analysis and second-generation gene sequencing. In single-dose administrations, subjects in each constitutional type cohort (N = 36) will be randomly divided into three groups to receive different Qishe pill doses (3.75, 7.5 and 15 grams). Multiomics, including next generation sequencing, metabolomics, and proteomics, will complement the Qishe pill's multilevel assessment, with cytochrome P450 genes as targets. In a comparison with the general population, a systematic population pharmacokinetic (PopPK) model for the Qishe pill will be established and verified. TRIAL REGISTRATION This study is registered at ClinicalTrials.gov, NCT02294448 .15 November 2014.
Collapse
Affiliation(s)
- Yue-li Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
| | - Ting Hou
- College of Traditional Chinese Herbal Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai, 201203, P.R. China.
| | - Shu-fen Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
| | - Zhong-liang Zhang
- Zhe Jiang Biosia Pharmaceutical Co., Ltd, No.1938 Xinqun Road, Pinghu City, Zhejiang Province, P.R. China.
| | - Ning Zhang
- College of Traditional Chinese Herbal Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai, 201203, P.R. China.
| | - Min Yao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
| | - Long Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
| | - Xue-jun Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
| | - Yong-jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, P.R. China.
| |
Collapse
|
31
|
Ma Y, Li Y, Li X, Wu Y. Anti-inflammatory effects of 4-methylcyclopentadecanone on edema models in mice. Int J Mol Sci 2013; 14:23980-92. [PMID: 24351869 PMCID: PMC3876089 DOI: 10.3390/ijms141223980] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/13/2023] Open
Abstract
The present study evaluated the anti-inflammatory effects of 4-methylcyclopentadecanone (4-MCPC) on edema models in mice and aimed to determine the safety of 4-MCPC after acute exposure. The acute toxicity of 4-MCPC was evaluated by oral administration to rats of single doses of 0, 5, 50, 500 and 5000 mg/kg. Toxic symptoms were observed for 14 days. The anti-inflammatory activity was evaluated in xylene-induced mouse ear edema and carrageenan-induced mouse paw edema. The animals were treated with 4-MCPC once every day for seven consecutive days. Edema index, % inhibition, IL-1β, TNF-α, PGE2 and MPO levels in paws were detected after the treatment with xylene or carrageenan. Our results indicated that the LD50 value of 4-MCPC in rats is greater than 5000 mg/kg. The ED50 of 4-MCPC in xylene-induced mouse ear edema model was 7.5 mg/kg. 4-MCPC (8 or 16 mg/kg) remarkably inhibited carrageenan-induced mouse paw edema. Further study revealed that 4-MCPC treatment also decreased IL-1β, TNF-α, PGE2 and MPO levels in mice paws. Intragastric administration of 4-MCPC exhibited more significant anti-inflammatory activity than muscone at a dose of 16 mg/kg. Taken together, our results suggest that 4-MCPC has potent anti-inflammatory activity and the mechanisms might be related to the decreases of the levels of IL-1β, TNF-α, PGE2 and MPO in inflamed paws.
Collapse
Affiliation(s)
- Yukui Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China; E-Mail:
- Shandong Provincial Key Laboratory of Chemical Drug, Shandong Institute of Pharmaceutical Industry, Xinluo Road 989, Jinan 250101, China
| | - Yue Li
- Department of Pharmacy, Zhangqiu People’s Hospital, Huiquan Road 1920, Zhangqiu 250200, China; E-Mail:
| | - Xiufeng Li
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Hualong Road 360, Jinan 250100, China; E-Mail:
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-24-2398-6278
| |
Collapse
|
32
|
Huang M, Zhao H, Xu W, Chu K, Hong Z, Peng J, Chen L. Rapid simultaneous determination of twelve major components in Pien Tze Huang by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. J Sep Sci 2013; 36:3866-73. [DOI: 10.1002/jssc.201300655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/26/2013] [Accepted: 10/08/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Mingqing Huang
- College of Pharmacy; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing China
| | - Wei Xu
- College of Pharmacy; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Kedan Chu
- College of Pharmacy; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Zhenfeng Hong
- Academy of Integrative Medicine; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Jun Peng
- Academy of Integrative Medicine; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Lidian Chen
- College of Rehabilitation Medicine; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| |
Collapse
|
33
|
Cui XJ, Sun YL, You SF, Mo W, Lu S, Shi Q, Wang YJ. Effects of Qishe Pill, a compound traditional Chinese herbal medicine, on cervical radiculopathy: study protocol for a randomized controlled trial. Trials 2013; 14:322. [PMID: 24099350 PMCID: PMC4016534 DOI: 10.1186/1745-6215-14-322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022] Open
Abstract
Background Neck pain is a common symptom in most patients suffering from cervical radiculopathy. However, some conservative treatments are limited by their modest effectiveness. On the other hand, surgical intervention for cervical disc disorders is indicated when symptoms are refractory to conservative treatments and neurological symptoms are progressive. Many patients use complementary and alternative medicine, including traditional Chinese medicine, to address their symptoms. The purpose of the present study is to examine the efficacy and safety of Qishe Pill, a compound traditional Chinese herbal medicine, for neck pain in patients with cervical radiculopathy. Methods/design A multicenter, double-blind, randomized, placebo-controlled trial to evaluate the efficacy and safety of the Qishe Pill is proposed. The study will include 240 patients from five sites across China and diagnosed with cervical radiculopathy, according to the following inclusion criteria: age 18 to 65 with pain or stiffness in the neck for at least 2 weeks (neck disability index score 25 or more) and accompanying arm pain that radiates distally from the elbow. Qualified participants will be randomly allocated into two groups: Qishe Pill group and placebo group. The prescription of the trial medications (Qishe Pill/placebo) are 3.75 g each twice a day for 28 consecutive days. The primary outcome is pain severity. Secondary outcomes are functional status, patient satisfaction, and adverse events as reported in the trial. Discussion Qishe Pill is composed of processed Radix Astragali, Muscone, Szechuan Lovage Rhizome, Radix Stephaniae Tetrandrae, Ovientvine, and Calculus Bovis Artifactus. According to modern research and preparation standards, Qishe Pill is developed to improve on the various symptoms of cervical radiculopathy, especially for neck pain. As it has a potential benefit in treating patients with neck pain, we designed a double-blind, prospective, randomized-controlled trial and would like to publish the results and conclusions later. If Qishe Pill can alleviate neck pain without adverse effects, it may be a unique strategy for the treatment of cervical radiculopathy. Trial registration This study is registered at ClinicalTrials.gov, NCT01274936
Collapse
Affiliation(s)
- Xue-Jun Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P,R, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu Z, Zhang J, Gao W, Liu C. Antinociceptive activity and chemical composition of Wei-Chang-An-Wan extracts. PHARMACEUTICAL BIOLOGY 2013; 51:790-797. [PMID: 23675838 DOI: 10.3109/13880209.2013.766893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Currently, famous traditional Chinese medicine formulas have undergone re-evaluation and development in China. Wei-Chang-An-Wan (WCAW) as one of them has been used for treating various gastrointestinal diseases for several decades. The secondary development of WCAW is in progress so as to interpret the effective material basis or find new pharmacological activity. OBJECTIVE To evaluate the antinociceptive effect of methanol extract of WCAW (ME) as well as four fractions (P.E., EtOAc, n-BuOH, H2O) and obtain information on the correlation between the contents of the fractions and antinociceptive effect. MATERIALS AND METHODS ME was divided into four parts extracted by petroleum ether, ethyl acetate and n-butanol. Antinociceptive activity was evaluated by three models of acetic acid-induced writhing, formalin and hot-plate test in mice after repetitive administration of ME at 200, 400 or 800 mg/kg, P.E. 132 mg/kg, EtOAc 106 mg/kg, n-BuOH 176 mg/kg and H2O 176 mg/kg for six days. The chemical compounds were analyzed by HPLC-ESI-MS. RESULTS ME at 800 mg/kg inhibited acid-induced writhing by 84.69%, and reduced the licking time of second phase in formalin test by 53.23%. The inhibition rates in acid-induced writhing of P.E., EtOAc, n-BuOH and H2O were 27.79, 33.85, 38.97 and 37.69%, respectively, and in formalin test about 50%. They had no effect on the hot-plate test. HPLC-ESI-MS analysis showed that 68 chemical compounds were detected and 41 compounds were identified from ME. DISCUSSION AND CONCLUSION The results obtained herein indicate that WCAW possesses the antinociceptive activity that provides a new aspect in clinical application.
Collapse
Affiliation(s)
- Zhen Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | | | | | |
Collapse
|
35
|
Wu Q, Li H, Wu Y, Shen W, Zeng L, Cheng H, He L. Protective effects of muscone on ischemia-reperfusion injury in cardiac myocytes. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:34-39. [PMID: 21856397 DOI: 10.1016/j.jep.2011.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/30/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk has been traditionally used in Chinese medicine as the main ingredient of many formulations for the treatment of chest pain and angina pectoris. AIM OF THE STUDY To investigate the protective effects of muscone (the active ingredient of musk) on ischemia-reperfusion (I/R) injury induced by hypoxia and low glucose in primary cultured rat cardiac myocytes. MATERIALS AND METHODS Primary cultures of neonatal rat cardiac myocytes were subjected to ischemia-reperfusion in media, with or without muscone. Cell viability, release of lactic acid dehydrogenase (LDH), superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, creatine kinase (CK) and caspase-3 activities, as well as intracellular free Ca(2+) concentrations, were measured. Cellular apoptosis and mitochondrial membrane potential (MMP) were assessed by flow cytometry, and the expression of Bcl-2 and Bax proteins was assessed by Western blotting. RESULTS Following the exposure of cardiac myocytes to ischemia-reperfusion, there was a marked decrease in pulsating frequency, cell viability, SOD activity, MMP, and the expression of Bcl-2 protein, accompanied by increased LDH release, MDA production, CK and caspase-3 activities, intracellular free Ca(2+) concentrations, rate of apoptosis, and expression of Bax protein. Pretreatment with muscone (0.215, 0.43, 0.86 μg/mL) prior to I/R injury significantly attenuated the above changes. CONCLUSION Muscone has a protective effect against I/R injury in cardiac myocytes, indicating that muscone may potentially provide therapeutic benefit in I/R injury by inhibiting cellular oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Qibiao Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Shu B. Effects of Yiqi Huayu Decoction on brain-derived neurotrophic factor expression in rats with lumbar nerve root injury. ACTA ACUST UNITED AC 2010; 8:280-6. [DOI: 10.3736/jcim20100314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|