1
|
Bian Y, Cai X, Zhou R, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Sun H, Zhao X, Feng B, Weng X. Advances in meniscus tissue engineering: Towards bridging the gaps from bench to bedside. Biomaterials 2025; 312:122716. [PMID: 39121731 DOI: 10.1016/j.biomaterials.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Meniscus is vital for maintaining the anatomical and functional integrity of knee. Injuries to meniscus, commonly caused by trauma or degenerative processes, can result in knee joint dysfunction and secondary osteoarthritis, while current conservative and surgical interventions for meniscus injuries bear suboptimal outcomes. In the past decade, there has been a significant focus on advancing meniscus tissue engineering, encompassing isolated scaffold strategies, biological augmentation, physical stimulus, and meniscus organoids, to improve the prognosis of meniscus injuries. Despite noteworthy promising preclinical results, translational gaps and inconsistencies in the therapeutic efficiency between preclinical and clinical studies exist. This review comprehensively outlines the developments in meniscus tissue engineering over the past decade (Scheme 1). Reasons for the discordant results between preclinical and clinical trials, as well as potential strategies to expedite the translation of bench-to-bedside approaches are analyzed and discussed.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xuejie Cai
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Runze Zhou
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yiming Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Wei Zhu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hanyang Sun
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Bin Feng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Lei X, Wang X, Li Y, Liu H, Yan G, Jing J, Liang Z, Guo A, Hu M, Liu Y. Comparison of knee joint and temporomandibular joint development in pig embryos. Anim Biotechnol 2024; 35:2337760. [PMID: 38656923 DOI: 10.1080/10495398.2024.2337760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although the knee joint (KNJ) and temporomandibular joint (TMJ) all belong to the synovial joint, there are many differences in developmental origin, joint structure and articular cartilage type. Studies of joint development in embryos have been performed, mainly using poultry and rodents. However, KNJ and TMJ in poultry and rodents differ from those in humans in several ways. Very little work has been done on the embryonic development of KNJ and TMJ in large mammals. Several studies have shown that pigs are ideal animals for embryonic development research. Embryonic day 30 (E30), E35, E45, E55, E75, E90, Postnatal day 0 (P0) and Postnatal day 30 (P30) embryos/fetuses from the pigs were used for this study. The results showed that KNJ develops earlier than TMJ. Only one mesenchymal condensate of KNJ is formed on E30, while two mesenchymal condensates of TMJ are present on E35. All structures of KNJ and TMJ were formed on E45. The growth plate of KNJ begins to develop on E45 and becomes more pronounced from E55 to P30. From E75 to E90, more and more vascular-rich cartilage canals form in the cartilage regions of both joints. The cartilaginous canal of the TMJ divides the condyle into sections along the longitudinal axis of the condyle. This arrangement of cartilaginous canal was not found in the KNJ. The chondrification of KNJ precedes that of TMJ. Ossification of the knee condyle occurs gradually from the middle to the periphery, while that of the TMJ occurs gradually from the base of the mandibular condyle. In the KNJ, the ossification of the articular condyle is evident from P0 to P30, and the growth plate is completely formed on P30. In the TMJ, the cartilage layer of condyle becomes thinner from P0 to P30. There is no growth plate formation in TMJ during its entire development. There is no growth plate formation in the TMJ throughout its development. The condyle may be the developmental center of the TMJ. The chondrocytes and hypertrophic chondrocytes of the growth plate are densely arranged. The condylar chondrocytes of TMJ are scattered, while the hypertrophic chondrocytes are arranged. Embryonic development of KNJ and TMJ in pigs is an important bridge for translating the results of rodent studies to medical applications.
Collapse
Affiliation(s)
- Xiang Lei
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, PR China
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Xuewen Wang
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, PR China
| | - Yongfeng Li
- Department of Stomatology, Tsinghua Changgung Hospital, Beijing, PR China
| | - Huawei Liu
- Department of Stomatology, the First Medical Center of PLA General Hospital, Beijing, PR China
| | - Guoqiang Yan
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, PR China
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Jinzhu Jing
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, PR China
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Zhen Liang
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, PR China
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Anyi Guo
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, PR China
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Min Hu
- Department of Stomatology, the First Medical Center of PLA General Hospital, Beijing, PR China
| | - Yajun Liu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, PR China
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
3
|
Li D, Zheng S, Wei P, Xu Y, Hu W, Ma S, Tang C, Wang L. Synchronized long-term delivery of growth hormone and insulin-like growth factor 1 through poly (lactic-co-glycolic acid) nanoparticles on polycaprolactone scaffolds for enhanced osteochondral regeneration. Int J Biol Macromol 2024; 282:136781. [PMID: 39454927 DOI: 10.1016/j.ijbiomac.2024.136781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The regeneration of osteochondral defects is challenging due to the complex structure of the osteochondral unit. This study aimed to develop a biomimetic scaffold by loading growth hormone (GH) and insulin-like growth factor-1 (IGF-1) into poly (lactic-co-glycolic acid) (PLGA) nanoparticles and incorporating them into polycaprolactone (PCL) scaffolds to promote synchronized osteochondral regeneration. The nanoparticles were successfully immobilized onto PCL scaffolds pre-modified with polydopamine (PDA) to enhance cell adhesion and proliferation. The scaffolds exhibited a sustained release of GH and IGF-1 over 30 days. In vitro studies using rabbit adipose-derived stem cells (ADSCs) showed that the GH/IGF-1 nanoparticle-loaded scaffolds (PCL/PDA/M-PLGA) significantly promoted cell proliferation, chondrogenic differentiation, and osteogenic differentiation compared to control PCL/PDA scaffolds. In vivo experiments using a rabbit osteochondral defect model revealed that the PCL/PDA/M-PLGA scaffolds facilitated superior osteochondral regeneration, evidenced by increased subchondral bone formation and cartilage matrix deposition. Overall, this study demonstrates the potential of GH/IGF-1 nanoparticle-loaded PCL scaffolds for synchronized osteochondral regeneration and provides a promising strategy for treating osteochondral defects.
Collapse
Affiliation(s)
- Dong Li
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Trauma Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People's Republic of China
| | - Suyang Zheng
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Peiran Wei
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yan Xu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wenhao Hu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Orthopedics, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, People's Republic of China
| | - Shengshan Ma
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Sports Medicine, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, People's Republic of China
| | - Cheng Tang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Liming Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Ju D, Dong C. The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury. Neural Regen Res 2024; 19:1751-1758. [PMID: 38103241 PMCID: PMC10960285 DOI: 10.4103/1673-5374.385842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system. Following surgery, the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality. Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord. Consequently, there is a critical need to develop new treatments to promote functional repair after spinal cord injury. Over recent years, there have been several developments in the use of stem cell therapy for the treatment of spinal cord injury. Alongside significant developments in the field of tissue engineering, three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures. This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization. These three-dimensional bioprinting scaffolds could repair damaged neural circuits and had the potential to repair the damaged spinal cord. In this review, we discuss the mechanisms underlying simple stem cell therapy, the application of different types of stem cells for the treatment of spinal cord injury, and the different manufacturing methods for three-dimensional bioprinting scaffolds. In particular, we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Dingyue Ju
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
5
|
Bandyopadhyay A, Ghibhela B, Mandal BB. Current advances in engineering meniscal tissues: insights into 3D printing, injectable hydrogels and physical stimulation based strategies. Biofabrication 2024; 16:022006. [PMID: 38277686 DOI: 10.1088/1758-5090/ad22f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The knee meniscus is the cushioning fibro-cartilage tissue present in between the femoral condyles and tibial plateau of the knee joint. It is largely avascular in nature and suffers from a wide range of tears and injuries caused by accidents, trauma, active lifestyle of the populace and old age of individuals. Healing of the meniscus is especially difficult due to its avascularity and hence requires invasive arthroscopic approaches such as surgical resection, suturing or implantation. Though various tissue engineering approaches are proposed for the treatment of meniscus tears, three-dimensional (3D) printing/bioprinting, injectable hydrogels and physical stimulation involving modalities are gaining forefront in the past decade. A plethora of new printing approaches such as direct light photopolymerization and volumetric printing, injectable biomaterials loaded with growth factors and physical stimulation such as low-intensity ultrasound approaches are being added to the treatment portfolio along with the contemporary tear mitigation measures. This review discusses on the necessary design considerations, approaches for 3D modeling and design practices for meniscal tear treatments within the scope of tissue engineering and regeneration. Also, the suitable materials, cell sources, growth factors, fixation and lubrication strategies, mechanical stimulation approaches, 3D printing strategies and injectable hydrogels for meniscal tear management have been elaborated. We have also summarized potential technologies and the potential framework that could be the herald of the future of meniscus tissue engineering and repair approaches.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Furuoka H, Endo K, Sekiya I. Mesenchymal stem cells in synovial fluid increase in number in response to synovitis and display more tissue-reparative phenotypes in osteoarthritis. Stem Cell Res Ther 2023; 14:244. [PMID: 37679780 PMCID: PMC10485949 DOI: 10.1186/s13287-023-03487-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Synovial fluid mesenchymal stem cells (SF-MSCs) originate in the synovium and contribute to the endogenous repair of damaged intra-articular tissues. Here, we clarified the relationship between their numbers and joint structural changes during osteoarthritis (OA) progression and investigated whether SF-MSCs had phenotypes favorable for tissue repair, even in an OA environment. METHODS Partial medial meniscectomy (pMx) and sham surgery were performed on both knees of rats. SF and knee joints were collected from intact rats and from rats at 2, 4, and 6 weeks after surgery. SF was cultured for 1 week to calculate the numbers of colony-forming cells and colony areas. Joint structural changes were evaluated histologically to investigate their correlation with the numbers and areas of colonies. RNA sequencing was performed for SF-MSCs from intact knees and knees 4 weeks after the pMx and sham surgery. RESULTS Colony-forming cell numbers and colony areas were greater in the pMx group than in the intact and sham groups and peaked at 2 and 4 weeks, respectively. Synovitis scores showed the strongest correlation with colony numbers (R = 0.583) and areas (R = 0.456). RNA sequencing revealed higher expression of genes related to extracellular matrix binding, TGF-β signaling, and superoxide dismutase activity in SF-MSCs in the pMx group than in the sham group. CONCLUSION The number of SF-MSCs was most closely correlated with the severity of synovitis in this rat OA model. Tissue-reparative gene expression patterns were observed in SF-MSCs from OA knees, but not from knees without intra-articular tissue damage.
Collapse
Affiliation(s)
- Hideto Furuoka
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
7
|
Bolander J, Moviglia Brandolina MT, Poehling G, Jochl O, Parsons E, Vaughan W, Moviglia G, Atala A. The synovial environment steers cartilage deterioration and regeneration. SCIENCE ADVANCES 2023; 9:eade4645. [PMID: 37083524 PMCID: PMC10121162 DOI: 10.1126/sciadv.ade4645] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Osteoarthritis (OA) was recently defined as an epidemic, and the lack of effective treatment is highly correlated to the limited knowledge regarding the underlying pathophysiology. Failure to regenerate upon trauma is thought to be one of the underlying causes for degenerative diseases, including OA. To investigate why lesions within an OA environment fail to heal, a heterogeneous cell population was isolated from the synovial fluid (SF) of OA patients. The cells' ability to undergo processes required for functional tissue regeneration was evaluated in the presence or absence of autologous SF. The obtained mechanistic findings were then used for the development of an immunomodulatory cell treatment, aimed to restore the pro-regenerative environment. Intra-articular injection in a clinical compassionate use study showed that the treatment restored the articular cartilage and joint homeostasis of OA patients. These findings confirm the role of pro-regenerative immune cells and their targeted influence on progenitor cells for degenerative joint disease therapies.
Collapse
Affiliation(s)
- Johanna Bolander
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
- Skeletal Biology and Research Engineering Center, KU Leuven, Leuven, Belgium
- Corresponding author:
| | | | - Gary Poehling
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Orthopaedic Surgery, Wake Forest Baptist Health, Winston Salem, NC, USA
| | - Olivia Jochl
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Emma Parsons
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - William Vaughan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Gustavo Moviglia
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
- Civil Association of Research and Development of Advanced Therapies (ACIDTA), CABA, Argentina
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
8
|
Implication of Cellular Senescence in Osteoarthritis: A Study on Equine Synovial Fluid Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24043109. [PMID: 36834521 PMCID: PMC9967174 DOI: 10.3390/ijms24043109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is described as a chronic degenerative disease characterized by the loss of articular cartilage. Senescence is a natural cellular response to stressors. Beneficial in certain conditions, the accumulation of senescent cells has been implicated in the pathophysiology of many diseases associated with aging. Recently, it has been demonstrated that mesenchymal stem/stromal cells isolated from OA patients contain many senescent cells that inhibit cartilage regeneration. However, the link between cellular senescence in MSCs and OA progression is still debated. In this study, we aim to characterize and compare synovial fluid MSCs (sf-MSCs), isolated from OA joints, with healthy sf-MSCs, investigating the senescence hallmarks and how this state could affect cartilage repair. Sf-MSCs were isolated from tibiotarsal joints of healthy and diseased horses with an established diagnosis of OA with an age ranging from 8 to 14 years. Cells were cultured in vitro and characterized for cell proliferation assay, cell cycle analysis, ROS detection assay, ultrastructure analysis, and the expression of senescent markers. To evaluate the influence of senescence on chondrogenic differentiation, OA sf-MSCs were stimulated in vitro for up to 21 days with chondrogenic factors, and the expression of chondrogenic markers was compared with healthy sf-MSCs. Our findings demonstrated the presence of senescent sf-MSCs in OA joints with impaired chondrogenic differentiation abilities, which could have a potential influence on OA progression.
Collapse
|
9
|
Liu D, Xiao WF, Li YS. The Diagnostic and Prognostic Value of Synovial Fluid Analysis in Joint Diseases. Methods Mol Biol 2023; 2695:295-308. [PMID: 37450127 DOI: 10.1007/978-1-0716-3346-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Liquid biopsy is an emergent test method for the diagnosis and prognosis in the clinic. Joint fluid, also known as synovial fluid, contains a variety of bioactive constituents that can be selectively detected and further evaluated in a convenient fashion. Therefore, synovial fluid analysis functions as a specific form of liquid biopsy and plays a vital role in numerous joint diseases. In spite of the component analysis of aspirated synovial fluid beingconsidered as the gold standard for diagnosis of joint infections, biopsy of joint fluid benefits the initial diagnosis and long-term prognosis of degenerative, inflammatory, autoimmune, traumatic, congenital, and even neoplastic joint diseases. The convenience and accuracy for disease evaluation are significantly elevated as a result of the combination of synovial fluid analysis and other novel clinical technologies. In this review, we shed light on the latent role of synovial fluid in the diagnosis and prognosis of articular diseases and proposed future prospects for relevant research in this field.
Collapse
Affiliation(s)
- Di Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Feng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Hutchinson ID, Rodeo SA. The Current Role of Biologics for Meniscus Injury and Treatment. Curr Rev Musculoskelet Med 2022; 15:456-464. [PMID: 35881326 PMCID: PMC9789233 DOI: 10.1007/s12178-022-09778-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW There is little doubt that the consensus has changed to favor preservation of meniscal function where possible. Accordingly, the indications for meniscal repair strategies have been refocused on the long-term interest of knee joint health. The development and refinements in surgical technique have been complemented by biological augmentation strategies to address intrinsic challenges in healing capacity of meniscal tissue, with variable effects. RECENT FINDINGS A contemporary approach to meniscal healing includes adequate surgical fixation, meniscal and synovial tissue stimulation, and management of the intraarticular milieu. Overall, evidence supporting the use of autogenous or allogeneic cell sources remains limited. The use of FDA-approved medications to effect biologically favorable mechanisms during meniscal healing holds promise. Development and characterization of biologics continue to advance with translational research focused on specific growth factors, cell and tissue behaviors in meniscal healing, and joint homeostasis. Although significant strides have been made in laboratory and pre-clinical studies, translation to clinical application remains challenging. Finally, expert consensus and standardization of nomenclature related to orthobiologics for meniscal preservation will be important for the advancement of this field.
Collapse
Affiliation(s)
- Ian D. Hutchinson
- grid.239915.50000 0001 2285 8823Sports Medicine and Shoulder Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA ,grid.239915.50000 0001 2285 8823Laboratory for Tissue Engineering, Regeneration & Repair, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - Scott A. Rodeo
- grid.239915.50000 0001 2285 8823Sports Medicine and Shoulder Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA ,grid.239915.50000 0001 2285 8823Laboratory for Tissue Engineering, Regeneration & Repair, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| |
Collapse
|
11
|
Bian Y, Wang H, Zhao X, Weng X. Meniscus repair: up-to-date advances in stem cell-based therapy. Stem Cell Res Ther 2022; 13:207. [PMID: 35578310 PMCID: PMC9109379 DOI: 10.1186/s13287-022-02863-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
The meniscus is a semilunar fibrocartilage between the tibia and femur that is essential for the structural and functional integrity of the keen joint. In addition to pain and knee joint dysfunction, meniscus injuries can also lead to degenerative changes of the knee joint such as osteoarthritis, which further affect patient productivity and quality of life. However, with intrinsic avascular property, the tearing meniscus tends to be nonunion and the augmentation of post-injury meniscus repair has long time been a challenge. Stem cell-based therapy with potent regenerative properties has recently attracted much attention in repairing meniscus injuries, among which mesenchymal stem cells were most explored for their easy availability, trilineage differentiation potential, and immunomodulatory properties. Here, we summarize the advances and achievements in stem cell-based therapy for meniscus repair in the last 5 years. We also highlight the obstacles before their successful clinical translation and propose some perspectives for stem cell-based therapy in meniscus repair.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
12
|
Ding G, Du J, Hu X, Ao Y. Mesenchymal Stem Cells From Different Sources in Meniscus Repair and Regeneration. Front Bioeng Biotechnol 2022; 10:796367. [PMID: 35573249 PMCID: PMC9091333 DOI: 10.3389/fbioe.2022.796367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/11/2022] [Indexed: 01/22/2023] Open
Abstract
Meniscus damage is a common trauma that often arises from sports injuries or menisci tissue degeneration. Current treatment methods focus on the repair, replacement, and regeneration of the meniscus to restore its original function. The advance of tissue engineering provides a novel approach to restore the unique structure of the meniscus. Recently, mesenchymal stem cells found in tissues including bone marrow, peripheral blood, fat, and articular cavity synovium have shown specific advantages in meniscus repair. Although various studies explore the use of stem cells in repairing meniscal injuries from different sources and demonstrate their potential for chondrogenic differentiation, their meniscal cartilage-forming properties are yet to be systematically compared. Therefore, this review aims to summarize and compare different sources of mesenchymal stem cells for meniscal repair and regeneration.
Collapse
Affiliation(s)
- Guocheng Ding
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jianing Du
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Kohno Y, Mizuno M, Endo K, Ozeki N, Katano H, Matsumoto M, Kaneko H, Takazawa Y, Koga H, Sekiya I. Yields of mesenchymal stromal cells from synovial fluid reflect those from synovium in patients with rheumatoid arthritis. Tissue Cell 2022; 75:101727. [PMID: 34998163 DOI: 10.1016/j.tice.2021.101727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/02/2023]
Abstract
The yield of primary synovial mesenchymal stromal cells (MSCs) from synovium of patients with rheumatoid arthritis (RA) is highly variable, but cell transplantation therapy with autologous synovial MSCs requires accurate prediction of the synovial MSC yield per synovium weight. Here, we determined whether the yield of synovial fluid MSCs might predict the ultimate yield of primary MSCs from the synovium of RA knees. Synovial fluid and synovium were harvested during total knee arthroplasty from the knee joints of 10 patients with RA. Synovial fluid (1.5 mL) was diluted fourfold and plated equally into six 60 cm2 dishes. Nucleated cells from digested synovium were similarly plated at 1 × 104 cells in 6 dishes. All dishes were cultured for 14 days and analyzed for MSC yields and properties, including in vitro chondrogenesis. The cultured synovial cell number was correlated with the cultured synovial fluid cell number (n = 10, R2 = 0.64, p < 0.01). Synovial fluid cells formed cell colonies and showed MSC-like surface epitopes and multi-differentiation potential. However, the cartilage pellet weight indicated a greater chondrogenic potential of the synovial MSCs (n = 8). The primary MSC yields from synovial fluid and synovium were correlated, indicating that the synovial fluid MSC yield can predict the ultimate synovial MSC yield.
Collapse
Affiliation(s)
- Yuji Kohno
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mitsuru Mizuno
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nobutake Ozeki
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hisako Katano
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mikio Matsumoto
- Department of Orthopaedics, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Haruka Kaneko
- Department of Orthopaedics, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Yuji Takazawa
- Department of Orthopaedics, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ichiro Sekiya
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
14
|
The transplantation of particulated juvenile allograft cartilage and synovium for the repair of meniscal defect in a lapine model. J Orthop Translat 2022; 33:72-89. [PMID: 35281522 PMCID: PMC8897607 DOI: 10.1016/j.jot.2022.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Synovium has been confirmed to be the primary contributor to meniscal repair. Particulated Juvenile Allograft Cartilage (PJAC) has demonstrated promising clinical effect on repairing cartilage. The synergistic effect of synovium and PJAC transplant on meniscal fibrocartilaginous repair is unclear. We hypothesize that the transplantation of synovium and PJAC synergistically facilitates meniscal regeneration and the donor cells within graft tissues still survive in the regenerated tissue at the last follow up (16 weeks postoperatively). Methods The study included 24 mature female rabbits, which were randomly divided into experimental and control groups. A cylindrical full-thickness defect measuring 2.0 mm was prepared in the avascular portion of the anterior horn of medial meniscus in both knees. The synovium and PJAC transplant were harvested from juvenile male rabbits (2 months after birth). The experimental group received synovium and PJAC transplant encapsulated with fibrin gel. The control groups received synovium transplant encapsulated with fibrin gel, pure fibrin gel and nothing. The macroscopic, imageological and histological evaluations of repaired tissue were performed at 8 weeks and 16 weeks postoperatively. The in situ hybridization (ISH) of male-specific sex-determining region Y-linked (SRY) gene was performed to detect the transplanted cells. Results The regenerated tissue in experimental group showed superior structural integrity, superficial smoothness, and marginal integration compared to control groups at 8 weeks or 16 weeks postoperatively. More meniscus-like fibrochondrocytes filled the repaired tissue in the experimental group, and the matrix surrounding these cell clusters demonstrated strongly positive safranin O and type 2 collagen immunohistochemistry staining. By SRY gene ISH, the positive SRY signal of experimental group could be detected at 8 weeks (75.72%, median) and 16 weeks (48.69%, median). The expression of SOX9 in experimental group was the most robust, with median positive rates of 65.52% at 8 weeks and 67.55% at 16 weeks. Conclusion The transplantation of synovium and PJAC synergistically facilitates meniscal regeneration. The donor cells survive for at least 16 weeks in the recipient. The translational potential of this article This study highlighted the positive effect of PJAC and synovium transplant on meniscal repair. We also clarified the potential repair mechanisms reflected by the survival of donor cells and upregulated expression of meniscal fibrochondrocytes related genes. Thus, based on our study, further clinical experiments are needed to investigate synovium and PJAC transplant as a possible treatment to meniscal defects.
Collapse
|
15
|
Angele P, Docheva D, Pattappa G, Zellner J. Cell-based treatment options facilitate regeneration of cartilage, ligaments and meniscus in demanding conditions of the knee by a whole joint approach. Knee Surg Sports Traumatol Arthrosc 2022; 30:1138-1150. [PMID: 33666685 PMCID: PMC9007795 DOI: 10.1007/s00167-021-06497-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE This article provides an update on the current therapeutic options for cell-based regenerative treatment of the knee with a critical review of the present literature including a future perspective on the use of regenerative cell-based approaches. Special emphasis has been given on the requirement of a whole joint approach with treatment of comorbidities with aim of knee cartilage restoration, particularly in demanding conditions like early osteoarthritis. METHODS This narrative review evaluates recent clinical data and published research articles on cell-based regenerative treatment options for cartilage and other structures around the knee RESULTS: Cell-based regenerative therapies for cartilage repair have become standard practice for the treatment of focal, traumatic chondral defects of the knee. Specifically, matrix-assisted autologous chondrocyte transplantation (MACT) shows satisfactory long-term results regarding radiological, histological and clinical outcome for treatment of large cartilage defects. Data show that regenerative treatment of the knee requires a whole joint approach by addressing all comorbidities including axis deviation, instability or meniscus pathologies. Further development of novel biomaterials and the discovery of alternative cell sources may facilitate the process of cell-based regenerative therapies for all knee structures becoming the gold standard in the future. CONCLUSION Overall, cell-based regenerative cartilage therapy of the knee has shown tremendous development over the last years and has become the standard of care for large and isolated chondral defects. It has shown success in the treatment of traumatic, osteochondral defects but also for degenerative cartilage lesions in the demanding condition of early OA. Future developments and alternative cell sources may help to facilitate cell-based regenerative treatment for all different structures around the knee by a whole joint approach. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Peter Angele
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053, Regensburg, Germany.
- Department of Trauma Surgery, University Medical Center of Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Denitsa Docheva
- Department of Trauma Surgery, University Medical Center of Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany
| | - Girish Pattappa
- Department of Trauma Surgery, University Medical Center of Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany
| | - Johannes Zellner
- Department of Trauma Surgery, University Medical Center of Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany
- Department of Trauma Surgery, Caritas Hospital St. Josef Regensburg, Landshuter Strasse 65, 93053, Regensburg, Germany
| |
Collapse
|
16
|
Altaie A, Baboolal TG, Wall O, Pandit H, Jones E, McGonagle D. Device-Based Enrichment of Knee Joint Synovial Cells to Drive MSC Chondrogenesis Without Prior Culture Expansion In Vitro: A Step Closer to 1-Stage Orthopaedic Procedures. Am J Sports Med 2022; 50:152-161. [PMID: 34779670 PMCID: PMC8739599 DOI: 10.1177/03635465211055164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/27/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Synovial fluid (SF) mesenchymal stem cells (MSCs) are derived from the synovial membrane and have cartilage repair potential. Their current use in clinical practice is largely exploratory. As their numbers tend to be small, therapeutic procedures using MSCs typically require culture expansion. Previous reports indicate that the stem cell-mobilizing device (STEM device) intraoperatively increases SF-MSCs. PURPOSE This study evaluated the chondrogenic potential of non-culture expanded synovium-mobilized MSCs and SF-microfragments obtained after enrichment using the STEM device and ascertained if device-mediated synovial membrane manipulation facilitated ongoing MSC release. STUDY DESIGN Controlled laboratory study. METHODS Two samples of aspiration fluid were collected intraoperatively before and after STEM device utilization from patients (n = 16) undergoing diagnostic or therapeutic knee arthroscopy. Human knee synovium (n = 5) was collected during total knee replacement, and a suspended culture was performed to assess the effect of the STEM device on ongoing MSC release. Colony forming unit-fibroblastic assays were used to determine the number of MSCs. Additionally, cytometric characterization of stromal and immune cells and chondrogenesis differentiation assay were performed without culture expansion. Filtered platelet concentrates were prepared using the HemaTrate system. RESULTS After STEM device use, a significant increase was evident in SF-MSCs (P = .03) and synovial fluid-resident synovial tissue microfragments (P = .03). In vitro-suspended synovium released significantly more MSCs following STEM device use than nonstimulated synovium (P = .01). The STEM device-released total cellular fraction produced greater in vitro chondrogenesis with significantly more glycosaminoglycans (GAGs; P < .0001) when compared with non-STEM device synovial fluid material. Nonexpanded SF-MSCs and SF-microfragments combined with autologous filtered platelet concentrate produced significantly more GAGs than the complete chondrogenic media (P < .0001). The STEM device-mobilized cells contained more M2 macrophage cells and fewer M1 cells. CONCLUSION Non-culture expanded SF-MSCs and SF-microfragments had the potential to undergo chondrogenesis without culture expansion, which can be augmented using the STEM device with increased MSC release from manipulated synovium for several days. Although preliminary, these findings offer proof of concept toward manipulation of the knee joint environment to facilitate endogenous repair responses. CLINICAL RELEVANCE Although numbers were small, this study highlights 3 factors relevant to 1-stage joint repair using the STEM device: increased SF-MSCs and SF-microfragments and prolonged synovial release of MSCs. Joint repair strategies involving endogenous MSCs for cartilage repair without the need for culture expansion in a 1-stage procedure may be possible.
Collapse
Affiliation(s)
- Ala Altaie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Thomas G. Baboolal
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Owen Wall
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, UK
| |
Collapse
|
17
|
Tomaszewski R, Rost‐Roszkowska M, Wilczek G, Gap A, Wiktor Ł. Changes in the avascular area of the meniscus using mesenchymal stem cells and growth plate chondrocytes in a pig model. J Anat 2021; 239:1409-1418. [PMID: 34254669 PMCID: PMC8602013 DOI: 10.1111/joa.13508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
Menisci are wedge-shaped cartilage discs that are divided into two parts: the avascular and vascular regions. They are formed by fibrocartilage tissue, which contains round cartilage-like cells and extracellular matrix. Meniscus injury in animals is a common orthopedic problem, but data on the natural healing process mainly deals with the vascular zone. The healing processes in the avascular zone of the meniscus are significantly limited. Thus, this study aimed to evaluate autologous growth plate chondrocytes' impact on the healing process of a damaged meniscus in the avascular zone based on a growing animal model. The study group consisted of 10 pigs at about three months of age. From each animal, chondrocytes from the iliac growth plate and from concentrated bone marrow were taken. Knee joints were divided into right (R) and left (L). The medial meniscus of the R knee joint was treated with a hyaluronic acid based scaffold incubated with bone marrow cells from marrow aspirates (nCHON). The medial meniscus of the L knee joint was treated with a hyaluronic acid based scaffold incubated with bone marrow cells from marrow aspirates supplemented with immature chondrocytes isolated from growth plates (wCHON). The meniscus was damaged in the avascular zone in both knee joints. Followingly, the damaged part of the meniscus was filled with a scaffold with cells from the concentrated bone marrow and from growth plate chondrocytes. In the control group, a scaffold with concentrated bone marrow cells was used. After three months the animals were euthanized and preparations (microscopic slides) were made from the meniscus' damaged part. A qualitative and quantitative analysis have been prepared. The wCHON group in comparison with the nCHON group showed a statistically significantly higher number of fusiform cells on the surface of the graft as well as better healing of the graft. In addition, the degree of vascularization was higher in specimens from the wCHON group than in the nCHON group. The results of our research on immature pig knees revealed that mesenchymal stem cell and growth plate chondrocytes could be treated as the cell source for meniscus reconstruction, and growth plate chondrocytes enhance healing processes in the avascular zone of the injured meniscus.
Collapse
Affiliation(s)
- Ryszard Tomaszewski
- Department of Pediatric Traumatology and OrthopedyUpper Silesian Child Centre in KatowiceKatowicePoland
- Institute of Biomedical EngineeringFaculty of Science and TechnologyUniversity of Silesia in KatowiceKatowicePoland
| | - Magdalena Rost‐Roszkowska
- Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceKatowicePoland
| | - Grażyna Wilczek
- Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceKatowicePoland
| | - Artur Gap
- Department of Pediatric Traumatology and OrthopedyUpper Silesian Child Centre in KatowiceKatowicePoland
| | - Łukasz Wiktor
- Department of Pediatric Traumatology and OrthopedyUpper Silesian Child Centre in KatowiceKatowicePoland
| |
Collapse
|
18
|
Fang W, Sun Z, Chen X, Han B, Vangsness CT. Synovial Fluid Mesenchymal Stem Cells for Knee Arthritis and Cartilage Defects: A Review of the Literature. J Knee Surg 2021; 34:1476-1485. [PMID: 32403148 DOI: 10.1055/s-0040-1710366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that have the ability to self-renew and differentiate into several cell lineages including adipocytes, chondrocytes, tenocytes, bones, and myoblasts. These properties make the cell a promising candidate for regenerative medicine applications, especially when dealing with sports injuries in the knee. MSCs can be isolated from almost every type of adult tissue. However, most of the current research focuses on MSCs derived from bone marrow, adipose, and placenta derived products. Synovial fluid-derived MSCs (SF-MSCs) are relatively overlooked but have demonstrated promising therapeutic properties including possessing higher chondrogenic proliferation capabilities than other types of MSCs. Interestingly, SF-MSC population has shown to increase exponentially in patients with joint injury or disease, pointing to a potential use as a biomarker or as a treatment of some orthopaedic disorders. In this review, we go over the current literature on synovial fluid-derived MSCs including the characterization, the animal studies, and discuss future perspectives.
Collapse
Affiliation(s)
- William Fang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - ZhiTao Sun
- Department of Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangzhou, China
| | - Xiao Chen
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Bo Han
- Department of Surgery, USC Keck School of Medicine, Los Angeles, California
| | - C Thomas Vangsness
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
19
|
Abstract
A basic understanding of meniscal anatomy and biomechanics is important for physicians evaluating knee injuries and surgeons treating meniscal injuries. This chapter provides a concise review of meniscal anatomy and biomechanics relevant for the evaluation and treatment of meniscus injuries. Anatomic landmarks relevant for meniscal root repair and transplant are discussed, along with the gross, microscopic, vascular, and neuroanatomy of the menisci.
Collapse
|
20
|
Rhim HC, Jeon OH, Han SB, Bae JH, Suh DW, Jang KM. Mesenchymal stem cells for enhancing biological healing after meniscal injuries. World J Stem Cells 2021; 13:1005-1029. [PMID: 34567422 PMCID: PMC8422933 DOI: 10.4252/wjsc.v13.i8.1005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
The meniscus is a semilunar fibrocartilage structure that plays important roles in maintaining normal knee biomechanics and function. The roles of the meniscus, including load distribution, force transmission, shock absorption, joint stability, lubrication, and proprioception, have been well established. Injury to the meniscus can disrupt overall joint stability and cause various symptoms including pain, swelling, giving-way, and locking. Unless treated properly, it can lead to early degeneration of the knee joint. Because meniscal injuries remain a significant challenge due to its low intrinsic healing potential, most notably in avascular and aneural inner two-thirds of the area, more efficient repair methods are needed. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in vitro and in vivo. Thus far, the application of MSCs, including bone marrow-derived, synovium-derived, and adipose-derived MSCs, has shown promising results in preclinical studies in different animal models. These preclinical studies could be categorized into intra-articular injection and tissue-engineered construct application according to delivery method. Despite promising results in preclinical studies, there is still a lack of clinical evidence. This review describes the basic knowledge, current treatment, and recent studies regarding the application of MSCs in treating meniscal injuries. Future directions for MSC-based approaches to enhance meniscal healing are suggested.
Collapse
Affiliation(s)
- Hye Chang Rhim
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Seung-Beom Han
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Ji Hoon Bae
- Department of Orthopaedic Surgery, Guro Hospital, Korea University College of Medicine, Seoul 08308, Seoul, South Korea
| | - Dong Won Suh
- Department of Orthopaedic Surgery, Barunsesang Hospital, Seongnam 13497, South Korea
| | - Ki-Mo Jang
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| |
Collapse
|
21
|
Klarmann GJ, Gaston J, Ho VB. A review of strategies for development of tissue engineered meniscal implants. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100026. [PMID: 36824574 PMCID: PMC9934480 DOI: 10.1016/j.bbiosy.2021.100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/09/2022] Open
Abstract
The meniscus is a key stabilizing tissue of the knee that facilitates proper tracking and movement of the knee joint and absorbs stresses related to physical activity. This review article describes the biology, structure, and functions of the human knee meniscus, common tears and repair approaches, and current research and development approaches using modern methods to fabricate a scaffold or tissue engineered meniscal replacement. Meniscal tears are quite common, often resulting from sports or physical training, though injury can result without specific contact during normal physical activity such as bending or squatting. Meniscal injuries often require surgical intervention to repair, restore basic functionality and relieve pain, and severe damage may warrant reconstruction using allograft transplants or commercial implant devices. Ongoing research is attempting to develop alternative scaffold and tissue engineered devices using modern fabrication techniques including three-dimensional (3D) printing which can fabricate a patient-specific meniscus replacement. An ideal meniscal substitute should have mechanical properties that are close to that of natural human meniscus, and also be easily adapted for surgical procedures and fixation. A better understanding of the organization and structure of the meniscus as well as its potential points of failure will lead to improved design approaches to generate a suitable and functional replacement.
Collapse
Affiliation(s)
- George J. Klarmann
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA,Corresponding author at: USU-4D Bio³ Center, 9410 Key West Ave., Rockville, MD 20850, USA.
| | - Joel Gaston
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA
| | - Vincent B. Ho
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| |
Collapse
|
22
|
Li Y, Chen M, Yan J, Zhou W, Gao S, Liu S, Li Q, Zheng Y, Cheng Y, Guo Q. Tannic acid/Sr 2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritis. Acta Biomater 2021; 126:119-131. [PMID: 33684536 DOI: 10.1016/j.actbio.2021.02.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Tissue engineering method provides a promising solution for meniscus repair and regeneration. However, the inflammatory environment that persists after meniscus injury in the knee joint impedes meniscus tissue regeneration. The purpose of this study was to investigate the applicability of silk/graphene oxide (GO)-based meniscus scaffold modified with tannic acid (TA)/Sr2+ coating for the elimination of inflammatory cytokines and reactive oxygen species (ROS) under osteoarthritis (OA) environment along with cartilage protection by using a rat model. The self-assembled coating composed of a series of TA-Sr2+ complex concentrations was formed by a facile, rapid, and efficient method on the scaffold. The phenolic hydroxyl groups on the coating endowed the meniscus scaffold with excellent anti-inflammatory and ROS scavenging capacities. We also found that the coating could promote cell migration in a mock wound model and could increase extracellular matrix secretion in vitro. Moreover, the coating components at a certain concentration played an effective role in delaying OA and providing cartilage protection in the rat model. The expression of inflammation cytokines (e.g., IL-6, IL-8, and MMPs) in rat knee tissue was significantly downregulated, and cartilage degeneration and OA damage were also inhibited according to tissue staining results and the OARSI (Osteoarthritis Research Society International) scoring system. Combining these performances, we suggest that this silk/GO-based scaffold modified with TA/Sr2+ coating could have broader application prospects by virtue of its effective and user-friendly properties. STATEMENT OF SIGNIFICANCE: The biological properties of the meniscus play a role in activating and regulating the metabolic and inflammatory responses that influence the homeostasis of joint health and ultimately lead to knee osteoarthritis (OA). The inflammation condition of the knee joint may exacerbate the degeneration of meniscus and cartilage. The present study aimed to develop a functional coating composed of tannic acid/Sr2+ complex on a silk/graphene oxide-based meniscus scaffold and to endow the scaffold with anti-inflammatory and ROS elimination capacities during the meniscus regeneration process to protect cartilage and delay OA development. The in vitro cytocompatibility study and the in vivo rat OA model study revealed that the coating was effective in promoting cell migration, facilitating ECM secretion, inhibiting inflammation, and delaying OA development.
Collapse
Affiliation(s)
- Yangyang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Jianglong Yan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenhao Zhou
- Shaanxi Key Laboratory of biomedical metal materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuyun Liu
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Qiyao Li
- Department of Biomedical Engineering, Materials Research Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Quanyi Guo
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
23
|
Endo K, Horiuchi K, Katano H, Ozeki N, Sakamaki Y, Koga H, Sekiya I. Intra-articular Injection of PDGF-BB Explored in a Novel in Vitro Model Mobilizes Mesenchymal Stem Cells From the Synovium Into Synovial Fluid in Rats. Stem Cell Rev Rep 2021; 17:1768-1779. [PMID: 33772387 DOI: 10.1007/s12015-021-10156-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Drugs that can induce mesenchymal stem cell (MSC) mobilization from synovium into synovial fluid will enable regenerative medicine in joints without use of exogenous MSCs. An in vitro synovial MSC migration model had previously been developed for screening but had problems in practical application. We herein developed a novel in vitro model, explored cytokines for synovial MSC mobilization with this model, and verified whether MSCs in synovial fluid increase following intra-articular injection of the cytokine. METHODS Human synovial MSCs embedded in a mixture of Matrigel and type 1 collagen hydrogel were placed on a culture insert and then put in medium containing migration factor. Of the six cytokines, we identified the one that mobilizes the highest number of MSCs. PDGF-BB or PBS was injected into rat knees, and 48 h later, synovial fluid was collected and cultured. The cells were examined for MSC properties. RESULTS PDGF-BB was the most effective for synovial MSC mobilization among six cytokines. The effect of PDGF-BB was inhibited by a PRGFR inhibitor. Injection of PDGF-BB into rat knees increased colony-forming cells in the synovial fluid. These cells had surface epitopes and multipotency comparable to MSCs and a higher capacity for proliferation, colony formation, and chondrogenesis. CONCLUSIONS This novel in vitro model recapitulated the migration of MSCs from synovium into synovial fluid. Our exploration of cytokines revealed that PDGF-BB strongly induced in vitro synovial MSC migration, while intra-articular injection of PDGF-BB increased in vivo MSC numbers in synovial fluid in rats.
Collapse
Affiliation(s)
- Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510, Tokyo, Japan
| | - Kiyotaka Horiuchi
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510, Tokyo, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510, Tokyo, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510, Tokyo, Japan
| | - Yuriko Sakamaki
- Research Core Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510, Tokyo, Japan.
| |
Collapse
|
24
|
Characteristics of MSCs in Synovial Fluid and Mode of Action of Intra-Articular Injections of Synovial MSCs in Knee Osteoarthritis. Int J Mol Sci 2021; 22:ijms22062838. [PMID: 33799588 PMCID: PMC8001624 DOI: 10.3390/ijms22062838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
We have been studying mesenchymal stem cells (MSCs) in synovial fluid and the intra-articular injection of synovial MSCs in osteoarthritis (OA) knees. Here, mainly based on our own findings, we overview the characteristics of endogenous MSCs in the synovial fluid of OA knees and their mode of action when injected exogenously into OA knees. Many MSCs similar to synovial MSCs were detected in the synovial fluid of human OA knees, and their number correlated with the radiological OA grade. Our suspended synovium culture model demonstrated the release of MSCs from the synovium through a medium into a non-contacting culture dish. In OA knees, endogenous MSCs possibly mobilize in a similar manner from the synovium through the synovial fluid and act protectively. However, the number of mobilized MSCs is limited; therefore, OA progresses in its natural course. Synovial MSC injections inhibited the progression of cartilage degeneration in a rat OA model. Injected synovial MSCs migrated into the synovium, maintained their MSC properties, and increased the gene expressions of TSG-6, PRG-4, and BMP-2. Exogenous synovial MSCs can promote anti-inflammation, lubrication, and cartilage matrix synthesis in OA knees. Based on our findings, we have initiated a human clinical study of synovial MSC injections in OA knees.
Collapse
|
25
|
Zhang X, Wu S, Zhu Y, Chu CQ. Exploiting Joint-Resident Stem Cells by Exogenous SOX9 for Cartilage Regeneration for Therapy of Osteoarthritis. Front Med (Lausanne) 2021; 8:622609. [PMID: 33681252 PMCID: PMC7928416 DOI: 10.3389/fmed.2021.622609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
The lack of effective treatment options for osteoarthritis (OA) is mostly due to the very limited regenerative capacity of articular cartilage. Mesenchymal stem cells (MSCs) have been most extensively explored for cell-based therapy to induce cartilage regeneration for OA. However, current in vitro expanded MSC-based approaches have significant drawbacks. On the other hand, osteoarthritic joints contain chondrocyte progenitors and MSCs in several niches which have the potential yet fail to differentiate into chondrocytes for cartilage regeneration. One of the underlying mechanisms of the failure is that these chondrocyte progenitors and MSCs in OA joints are deficient in the activity of chondrogenic transcription factor SOX9 (SRY-type high-mobility group box-9). Thereby, replenishing with exogenous SOX9 would reactivate the potential of these stem cells to differentiate into chondrocytes. Cell-permeable, super-positively charged SOX9 (scSOX9) protein is able to promote hyaline-like cartilage regeneration by inducing chondrogenic differentiation of bone marrow derived MSCs in vivo. This scSOX9 protein can be administered into osteoarthritic joints by intra-articular injection. This one-step, cell-free supplement of exogenous SOX9 may harness the regenerative potential of the intrinsic MSCs within the joint cavity to stimulate cartilage regeneration in OA.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, United States.,Section of Rheumatology, VA Portland Health Care System, Portland, OR, United States
| | - Shili Wu
- Vivoscript, Inc., Irvine, CA, United States
| | - Yong Zhu
- Vivoscript, Inc., Irvine, CA, United States
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, United States.,Section of Rheumatology, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
26
|
Szojka AR, Marqueti RDC, Li DX, Molter CW, Liang Y, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Human engineered meniscus transcriptome after short-term combined hypoxia and dynamic compression. J Tissue Eng 2021; 12:2041731421990842. [PMID: 33613959 PMCID: PMC7874349 DOI: 10.1177/2041731421990842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/10/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigates the transcriptome response of meniscus fibrochondrocytes (MFCs) to the low oxygen and mechanical loading signals experienced in the knee joint using a model system. We hypothesized that short term exposure to the combined treatment would promote a matrix-forming phenotype supportive of inner meniscus tissue formation. Human MFCs on a collagen scaffold were stimulated to form fibrocartilage over 6 weeks under normoxic (NRX, 20% O2) conditions with supplemented TGF-β3. Tissues experienced a delayed 24h hypoxia treatment (HYP, 3% O2) and then 5 min of dynamic compression (DC) between 30 and 40% strain. Delayed HYP induced an anabolic and anti-catabolic expression profile for hyaline cartilage matrix markers, while DC induced an inflammatory matrix remodeling response along with upregulation of both SOX9 and COL1A1. There were 41 genes regulated by both HYP and DC. Overall, the combined treatment supported a unique gene expression profile favouring the hyaline cartilage aspect of inner meniscus matrix and matrix remodeling.
Collapse
Affiliation(s)
- Alexander Ra Szojka
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Rita de Cássia Marqueti
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.,Graduate Program of Rehabilitation Sciences, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - David Xinzheyang Li
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.,Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Clayton W Molter
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Yan Liang
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Nadr M Jomha
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| |
Collapse
|
27
|
Gong Z, Xia K, Xu A, Yu C, Wang C, Zhu J, Huang X, Chen Q, Li F, Liang C. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:321-331. [PMID: 31441733 DOI: 10.2174/1574888x14666190823144424] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
Abstract
Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chenggui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Xianpeng Huang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - QiXin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| |
Collapse
|
28
|
Sanjurjo-Rodriguez C, Altaie A, Mastbergen S, Baboolal T, Welting T, Lafeber F, Pandit H, McGonagle D, Jones E. Gene Expression Signatures of Synovial Fluid Multipotent Stromal Cells in Advanced Knee Osteoarthritis and Following Knee Joint Distraction. Front Bioeng Biotechnol 2020; 8:579751. [PMID: 33178674 PMCID: PMC7591809 DOI: 10.3389/fbioe.2020.579751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disorder. Although joint replacement remains the standard of care for knee OA patients, knee joint distraction (KJD), which works by temporarily off-loading the joint for 6–8 weeks, is becoming a novel joint-sparing alternative for younger OA sufferers. The biological mechanisms behind KJD structural improvements remain poorly understood but likely involve joint-resident regenerative cells including multipotent stromal cells (MSCs). In this study, we hypothesized that KJD leads to beneficial cartilage-anabolic and anti-catabolic changes in joint-resident MSCs and investigated gene expression profiles of synovial fluid (SF) MSCs following KJD as compared with baseline. To obtain further insights into the effects of local biomechanics on MSCs present in late OA joints, SF MSC gene expression was studied in a separate OA arthroplasty cohort and compared with subchondral bone (SB) MSCs from medial (more loaded) and lateral (less loaded) femoral condyles from the same joints. In OA arthroplasty cohort (n = 12 patients), SF MSCs expressed lower levels of ossification- and hypotrophy-related genes [bone sialoprotein (IBSP), parathyroid hormone 1 receptor (PTH1R), and runt-related transcription factor 2 (RUNX2)] than did SB MSCs. Interestingly, SF MSCs expressed 5- to 50-fold higher levels of transcripts for classical extracellular matrix turnover molecules matrix metalloproteinase 1 (MMP1), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and tissue inhibitor of metalloproteinase-3 (TIMP3), all (p < 0.05) potentially indicating greater cartilage remodeling ability of OA SF MSCs, compared with SB MSCs. In KJD cohort (n = 9 patients), joint off-loading resulted in sustained, significant increase in SF MSC colonies’ sizes and densities and a notable transcript upregulation of key cartilage core protein aggrecan (ACAN) (weeks 3 and 6), as well as reduction in pro-inflammatory C–C motif chemokine ligand 2 (CCL2) expression (weeks 3 and 6). Additionally, early KJD changes (week 3) were marked by significant increases in MSC chondrogenic commitment markers gremlin 1 (GREM1) and growth differentiation factor 5 (GDF5). In combination, our results reveal distinct transcriptomes on joint-resident MSCs from different biomechanical environments and show that 6-week joint off-loading leads to transcriptional changes in SF MSCs that may be beneficial for cartilage regeneration. Biomechanical factors should be certainly considered in the development of novel MSC-based therapies for OA.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodriguez
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Physiotherapy, Medicine and Biomedical Sciences department, CIBER-BBN, Institute of Biomedical Research of A Coruña (INIBIC)-Centre of Advanced Scientific Researches (CICA), University of A Coruña, A Coruña, Spain
| | - Ala Altaie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Simon Mastbergen
- University Medical Center Utrecht, Rheumatology & Clinical Immunology, Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Baboolal
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tim Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Floris Lafeber
- University Medical Center Utrecht, Rheumatology & Clinical Immunology, Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
29
|
Mesenchymal Stem Cells in Synovial Fluid Increase in Knees with Degenerative Meniscus Injury after Arthroscopic Procedures through the Endogenous Effects of CGRP and HGF. Stem Cell Rev Rep 2020; 16:1305-1315. [DOI: 10.1007/s12015-020-10047-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
|
30
|
Xu J, Bian F. Pain-related risk factors after arthroscopic minimally invasive treatment of meniscus injury of knee joints. Exp Ther Med 2020; 20:2317-2324. [PMID: 32765711 DOI: 10.3892/etm.2020.8953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/11/2020] [Indexed: 12/28/2022] Open
Abstract
Pain-related risk factors after arthroscopic minimally invasive treatment of meniscus injury of knee joints were explored. Altogether 42 patients (conservative group), 40 patients (open group) and 46 patients (minimally invasive group) who received conservative treatment or arthroscopic knee surgery at the Quwo County People's Hospital were selected. The clinical effects of patients in the three groups at 24 weeks after treatment were observed. The knee joint activity, the knee injury and osteoarthritis outcome score (KOOS), Lysholm knee joint function score, VAS pain score and WOMAC score were recorded before treatment, at 24 weeks after treatment and at 2 years after treatment. Complications were also recorded. The related risk factors of postoperative pain were analyzed. There was no significant difference between the short-term efficacy of conservative treatment and that of surgical treatment (P>0.05); however, the long-term improvement effect of the surgical treatment on knee joint function and pain was better (P<0.05). The short-term and long-term effects of arthroscopic surgery were close to those of the open surgery. Arthroscopic surgery had a good long-term improvement effect on knee joint function and pain (P<0.05), and the incidence of postoperative pain was low (P<0.05). The results of logistic multivariate regression analysis manifested that WOMAC score, articular cartilage injury, time of postoperative weight bearing <1 week, no postoperative cold compress and open knee surgery were independent risk factors that affected postoperative pain (P<0.05). In conclusion, arthroscopic minimally invasive treatment has a good effect on patients with meniscus injury of knee joints who fail conservative treatment. Articular cartilage injury, postoperative weight bearing, cold compress and type of operation are independent risk factors that affect postoperative pain. Clinicians should bring patient attention to the prevention of meniscus injury and further improve the efficacy of treatment.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Orthopedics, Quwo County People's Hospital, Linfen, Shanxi 043400, P.R. China
| | - Fei Bian
- Department of Orthopedics, Quwo County People's Hospital, Linfen, Shanxi 043400, P.R. China
| |
Collapse
|
31
|
Rocha B, Cillero-Pastor B, Eijkel G, Calamia V, Fernandez-Puente P, Paine MRL, Ruiz-Romero C, Heeren RMA, Blanco FJ. Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis. Mol Cell Proteomics 2020; 19:574-588. [PMID: 31980557 PMCID: PMC7124476 DOI: 10.1074/mcp.ra119.001821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis.
Collapse
Affiliation(s)
- Beatriz Rocha
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Gert Eijkel
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Valentina Calamia
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain.
| | - Patricia Fernandez-Puente
- Grupo de Investigación de Reumatología, INIBIC-Complejo Hospitalario Universitario de A Coruña, SERGAS, Agrupación CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Martin R L Paine
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología, INIBIC-Complejo Hospitalario Universitario de A Coruña, SERGAS, Departamento de Medicina Universidad de A Coruña, A Coruña, Spain.
| |
Collapse
|
32
|
Twomey-Kozak J, Jayasuriya CT. Meniscus Repair and Regeneration: A Systematic Review from a Basic and Translational Science Perspective. Clin Sports Med 2020; 39:125-163. [PMID: 31767102 DOI: 10.1016/j.csm.2019.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meniscus injuries are among the most common athletic injuries and result in functional impairment in the knee. Repair is crucial for pain relief and prevention of degenerative joint diseases like osteoarthritis. Current treatments, however, do not produce long-term improvements. Thus, recent research has been investigating new therapeutic options for regenerating injured meniscal tissue. This review comprehensively details the current methodologies being explored in the basic sciences to stimulate better meniscus injury repair. Furthermore, it describes how these preclinical strategies may improve current paradigms of how meniscal injuries are clinically treated through a unique and alternative perspective to traditional clinical methodology.
Collapse
Affiliation(s)
- John Twomey-Kozak
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA.
| |
Collapse
|
33
|
Jacob G, Shimomura K, Krych AJ, Nakamura N. The Meniscus Tear: A Review of Stem Cell Therapies. Cells 2019; 9:E92. [PMID: 31905968 PMCID: PMC7016630 DOI: 10.3390/cells9010092] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023] Open
Abstract
Meniscal injuries have posed a challenging problem for many years, especially considering that historically the meniscus was considered to be a structure with no important role in the knee joint. This led to earlier treatments aiming at the removal of the entire structure in a procedure known as a meniscectomy. However, with the current understanding of the function and roles of the meniscus, meniscectomy has been identified to accelerate joint degradation significantly and is no longer a preferred treatment option in meniscal tears. Current therapies are now focused to regenerate, repair, or replace the injured meniscus to restore its native function. Repairs have improved in technique and materials over time, with various implant devices being utilized and developed. More recently, strategies have applied stem cells, tissue engineering, and their combination to potentiate healing to achieve superior quality repair tissue and retard the joint degeneration associated with an injured or inadequately functioning meniscus. Accordingly, the purpose of this current review is to summarize the current available pre-clinical and clinical literature using stem cells and tissue engineering for meniscal repair and regeneration.
Collapse
Affiliation(s)
- George Jacob
- Department and Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; (G.J.); (K.S.)
| | - Kazunori Shimomura
- Department and Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; (G.J.); (K.S.)
| | - Aaron J. Krych
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka 530-0043, Japan
- Global Centre for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Amemiya M, Tsuji K, Katagiri H, Miyatake K, Nakagawa Y, Sekiya I, Muneta T, Koga H. Synovial fluid-derived mesenchymal cells have non-inferior chondrogenic potential and can be utilized for regenerative therapy as substitute for synovium-derived cells. Biochem Biophys Res Commun 2019; 523:465-472. [PMID: 31882120 DOI: 10.1016/j.bbrc.2019.12.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/26/2022]
Abstract
Recent progress in the field of mesenchymal stem cell (MSC) biology has enabled their clinical application. In the autologous cell transplantation therapy, the source of MSCs are quite important to reduce patients' physical burden. In this study, we isolated MSCs from the synovial fluid (SF) and synovial membrane (Syn) of the same patients and compared the biological characteristics of them. In vitro and in vivo experiments indicated the non-inferior chondrocytic differentiation and articular cartilage regeneration potential of SF-MSCs compared to that of Syn-MSCs; however, SF-MSCs showed less proliferative potential than Syn-MSCs in vitro. Flow cytometry-based multiplex surface antigen expression analyses indicated that SF-MSCs exhibit fewer cells positive for CD140, which is a functional growth factor receptor for MSCs. Nevertheless, we obtained enough SF-MSCs for transplantation within several passages. Since arthrocentesis is routinely performed during outpatient care in the consultation room and is less invasive than synovial biopsy, MSC derived from synovial fluid could be considered an attractive cell source for cartilage regenerative therapy as a substitute for Syn-MSC. Developing these cells for clinical application may greatly benefit patients undergoing autologous MSC transplantation therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Japan
| |
Collapse
|
35
|
Jia Z, Wang S, Liu Q. Identification of differentially expressed genes by single-cell transcriptional profiling of umbilical cord and synovial fluid mesenchymal stem cells. J Cell Mol Med 2019; 24:1945-1957. [PMID: 31845522 PMCID: PMC6991657 DOI: 10.1111/jcmm.14891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to measure the heterogeneity in human umbilical cord–derived mesenchymal stem cells (hUC‐MSCs) and human synovial fluid–derived mesenchymal stem cells (hSF‐MSCs) by single‐cell RNA‐sequencing (scRNA‐seq). Using Chromium™ technology, scRNA‐seq was performed on hUC‐MSCs and hSF‐MSCs from samples that passed our quality control checks. In order to identify subgroups and activated pathways, several bioinformatics tools were used to analyse the transcriptomic profiles, including clustering, principle components analysis (PCA), t‐Distributed Stochastic Neighbor Embedding (t‐SNE), gene set enrichment analysis, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. scRNA‐seq was performed on the two sample sets. In total, there were 104 761 163 reads for the hUC‐MSCs and 6 577 715 for the hSF‐MSCs, with >60% mapping rate. Based on PCA and t‐SNE analyses, we identified 11 subsets within hUC‐MSCs and seven subsets within hSF‐MSCs. Gene set enrichment analysis determined that there were 533, 57, 32, 44, 10, 319, 731, 1037, 90, 25 and 230 differentially expressed genes (DEGs) in the 11 subsets of hUC‐MSCs and 204, 577, 30, 577, 16, 57 and 35 DEGs in the seven subsets of hSF‐MSCs. scRNA‐seq was not only able to identify subpopulations of hUC‐MSCs and hSF‐MSCs within the sample sets, but also provided a digital transcript count of hUC‐MSCs and hSF‐MSCs within a single patient. scRNA‐seq analysis may elucidate some of the biological characteristics of MSCs and allow for a better understanding of the multi‐directional differentiation, immunomodulatory properties and tissue repair capabilities of MSCs.
Collapse
Affiliation(s)
- Zhaofeng Jia
- Department of Osteoarthropathy and Institute of Orthopedic Research, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University and the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Shijin Wang
- Department of Orthopaedics, Taian City Central Hospital, Taian, China
| | - Qisong Liu
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The emergence of cell-based therapies has brought much excitement to the field of orthopedic sports medicine. However, the significant inconsistency of reporting has led to the poor understanding, misinformation, and false expectations for patients and clinicians alike. In this paper, we aim to clarify the available cell-therapy treatments and summarize some of the latest research. RECENT FINDINGS Although this technology is in early development, our understanding of cell biology has grown significantly over the last decade. Furthermore, it is becoming evident that tissue specificity may play a significant role in determining the effectiveness and overall clinical benefit attributed to cell therapy. Cell therapy is an emerging field with tremendous potential for clinically significant benefit. However, in its current state, clinical application of these treatments is limited by federal regulations, variability in formulation, and limited understanding of the biologic activity of various cell formulations.
Collapse
Affiliation(s)
- Bijan Dehghani
- Hospital for Special Surgery, 525 East 71 Street, 1st floor, New York, NY 10021 USA
| | - Scott Rodeo
- Hospital for Special Surgery, 525 East 71 Street, 1st floor, New York, NY 10021 USA
| |
Collapse
|
37
|
Rothrauff BB, Sasaki H, Kihara S, Overholt KJ, Gottardi R, Lin H, Fu FH, Tuan RS, Alexander PG. Point-of-Care Procedure for Enhancement of Meniscal Healing in a Goat Model Utilizing Infrapatellar Fat Pad-Derived Stromal Vascular Fraction Cells Seeded in Photocrosslinkable Hydrogel. Am J Sports Med 2019; 47:3396-3405. [PMID: 31644307 DOI: 10.1177/0363546519880468] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Large radial tears of the meniscus involving the avascular region can compromise meniscal function and result in poor healing and subsequent osteochondral degeneration. Augmentation of surgical repairs with adipose-derived stromal vascular fraction (SVF), which contains mesenchymal stromal cells, may improve meniscal healing and preserve function (ie, chondroprotection). PURPOSES (1) To develop a goat model of a radial meniscal tear with resulting osteoarthritis and (2) to explore the efficacy of a 1-step procedure utilizing infrapatellar fat pad-derived SVF cells seeded in a photocrosslinkable hydrogel to enhance meniscal healing and mitigate osteochondral degeneration. STUDY DESIGN Controlled laboratory study. METHODS A full-thickness radial tear spanning 90% of the medial meniscal width was made at the junction of the anterior and middle bodies of the goat stifle joint. Tears received 1 of 3 interventions (n = 4 per group): untreated, repair, or repair augmented with photocrosslinkable methacrylated gelatin hydrogel containing 2.0 × 106 SVF cells/mL and 2.0 µg/mL of transforming growth factor β3. The contralateral (left) joint served as a healthy control. At 6 months, meniscal healing and joint health were evaluated by magnetic resonance imaging (MRI) and assessed by histological and macroscopic scoring. The Whole-Organ Magnetic Resonance Imaging Score and the presence of a residual tear, as evaluated with T2 MRI sequences, were determined by a single blinded orthopaedic surgeon. RESULTS When compared with tears left untreated or repaired with suture alone, augmented repairs demonstrated increased tissue formation in the meniscal tear site, as seen on MRI and macroscopically. Likewise, the neotissue of augmented repairs possessed a histological appearance more similar, although still inferior, to healthy meniscus. Osteochondral degeneration in the medial compartment, as evaluated by the Whole-Organ Magnetic Resonance Imaging Score and Inoue (macroscopic) scale, revealed increased degeneration in the untreated and repair groups, which was mitigated in the augmented repair group. Histological evaluation with a modified Mankin score showed a similar trend. In all measures of osteochondral degeneration, the augmented repair group did not differ significantly from the uninjured control. CONCLUSION A radial tear spanning 90% of the medial meniscal width in a goat stifle joint showed poor healing potential and resulted in osteochondral degeneration by 6 months, even if suture repair was performed. Augmentation of the repair with a photocrosslinkable hydrogel containing transforming growth factor β3 and SVF cells, isolated intraoperatively by rapid enzymatic digestion, improved meniscal healing and mitigated osteoarthritic changes. CLINICAL RELEVANCE Repair augmentation with an SVF cell-seeded hydrogel may support successful repair of meniscal tears previously considered irreparable.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Sasaki
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shinsuke Kihara
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kalon J Overholt
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Freddie H Fu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Nakagawa Y, Fortier LA, Mao JJ, Lee CH, Goodale MB, Koff MF, Uppstrom TJ, Croen B, Wada S, Carballo CB, Potter HG, Rodeo SA. Long-term Evaluation of Meniscal Tissue Formation in 3-dimensional-Printed Scaffolds With Sequential Release of Connective Tissue Growth Factor and TGF-β3 in an Ovine Model. Am J Sports Med 2019; 47:2596-2607. [PMID: 31386550 PMCID: PMC7422478 DOI: 10.1177/0363546519865513] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Artificial meniscal scaffolds are being developed to prevent development of osteoarthritis after meniscectomy. Previously, it was reported that 3-dimensional (3D) anatomic scaffolds loaded with connective tissue growth factor (CTGF) and transforming growth factor β3 (TGF-β3) achieved meniscal regeneration in an ovine model. This was a relatively short-term study (3 months postoperative), and outcome analyses did not include magnetic resonance imaging (MRI). PURPOSE To evaluate long-term outcome of meniscal replacement with growth factor-laden poly-ε-caprolactone (PCL) scaffolds. STUDY DESIGN Controlled laboratory study. METHODS Anatomically shaped ovine meniscal scaffolds were fabricated from PCL with a 3D printer based on MRI data. Skeletally mature sheep (N = 34) were randomly allocated to 3 groups: scaffold without growth factor (0-µg group), scaffold with CTGF microspheres (µS) (5 µg) + TGF-β3 µS (5 µg) (5-µg group), and scaffold with CTGF µS (10 µg) + TGF-β3 µS (10 µg) (10-µg group). Unilateral medial meniscal replacement was performed. Animals were euthanized at 6 or 12 months. Regenerated meniscus, articular cartilage status, and synovial reaction were evaluated quantitatively with gross inspection, histology, and MRI. Kruskal-Wallis and Dunn tests were used to compare the 3 groups. RESULTS Remnants of the PCL scaffold were evident in the 6-month specimens and were decreased but still present at 12 months in most animals. There were no significant differences among groups in gross inspection, histology, or MRI for either meniscal regeneration or articular cartilage protection. All experimental groups exhibited articular cartilage degeneration as compared with control (nonoperated). In terms of synovitis, there were no clear differences among groups, suggesting that growth factors did not increase inflammation and fibrosis. MRI revealed that meniscal extrusion was observed in most animals (82.7%). CONCLUSION Previously, the combination of CTGF and TGF-β3 was shown to stimulate mesenchymal stem cells into a fibrochondrocyte lineage. CTGF and TGF-β3 did not aggravate synovitis, suggesting no adverse response to the combination of 3D-printed PCL scaffold combined with CTGF and TGF-β3. Further work will be required to improve scaffold fixation to avoid meniscal extrusion. CLINICAL RELEVANCE A significant advantage of this technique is the ability to print custom-fit scaffolds from MRI-generated templates. In addition, average-size menisci could be printed and available for off-the-shelf applications. Based on the 1-year duration of the study, the approach appears to be promising for meniscal regeneration in humans.
Collapse
Affiliation(s)
- Yusuke Nakagawa
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA., Department of Cartilage Regeneration, Graduate
School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of
Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jeremy J. Mao
- Tissue Engineering and Regenerative Medicine
Laboratory, Columbia University Medical Center, Columbia University, New York, New
York, USA
| | - Chang Hun Lee
- Tissue Engineering and Regenerative Medicine
Laboratory, Columbia University Medical Center, Columbia University, New York, New
York, USA
| | - Margaret B. Goodale
- Department of Clinical Sciences, College of
Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Matthew F. Koff
- Department of Radiology and Imaging, Hospital for
Special Surgery, New York, New York, USA
| | - Tyler J. Uppstrom
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Brett Croen
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Susumu Wada
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Camila B. Carballo
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Hollis G. Potter
- Department of Radiology and Imaging, Hospital for
Special Surgery, New York, New York, USA
| | - Scott A. Rodeo
- Address correspondence to Scott A. Rodeo, MD,
Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA., Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| |
Collapse
|
39
|
Sekiya I, Koga H, Otabe K, Nakagawa Y, Katano H, Ozeki N, Mizuno M, Horie M, Kohno Y, Katagiri K, Watanabe N, Muneta T. Additional Use of Synovial Mesenchymal Stem Cell Transplantation Following Surgical Repair of a Complex Degenerative Tear of the Medial Meniscus of the Knee: A Case Report. Cell Transplant 2019; 28:1445-1454. [PMID: 31313604 PMCID: PMC6802148 DOI: 10.1177/0963689719863793] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Complex degenerative tears of the medial meniscus in the knee are usually treated using
meniscectomy. However, this procedure increases the risk of osteoarthritis, while other
treatments aimed at meniscal repair remain challenging due to the high possibility of
failure. The use of synovial mesenchymal stem cells (MSCs) is an attractive additional
approach for meniscal repair, as these cells have high proliferative and chondrogenic
potential. In this case report, we surgically repaired a complex degenerative tear of the
medial meniscus and then transplanted autologous synovial MSCs. We evaluated clinical
outcomes at 2 years and assessed adverse events. We enrolled patients with clinical
symptoms that included a feeling of instability in addition to pain caused by their
complex degenerative tears of the medial meniscus. Two weeks after surgical repair of the
torn meniscus, autologous synovial MSCs were transplanted onto the menisci of five
patients. The total Lysholm knee score, the Knee Injury and Osteoarthritis Outcome Scale
scores for “pain,” “daily living,” “sports activities,” and the Numerical Rating Scale
were significantly increased after 2 years. Three adverse events, an increase in
c-reactive protein, joint effusion, and localized warmth of the knee were recorded,
although these could have been due to the meniscal repair surgery. This first-in-human
study confirmed that the combination of surgical repair and synovial MSC transplantation
improved the clinical symptoms in patients with a complex degenerative tear of the medial
meniscus. No adverse events occurred that necessitated treatment discontinuation. These
findings will serve as pilot data for a future prospective study.
Collapse
Affiliation(s)
- Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Koji Otabe
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masafumi Horie
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yuji Kohno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kenta Katagiri
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Naoto Watanabe
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
40
|
Clair AJ, Kingery MT, Anil U, Kenny L, Kirsch T, Strauss EJ. Alterations in Synovial Fluid Biomarker Levels in Knees With Meniscal Injury as Compared With Asymptomatic Contralateral Knees. Am J Sports Med 2019; 47:847-856. [PMID: 30786221 DOI: 10.1177/0363546519825498] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Changes in the joint microenvironment after an injury to the articular surface of the knee have been implicated in the pathogenesis of osteoarthritis. While prior studies focused on changes in this microenvironment after anterior cruciate ligament ruptures, few have explored the biomarker changes that occur in the setting of meniscal injuries. PURPOSE To determine whether meniscal injury results in significant alterations to synovial fluid biomarker concentrations as compared with noninjured contralateral knees. Additionally, to explore the relationship between synovial fluid biomarkers and the degree of cartilage injury seen in these patients. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Patients undergoing surgery for unilateral meniscal injury were prospectively enrolled from October 2011 to December 2016, forming a cohort that had synovial fluid samples collected from both the injured knee and the contralateral uninjured knee at the time of meniscal surgery. Synovial fluid samples were collected just before incision, and the concentrations of 10 biomarkers of interest were determined with a multiplex magnetic bead immunoassay. The concentrations of synovial fluid biomarkers from the operative and contralateral knees were compared. Additionally, the synovial fluid biomarker concentrations of operative knees from patients with associated high-grade cartilage lesions were compared with those with low-grade lesions. RESULTS The current analysis included synovial fluid samples from 82 knees (41 operative and 41 contralateral) from 41 patients undergoing arthroscopic surgery to treat a symptomatic meniscal injury. The mean ± SD age of patients was 49.86 ± 11.75 years. There were significantly greater concentrations of 4 of the 5 proinflammatory biomarkers (IL-6, MCP-1, MIP-1β, and MMP-3) in symptomatic knees as compared with asymptomatic knees when controlling for the duration of symptoms, body mass index, age, and the random effects of by-patient variability. In the injured knees, associated high-grade cartilage lesions were predictive of elevated MCP-1, MIP-1β, and VEGF levels. Low synovial fluid concentration of TIMP-1 or a greater ratio of MMP-3 to TIMP-1 was associated with the presence of synovitis. Increasing age was found to be an independent predictor of increased IL-6, MCP-1, and VEGF concentrations in the setting of symptomatic meniscal injury. CONCLUSION The authors identified 4 proinflammatory synovial fluid biomarkers whose concentrations were significantly different after meniscal injury as compared with uninjured contralateral knees. Furthermore, they describe the effects of associated cartilage damage, synovitis, and patient age on biomarker concentrations.
Collapse
Affiliation(s)
- Andrew J Clair
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Matthew T Kingery
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Utkarsh Anil
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Lena Kenny
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Thorsten Kirsch
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Eric J Strauss
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| |
Collapse
|
41
|
Zhang ZZ, Zhou YF, Li WP, Jiang C, Chen Z, Luo H, Song B. Local Administration of Magnesium Promotes Meniscal Healing Through Homing of Endogenous Stem Cells: A Proof-of-Concept Study. Am J Sports Med 2019; 47:954-967. [PMID: 30786213 DOI: 10.1177/0363546518820076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although many strategies have been developed to modify the biological and biomechanical environment of the meniscal suture repair to improve the chances of healing, the failure rates remain high. Thus, new methods to promote meniscal regeneration and repair are needed. HYPOTHESIS Administration of magnesium (via a repair using magnesium stitches) might enhance recruitment and adherence of endogenous stem cells to the site of the lesion, thereby promoting in situ meniscal regeneration and chondroprotective functions. STUDY DESIGN Controlled laboratory study. METHODS Synovial fluid-derived mesenchymal stem cells (SMSCs) were identified and isolated from the knees of rabbits with a meniscal injury of 4 weeks' duration. An in vitro analysis of adherence and chemotaxis of SMSCs was performed. For the in vivo assay, rabbits (n = 120) with meniscal lesions were divided into 3 groups: repair with high-purity magnesium stitches (Mg group), repair with absorbable sutures (Control group), and no repair (Blank group). Healing of the regenerated tissue and degeneration of the articular cartilage were evaluated by gross and histological analysis at postoperative weeks 1, 3, 6, and 12. The mechanical properties of the repaired meniscus were also analyzed (tensile testing). RESULTS In vitro, magnesium promoted the adhesion and migration of SMSCs, which were identified and increased in the knee joints with meniscal lesions. Moreover, fibrochondrogenesis of SMSCs was stimulated by magnesium. Compared with the other groups, the Mg group had enhanced tissue regeneration, lower cartilage degeneration, and retained mechanical strength at 12 weeks after meniscal repair. CONCLUSION/CLINICAL RELEVANCE Magnesium could be used for in situ meniscal repair due to the potential capacity of magnesium to recruit endogenous stem cells and promote synthesis of fibrocartilaginous matrix.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun-Feng Zhou
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ping Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Jiang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Chen
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huan Luo
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Song
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Lin Y, Umebayashi M, Abdallah MN, Dong G, Roskies MG, Zhao YF, Murshed M, Zhang Z, Tran SD. Combination of polyetherketoneketone scaffold and human mesenchymal stem cells from temporomandibular joint synovial fluid enhances bone regeneration. Sci Rep 2019; 9:472. [PMID: 30679553 PMCID: PMC6345789 DOI: 10.1038/s41598-018-36778-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Therapies using human mesenchymal stem cells (MSCs) combined with three-dimensional (3D) printed scaffolds are a promising strategy for bone grafting. But the harvest of MSCs still remains invasive for patients. Human synovial fluid MSCs (hSF-MSCs), which can be obtained by a minimally invasive needle-aspiration procedure, have been used for cartilage repair. However, little is known of hSF-MSCs in bone regeneration. Polyetherketoneketone (PEKK) is an attractive bone scaffold due to its mechanical properties comparable to bone. In this study, 3D-printed PEKK scaffolds were fabricated using laser sintering technique. hSF-MSCs were characterized and cultured on PEKK to evaluate their cell attachment, proliferation, and osteogenic potential. Rabbit calvarial critical-sized bone defects were created to test the bone regenerative effect of PEKK with hSF-MSCs. In vitro results showed that hSF-MSCs attached, proliferated, and were osteogenic on PEKK. In vivo results indicated that PEKK seeded with hSF-MSCs regenerated twice the amount of newly formed bone when compared to PEKK seeded with osteogenically-induced hSF-MSCs or PEKK scaffolds alone. These results suggested that there was no need to induce hSF-MSCs into osteoblasts prior to their transplantations in vivo. In conclusion, the combined use of PEKK and hSF-MSCs was effective in regenerating critical-sized bone defects.
Collapse
Affiliation(s)
- Yi Lin
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Mayumi Umebayashi
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Mohamed-Nur Abdallah
- Discipline of Orthodontics, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Guoying Dong
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Michael G Roskies
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Yaoyao Fiona Zhao
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Monzur Murshed
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Shriners Hospital for Children, McGill University, Montreal, QC, Canada
| | - Zhiguang Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China.
| | - Simon D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
43
|
de Sousa EB, dos Santos Junior GC, Aguiar RP, da Costa Sartore R, de Oliveira ACL, Almeida FCL, Neto VM, Aguiar DP. Osteoarthritic Synovial Fluid Modulates Cell Phenotype and Metabolic Behavior In Vitro. Stem Cells Int 2019; 2019:8169172. [PMID: 30766606 PMCID: PMC6350599 DOI: 10.1155/2019/8169172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/10/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022] Open
Abstract
Synovial fluid holds a population of mesenchymal stem cells (MSC) that could be used for clinical treatment. Our goal was to characterize the inflammatory and metabolomic profile of the synovial fluid from osteoarthritic patients and to identify its modulatory effect on synovial fluid cells. Synovial fluid was collected from non-OA and OA patients, which was centrifuged to isolate cells. Cells were cultured for 21 days, characterized with specific markers for MSC, and exposed to a specific cocktail to induce chondrogenic, osteogenic, and adipogenic differentiation. Then, we performed a MTT assay exposing SF cells from non-OA and OA patients to a medium containing non-OA and OA synovial fluid. Synovial fluid from non-OA and OA patients was submitted to ELISA to evaluate BMP-2, BMP-4, IL-6, IL-10, TNF-α, and TGF-β1 concentrations and to a metabolomic evaluation using 1H-NMR. Synovial fluid cells presented spindle-shaped morphology in vitro. Samples from OA patients formed a higher number of colonies than the ones from non-OA patients. After 21 days, the colony-forming cells from OA patients differentiated into the three mesenchymal cell lineages, under the appropriated induction protocols. Synovial fluid cells increased its metabolic activity after being exposed to the OA synovial fluid. ELISA assay showed that OA synovial fluid samples presented higher concentration of IL-10 and TGF-β1 than the non-OA, while the NMR showed that OA synovial fluid presents higher concentrations of glucose and glycerol. In conclusion, SFC activity is modulated by OA synovial fluid, which presents higher concentration of IL-10, TGF-β, glycerol, and glucose.
Collapse
Affiliation(s)
- Eduardo Branco de Sousa
- Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, RJ, Brazil
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ramon Pinheiro Aguiar
- Center of Structural Biology and Bioimaging I (CENABIO I), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela da Costa Sartore
- Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, RJ, Brazil
| | | | | | - Vivaldo Moura Neto
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Biomedical Laboratory of the Brain, Institute of Brain Paulo Niemeyer, Rio de Janeiro, RJ, Brazil
| | - Diego Pinheiro Aguiar
- Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, RJ, Brazil
- Pharmacy Unit, West Zone State University, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Synovium-Derived Mesenchymal Stem/Stromal Cells and their Promise for Cartilage Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:87-106. [PMID: 31069722 DOI: 10.1007/5584_2019_381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adult tissues are reservoirs of rare populations of cells known as mesenchymal stem/stromal cells (MSCs) that have tissue-regenerating features retained from embryonic development. As well as building up the musculoskeletal system in early life, MSCs also replenish and repair tissues in adult life, such as bone, cartilage, muscle, and adipose tissue. Cells that show regenerative features at least in vitro have been identified from several connective tissues. Bone marrow and adipose tissue are the most well recognized sources of MSCs that are already used widely in clinical practice. Regenerative medicine aims to exploit MSCs and their tissue regeneration even though the underlying mechanisms for their beneficial effects are largely unknown. Despite many studies that have used various tissue-derived MSCs, the most effective tissue source for orthopedic procedures still remains to be identified. Another question that needs to be addressed is how to evaluate autologous MSCs (i.e., patient derived). Previous studies have suggested the features of bone-marrow-derived MSCs can differ widely between individuals, and can be changed in particular in patients suffering from some forms of degenerative disorder, such as osteoarthritis. The synovium is a thin membrane that protects the synovial joints, and it is a rich source of MSCs that show great potential for regenerative medicine. Here, we review synovium-derived MSCs from reports on basic and clinical studies. We discuss their potential to treat cartilage defects caused by either degeneration or trauma, and what needs to be done in further research toward their better exploitation for joint regeneration.
Collapse
|
45
|
Centeno C, Sheinkop M, Dodson E, Stemper I, Williams C, Hyzy M, Ichim T, Freeman M. A specific protocol of autologous bone marrow concentrate and platelet products versus exercise therapy for symptomatic knee osteoarthritis: a randomized controlled trial with 2 year follow-up. J Transl Med 2018; 16:355. [PMID: 30545387 PMCID: PMC6293635 DOI: 10.1186/s12967-018-1736-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 01/06/2023] Open
Abstract
Background Cell-based therapies have shown promise for the treatment of knee osteoarthritis (OA). The current study compared exercise therapy to autologous bone marrow concentrate (BMC) and platelet products for knee OA treatment. Methods Patients with symptomatic knee OA (N = 48) were randomized into either an exercise therapy control group or treatment group with injection of autologous BMC and platelet products. Patients in the control group could crossover to BMC treatment after 3 months. Clinical outcomes were documented at baseline and at 6-weeks, 3, 6, 12 and 24 months, including the Knee Society Score (KSS), Pain Visual Analogue Scale, Short Form-12 Scales (SF-12), and Lower Extremity Activity Scale (LEAS). Results All patients in the exercise group crossed over to receive BMC treatment after 3 months (N = 22 crossover). At 3 months, KSS-knee, SF-12 Physical, and LEAS improved significantly in the crossover group compared to exercise, similar to significant improvements on KSS-knee and LEAS for the treatment group (N = 26) compared to exercise group at 3 months. After BMC treatment, patients’ clinical outcome scores (except SF-12 Mental Health), were significantly improved through the 2-year follow-up compared to baseline. No serious adverse events were reported. Conclusion The use of image-guided percutaneous BMC with platelet products yielded better results than exercise therapy as an effective alternative therapy for patients with symptomatic moderate to moderate-severe osteoarthritis of the knee. Trial registration NCT02034032. https://clinicaltrials.gov/ct2/show/NCT02034032. Registered 13 January 2014
Collapse
Affiliation(s)
- Christopher Centeno
- Centeno-Schultz Clinic, 403 Summit Blvd Suite 201, Broomfield, CO, 80021, USA.,Regenexx, LLC, Des Moines, IA, USA
| | | | | | | | | | - Matthew Hyzy
- Centeno-Schultz Clinic, 403 Summit Blvd Suite 201, Broomfield, CO, 80021, USA
| | | | - Michael Freeman
- CAPHRI, School of Public Health and Primary Care, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
46
|
Baboolal TG, Khalil-Khan A, Theodorides AA, Wall O, Jones E, McGonagle D. A Novel Arthroscopic Technique for Intraoperative Mobilization of Synovial Mesenchymal Stem Cells. Am J Sports Med 2018; 46:3532-3540. [PMID: 30419170 PMCID: PMC6282154 DOI: 10.1177/0363546518803757] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have emerged as a promising candidate for tissue regeneration and restoration of intra-articular structures such as cartilage, ligaments, and menisci. However, the routine use of MSCs is limited in part by their low numbers and the need for methods and procedures outside of the joint or surgical field. PURPOSE To demonstrate feasibility of a technique in which minimally manipulated synovial MSCs can be mobilized during knee arthroscopy, thereby showing proof of concept for the future evaluation and clinical use of native joint resident MSCs in single-stage joint repair strategies. STUDY DESIGN Descriptive laboratory study. METHODS Patients (n = 15) undergoing knee arthroscopy who were free from synovitis or active inflammation were selected. Three samples of irrigation fluid were collected from each patient at inception of the procedure, after an initial inspection of the joint, and after agitation of the synovium. MSC numbers were evaluated by colony forming unit-fibroblastic assay. The phenotype of synovial fluid resident and synovial-mobilized MSCs was determined by flow cytometry, and their functionality was determined by trilineage differentiation. Adhesion of culture-expanded mobilized MSCs to fibrin scaffolds was also evaluated to ascertain whether mobilized MSCs might concentrate at sites of bleeding. RESULTS Normal irrigation during arthroscopy depleted resident synovial fluid MSCs (4-fold decrease, n = 15). Numbers of MSCs mobilized through use of a purpose-made device were significantly higher (105-fold) than those mobilized through use of a cytology brush (median of 5763 and 54 colonies, respectively; P = .001; n = 15). The mobilized cellular fraction contained viable MSCs with proliferative potential and trilineage differentiation capacity for bone, cartilage, and fat lineages, and cultured daughter cells exhibited the standard MSC phenotype. Following culture, mobilized synovial MSCs also adhered to various fibrin scaffolds in vitro. The technique was simple and convenient to use and was not associated with any complications. CONCLUSION Numbers of functional MSCs can be greatly increased during arthroscopy through use of this technique to mobilize cells from the synovium. CLINICAL RELEVANCE This study highlights a novel, single-stage technique to increase joint-specific, synovial-derived MSCs and thereby increase the repair potential of the joint. This technique can be undertaken during many arthroscopic procedures, and it supports the principle of integrating mobilized MSCs into microfracture sites and sites of bleeding or targeted repair through use of fibrin-based and other scaffolds.
Collapse
Affiliation(s)
- Thomas G. Baboolal
- Faculty of Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, West Yorkshire, UK,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK,Thomas G. Baboolal, Mesenchymal Stem Cell Biology Group, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, LS9 7TF Leeds, West Yorkshire, UK ()
| | - Alam Khalil-Khan
- Faculty of Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, West Yorkshire, UK,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| | - Anthony A. Theodorides
- Chapel Allerton Orthopaedic Centre, Chapel Allerton Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| | - Owen Wall
- Chapel Allerton Orthopaedic Centre, Chapel Allerton Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| | - Elena Jones
- Faculty of Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, West Yorkshire, UK,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| | - Dennis McGonagle
- Faculty of Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, West Yorkshire, UK,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| |
Collapse
|
47
|
Neybecker P, Henrionnet C, Pape E, Mainard D, Galois L, Loeuille D, Gillet P, Pinzano A. In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9:329. [PMID: 30486903 PMCID: PMC6263063 DOI: 10.1186/s13287-018-1071-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are found in synovial fluid (SF) and can easily be harvested during arthrocentesis or arthroscopy. However, SF-MSC characterization and chondrogenicity in collagen sponges have been poorly documented as well as their hypothetical in vivo chondroprotective properties with intra-articular injections during experimental osteoarthritis (OA). Methods SF-MSCs were isolated from human SF aspirates in patients suffering from advanced OA undergoing total knee joint replacements. SF-MSCs at passage 2 (P2) were characterized by flow cytometry for epitope profiling. SF-MSCs at P2 were subsequently cultured in vitro to assess their multilineage potentials. To assess their chondrogenicity, SF-MSCs at P4 were seeded in collagen sponges for 4 weeks under various oxygen tensions and growth factors combinations to estimate their gene profile and matrix production. Also, SF-MSCs were injected into the joints in a nude rat anterior cruciate ligament transection (ACLT) to macroscopically and histologically assess their possible chondroprotective properties,. Results We characterized the stemness (CD73+, CD90+, CD105+, CD34−, CD45−) and demonstrated the multilineage potency of SF-MSCs in vitro. Furthermore, the chondrogenic induction (TGF-ß1 ± BMP-2) of these SF-MSCs in collagen sponges demonstrated a good capacity of chondrogenic gene induction and extracellular matrix synthesis. Surprisingly, hypoxia did not enhance matrix synthesis, although it boosted chondrogenic gene expression (ACAN, SOX9, COL2A1). Besides, intra-articular injections of xenogenic SF-MSCs did exert neither chondroprotection nor inflammation in ACLT-induced OA in the rat knee. Conclusions Advanced OA SF-MSCs seem better candidates for cell-based constructs conceived for cartilage defects rather than intra-articular injections for diffuse OA.
Collapse
Affiliation(s)
- Paul Neybecker
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-Lès-Nancy, France
| | - Christel Henrionnet
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-Lès-Nancy, France
| | - Elise Pape
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-Lès-Nancy, France
| | - Didier Mainard
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-Lès-Nancy, France.,Service de Chirurgie Orthopédique, Traumatologique et Arthroscopique, CHRU Nancy, 29 Avenue du Maréchal de Lattre de Tassigny CO 60034, F54035, Nancy, France
| | - Laurent Galois
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-Lès-Nancy, France.,Service de Chirurgie Orthopédique, Traumatologique et Arthroscopique, CHRU Nancy, 29 Avenue du Maréchal de Lattre de Tassigny CO 60034, F54035, Nancy, France
| | - Damien Loeuille
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-Lès-Nancy, France.,Service de Rhumatologie, CHRU de Nancy, Hôpitaux de Brabois, Bâtiment des Spécialités Médicales, 5 rue du Morvan, F54511, Vandœuvre-lès-Nancy, France
| | - Pierre Gillet
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-Lès-Nancy, France
| | - Astrid Pinzano
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-Lès-Nancy, France. .,Service de Rhumatologie, CHRU de Nancy, Hôpitaux de Brabois, Bâtiment des Spécialités Médicales, 5 rue du Morvan, F54511, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
48
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
49
|
Liang Y, Idrees E, Szojka ARA, Andrews SHJ, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomater 2018; 80:131-143. [PMID: 30267878 DOI: 10.1016/j.actbio.2018.09.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The objective of this study was to investigate whether meniscus-derived decellularized matrix (DCM) has the capacity to induce differentiation of synovial fluid-derived mesenchymal stem cells (SF-MSCs) towards a meniscus fibrochondrocyte (MFC) phenotype. The potential roles of transforming growth factor beta-3 (TGF-β3) and insulin-like growth factor 1 (IGF-1) in the differentiation of SF-MSCs towards an MFC phenotype were also investigated. SF-MSCs were isolated via plastic adherence cell culture from the synovial fluid of five donors (5 male, average age 34 years). Porous DCM was generated by homogenizing and freeze-drying fresh normal human cadaveric meniscus tissue. SF-MSCs were seeded and cultured on the DCM scaffold in a defined serum-free media (SFM) supplemented with or without the combination of TGF-β3 and IGF-1. Cell pellets of SF-MSCs were cultured in SFM with either TGF-β3 or IGF-1 or their combination as controls. The duration of culture was 3 weeks for both experimental configurations. We assessed newly-formed tissues by biochemical assays, scanning electron microscopy (SEM), immunofluorescence and quantitative real-time PCR (qPCR). The combination of TGF-β3 and IGF-1 induced production of the cartilaginous matrix in DCM and upregulated the expression of aggrecan, collagens I and II. Moreover, the SF-MSCs exhibited a round morphology in the DCM scaffolds in the presence of the growth factors. In pellets, combined TGF-β3 and IGF-1 synergistically enhanced cartilaginous matrix production. In contrast to bone marrow mesenchymal stem cells (BM-MSCs), the differentiated SF-MSCs showed little evidence of the expression of the hypertrophic differentiation marker, collagen X. In conclusion, meniscus-derived DCM appears to require exogenous growth factor supplementation to direct differentiation of SF-MSCs. STATEMENT OF SIGNIFICANCE: Meniscus tears are the most common injury of the knee joint. These tears pose a major risk factor for the early development of knee osteoarthritis. Unfortunately, the majority of these tears occur in the inner region of the meniscus and lacks blood supply with no reparative or regenerative capacity. The goal of this study was to determine if the native extracellular matrix (ECM) of human meniscus has the capacity to differentiate human knee synovial fluid resident mesenchymal stem cells (SF-MSCs) towards a meniscus phenotype as a potential strategy to repair avascular meniscal tears. Our findings show that the human meniscus-derived ECM without supplementation with growth factors (TGF-β3 and IGF-1) cannot differentiate SF-MSCs towards a meniscus phenotype. The use of meniscus-derived scaffolds as a material to stimulate endogenous repair of meniscus tears via differentiation of SF-MSCs may require supplementation with TGF-β3 and IGF-1.
Collapse
Affiliation(s)
- Yan Liang
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada; Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Enaam Idrees
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Alexander R A Szojka
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Stephen H J Andrews
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Melanie Kunze
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Aillette Mulet-Sierra
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Nadr M Jomha
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Adetola B Adesida
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
50
|
Murata Y, Uchida S, Utsunomiya H, Hatakeyama A, Nakashima H, Chang A, Sekiya I, Sakai A. Synovial Mesenchymal Stem Cells Derived From the Cotyloid Fossa Synovium Have Higher Self-renewal and Differentiation Potential Than Those From the Paralabral Synovium in the Hip Joint. Am J Sports Med 2018; 46:2942-2953. [PMID: 30215533 DOI: 10.1177/0363546518794664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Several studies have shown the relationship between poorer clinical outcomes of arthroscopic femoroacetabular impingement syndrome surgery and focal chondral defects or global chondromalacia/osteoarthritis. Although recent studies described good outcomes after the conjunctive application of synovial mesenchymal stem cells (MSCs), none demonstrated the application of synovial MSCs for cartilaginous hip injuries. PURPOSE To compare the characteristics of MSCs derived from the paralabral synovium and the cotyloid fossa synovium and determine which is the better source. STUDY DESIGN Controlled laboratory study. METHODS Synovium was harvested from 2 locations of the hip-paralabral and cotyloid fossa-from 18 donors. The number of cells, colony-forming units, viability, and differentiation capacities of adipose, bone, and cartilage were collected and compared between groups. In addition, real-time polymerase chain reaction was used to assess the differentiation capacity of adipose, bone, and cartilage tissue from both samples. RESULTS The number of colonies and yield obtained at passage 0 of synovium from the cotyloid fossa was significantly higher than that of the paralabral synovium ( P < .01). In adipogenesis experiments, the frequency of detecting oil red O-positive colonies was significantly higher in the cotyloid fossa than in the paralabral synovium ( P < .05). In osteogenesis experiments, the frequency of von Kossa and alkaline phosphatase positive colonies was higher in the cotyloid fossa synovium than in the paralabral synovium ( P < .05). In chondrogenic experiments, the chondrogenic pellet culture and the gene expressions of COL2a1 and SOX9 were higher in the cotyloid fossa synovium than in the paralabral synovium ( P < .05). CONCLUSION MSCs from the cotyloid fossa synovium have higher proliferation and differentiation potential than do those from the paralabral synovium and are therefore a better source. CLINICAL RELEVANCE Synovial cells from the cotyloid fossa synovium of patients with femoroacetabular impingement syndrome are more robust in vitro, suggesting that MSCs from this source may be strongly considered for stem cell therapy.
Collapse
Affiliation(s)
- Yoichi Murata
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Soshi Uchida
- Department of Orthopaedic Surgery and Sports Medicine, Wakamatsu Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hajime Utsunomiya
- Department of Orthopaedic Surgery and Sports Medicine, Wakamatsu Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akihisa Hatakeyama
- Department of Orthopaedic Surgery and Sports Medicine, Wakamatsu Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hirotaka Nakashima
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Angela Chang
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Ichiro Sekiya
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|