1
|
Barreto MQ, Garbelotti CV, Lopes DCB, Soares JDM, Ward RJ. Xylose isomerase: From fundamental research to applied enzyme technology. J Biotechnol 2025; 404:39-54. [PMID: 40204218 DOI: 10.1016/j.jbiotec.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/22/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Xylose isomerases (XI, EC 5.3.1.5) are key enzymes for the metabolism of pentoses by microorganisms. The importance of XIs goes beyond academic biochemical research and the catalysis of aldo-ketose conversion by XIs is among the most successful examples of industrial enzyme technology in a market that generates multibillion dollar annual revenues. Here we present an in-depth review of how structural information has contributed to the current understanding of XI catalysis, and discuss topics related to the ongoing efforts to elucidate key aspects of the catalytic mechanism. An overview of XI immobilization is also provided that illustrates how the discoveries in basic enzyme technology research can generate opportunities for novel uses of XI, and we review not only historical aspects but also more recent applications in HFCS, biofuels and other applications. The systems biology revolution will impact all aspects of XI research and application, and we finalize by reviewing the contemporary efforts of metabolic and protein engineering using XI and the future roles of the enzyme in the expanding bioeconomy.
Collapse
Affiliation(s)
- Matheus Quintana Barreto
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Carolina Victal Garbelotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Douglas Christian Borges Lopes
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jéssica de Moura Soares
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Bioreactor and process design for 2G ethanol production from xylose using industrial S. cerevisiae and commercial xylose isomerase. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Zhang J, Meng Markillie L, Mitchell HD, Gaffrey MJ, Orr G, Schilling JS. Distinctive carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta. Fungal Genet Biol 2022; 159:103673. [PMID: 35150839 DOI: 10.1016/j.fgb.2022.103673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022]
Abstract
Brown rot fungi dominate the carbon degradation of northern terrestrial conifers. These fungi adapted unique genetic inventories to degrade lignocellulose and to rapidly release a large quantity of carbohydrates for fungal catabolism. We know that brown rot involves "two-step" gene regulation to delay most hydrolytic enzyme expression until after harsh oxidative pretreatments. This implies the crucial role of concise gene regulation to brown rot efficacy, but the underlying regulatory mechanisms remain uncharacterized. Here, using the combined transcriptomic and enzyme analyses we investigated the roles of carbon catabolites in controlling gene expression in model brown rot fungus Rhodonia placenta. We identified co-regulated gene regulons as shared transcriptional responses to no-carbon controls, glucose, cellobiose, or aspen wood (Populus sp.). We found that cellobiose, a common inducing catabolite for fungi, induced expression of main chain-cleaving cellulases in GH5 and GH12 families (cellobiose vs. no-carbon > 4-fold, Padj < 0.05), whereas complex aspen was a universal inducer for Carbohydrate Active Enzymes (CAZymes) expression. Importantly, we observed the attenuated glucose-mediated repression effects on cellulases expression, but not on hemicellulases and lignin oxidoreductases, suggesting fungi might have adapted diverged regulatory routes to boost cellulase production for the fast carbohydrate release. Using carbon regulons, we further predicted the cis- and trans-regulatory elements and assembled a network model of the distinctive regulatory machinery of brown rot. These results offer mechanistic insights into the energy efficiency traits of a common group of decomposer fungi with enormous influence on the carbon cycle.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States.
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Hugh D Mitchell
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Matthew J Gaffrey
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States.
| |
Collapse
|
4
|
Bae JH, Kim MJ, Sung BH, Jin YS, Sohn JH. Directed evolution and secretory expression of xylose isomerase for improved utilisation of xylose in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:223. [PMID: 34823570 PMCID: PMC8613937 DOI: 10.1186/s13068-021-02073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Xylose contained in lignocellulosic biomass is an attractive carbon substrate for economically viable conversion to bioethanol. Extensive research has been conducted on xylose fermentation using recombinant Saccharomyces cerevisiae expressing xylose isomerase (XI) and xylose reductase/xylitol dehydrogenase (XR/XDH) pathways along with the introduction of a xylose transporter and amplification of the downstream pathway. However, the low utilization of xylose in the presence of glucose, due to the varying preference for cellular uptake, is a lingering challenge. Studies so far have mainly focused on xylose utilization inside the cells, but there have been little trials on the conversion of xylose to xylulose by cell before uptake. We hypothesized that the extracellular conversion of xylose to xylulose before uptake would facilitate better utilization of xylose even in the presence of glucose. To verify this, XI from Piromyces sp. was engineered and hyper-secreted in S. cerevisiae for the extracellular conversion of xylose to xylulose. RESULTS The optimal pH of XI was lowered from 7.0 to 5.0 by directed evolution to ensure its high activity under the acidic conditions used for yeast fermentation, and hyper-secretion of an engineered XI-76 mutant (E56A and I252M) was accomplished by employing target protein-specific translational fusion partners. The purified XI-76 showed twofold higher activity than that of the wild type at pH 5. The secretory expression of XI-76 in the previously developed xylose utilizing yeast strain, SR8 increased xylose consumption and ethanol production by approximately 7-20% and 15-20% in xylose fermentation and glucose and xylose co-fermentation, respectively. CONCLUSIONS Isomerisation of xylose to xylulose before uptake using extracellular XI was found to be effective in xylose fermentation or glucose/xylose co-fermentation. This suggested that glucose competed less with xylulose than with xylose for uptake by the cell. Consequently, the engineered XI secretion system constructed in this study can pave the way for simultaneous utilization of C5/C6 sugars from the sustainable lignocellulosic biomass.
Collapse
Affiliation(s)
- Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Cellapy Bio Inc., Bio-Venture Center 211, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Miyamoto RY, de Melo RR, de Mesquita Sampaio IL, de Sousa AS, Morais ER, Sargo CR, Zanphorlin LM. Paradigm shift in xylose isomerase usage: a novel scenario with distinct applications. Crit Rev Biotechnol 2021; 42:693-712. [PMID: 34641740 DOI: 10.1080/07388551.2021.1962241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isomerases are enzymes that induce physical changes in a molecule without affecting the original molecular formula. Among this class of enzymes, xylose isomerases (XIs) are the most studied to date, partly due to their extensive application in industrial processes to produce high-fructose corn sirups. In recent years, the need for sustainable initiatives has triggered efforts to improve the biobased economy through the use of renewable raw materials. In this context, D-xylose usage is crucial as it is the second-most abundant sugar in nature. The application of XIs in biotransforming xylose, enabling downstream metabolism in several microorganisms, is a smart strategy for ensuring a low-carbon footprint and producing several value-added biochemicals with broad industrial applications such as in the food, cosmetics, pharmaceutical, and polymer industries. Considering recent advancements that have expanded the range of applications of XIs, this review provides a comprehensive and concise overview of XIs, from their primary sources to the biochemical and structural features that influence their mechanisms of action. This comprehensive review may help address the challenges involved in XI applications in different industries and facilitate the exploitation of xylose bioprocesses.
Collapse
Affiliation(s)
- Renan Yuji Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences (FCF), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ricardo Rodrigues de Melo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Isabelle Lobo de Mesquita Sampaio
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Amanda Silva de Sousa
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Edvaldo Rodrigo Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Cintia Regina Sargo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leticia Maria Zanphorlin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
6
|
High Gravity Fermentation of Sugarcane Bagasse Hydrolysate by Saccharomyces pastorianus to Produce Economically Distillable Ethanol Concentrations: Necessity of Medium Components Examined. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major economic obstacle in lignocellulosic ethanol production is the low sugar concentrations in the hydrolysate and subsequent fermentation to economically distillable ethanol concentrations. We have previously demonstrated a two-stage fermentation process that recycles xylose with xylose isomerase to increase ethanol productivity, where the low sugar concentrations in the hydrolysate limit the final ethanol concentrations. In this study, three approaches are combined to increase ethanol concentrations. First, the medium-additive requirements were investigated to reduce ethanol dilution. Second, methods to increase the sugar concentrations in the sugarcane bagasse hydrolysate were undertaken. Third, the two-stage fermentation process was recharacterized with high gravity hydrolysate. It was determined that phosphate and magnesium sulfate are essential to the ethanol fermentation. Additionally, the Escherichia coli extract and xylose isomerase additions were shown to significantly increase ethanol productivity. Finally, the fermentation on hydrolysate had only slightly lower productivity than the reagent-grade sugar fermentation; however, both fermentations had similar final ethanol concentrations. The present work demonstrates the capability to produce ethanol from high gravity sugarcane bagasse hydrolysate using Saccharomyces pastorianus with low yeast inoculum in minimal medium. Moreover, ethanol productivities were on par with pilot-scale commercial starch-based facilities, even when the yeast biomass production stage was included.
Collapse
|
7
|
Patiño MA, Ortiz JP, Velásquez M, Stambuk BU. d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: A review. Yeast 2019; 36:541-556. [PMID: 31254359 DOI: 10.1002/yea.3429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 01/24/2023] Open
Abstract
Xylose is the second most abundant sugar in nature. Its efficient fermentation has been considered as a critical factor for a feasible conversion of renewable biomass resources into biofuels and other chemicals. The yeast Saccharomyces cerevisiae is of exceptional industrial importance due to its excellent capability to ferment sugars. However, although S. cerevisiae is able to ferment xylulose, it is considered unable to metabolize xylose, and thus, a lot of research has been directed to engineer this yeast with heterologous genes to allow xylose consumption and fermentation. The analysis of the natural genetic diversity of this yeast has also revealed some nonrecombinant S. cerevisiae strains that consume or even grow (modestly) on xylose. The genome of this yeast has all the genes required for xylose transport and metabolism through the xylose reductase, xylitol dehydrogenase, and xylulokinase pathway, but there seems to be problems in their kinetic properties and/or required expression. Self-cloning industrial S. cerevisiae strains overexpressing some of the endogenous genes have shown interesting results, and new strategies and approaches designed to improve these S. cerevisiae strains for ethanol production from xylose will also be presented in this review.
Collapse
Affiliation(s)
- Margareth Andrea Patiño
- Instituto de Biotecnología.,Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Pablo Ortiz
- Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Mario Velásquez
- Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Boris U Stambuk
- Departamento de Bioquímica, Universidad Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
8
|
An Innovative Biocatalyst for Continuous 2G Ethanol Production from Xylo-Oligomers by Saccharomyces cerevisiae through Simultaneous Hydrolysis, Isomerization, and Fermentation (SHIF). Catalysts 2019. [DOI: 10.3390/catal9030225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many approaches have been considered aimed at ethanol production from the hemicellulosic fraction of biomass. However, the industrial implementation of this process has been hindered by some bottlenecks, one of the most important being the ease of contamination of the bioreactor by bacteria that metabolize xylose. This work focuses on overcoming this problem through the fermentation of xylulose (the xylose isomer) by native Saccharomyces cerevisiae using xylo-oligomers as substrate. A new concept of biocatalyst is proposed, containing xylanases and xylose isomerase (XI) covalently immobilized on chitosan, and co-encapsulated with industrial baker’s yeast in Ca-alginate gel spherical particles. Xylo-oligomers are hydrolyzed, xylose is isomerized, and finally xylulose is fermented to ethanol, all taking place simultaneously, in a process called simultaneous hydrolysis, isomerization, and fermentation (SHIF). Among several tested xylanases, Multifect CX XL A03139 was selected to compose the biocatalyst bead. Influences of pH, Ca2+, and Mg2+ concentrations on the isomerization step were assessed. Experiments of SHIF using birchwood xylan resulted in an ethanol yield of 0.39 g/g, (76% of the theoretical), selectivity of 3.12 gethanol/gxylitol, and ethanol productivity of 0.26 g/L/h.
Collapse
|
9
|
Pellis A, Cantone S, Ebert C, Gardossi L. Evolving biocatalysis to meet bioeconomy challenges and opportunities. N Biotechnol 2018; 40:154-169. [DOI: 10.1016/j.nbt.2017.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
10
|
Lajoie CA, Kitner JB, Potochnik SJ, Townsend JM, Beatty CC, Kelly CJ. Cloning, expression and characterization of xylose isomerase from the marine bacteriumFulvimarina pelagiinEscherichia coli. Biotechnol Prog 2016; 32:1230-1237. [DOI: 10.1002/btpr.2309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/27/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Curtis A. Lajoie
- School of Chemical, Biological, and Environmental Engineering; Oregon State University; 101 Covell Hall Corvallis OR 97331-2701
| | - Joshua B. Kitner
- Trillium FiberFuels, Inc.; 720 NE Granger Ave. Corvallis OR 97330-9660
| | | | - Jakob M. Townsend
- School of Chemical, Biological, and Environmental Engineering; Oregon State University; 101 Covell Hall Corvallis OR 97331-2701
| | | | - Christine J. Kelly
- School of Chemical, Biological, and Environmental Engineering; Oregon State University; 101 Covell Hall Corvallis OR 97331-2701
| |
Collapse
|
11
|
Gowtham YK, Miller KP, Hodge DB, Henson JM, Harcum SW. Novel two-stage fermentation process for bioethanol production usingSaccharomyces pastorianus. Biotechnol Prog 2014; 30:300-10. [DOI: 10.1002/btpr.1850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/03/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Yogender Kumar Gowtham
- Dept. of Bioengineering; Clemson University; 301 Rhodes Research Center; Clemson SC 29634
| | | | - David B. Hodge
- Dept. of Chemical Engineering and Materials Science; Michigan State University; East Lansing MI 48824
- Dept. of Biosystems & Agricultural Engineering; Michigan State University; East Lansing MI 48824
- DOE Great Lakes Bioenergy Research Center; Michigan State University; East Lansing MI 48824
- Dept. of Civil; Environmental and Natural Resource Engineering, Luleå University of Technology; Luleå 97752 Sweden
| | | | - Sarah W. Harcum
- Dept. of Bioengineering; Clemson University; 301 Rhodes Research Center; Clemson SC 29634
| |
Collapse
|
12
|
Waltman MJ, Yang ZK, Langan P, Graham DE, Kovalevsky A. Engineering acidic Streptomyces rubiginosus D-xylose isomerase by rational enzyme design. Protein Eng Des Sel 2014; 27:59-64. [PMID: 24402330 DOI: 10.1093/protein/gzt062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To maximize bioethanol production from lignocellulosic biomass, all sugars must be utilized. Yeast fermentation can be improved by introducing the d-xylose isomerase enzyme to convert the pentose sugar d-xylose, which cannot be fermented by Saccharomyces cerevisiae, into the fermentable ketose d-xylulose. The low activity of d-xylose isomerase, especially at the low pH required for optimal fermentation, limits its use. A rational enzyme engineering approach was undertaken, and seven amino acid positions were replaced to improve the activity of Streptomyces rubiginosus d-xylose isomerase towards its physiological substrate at pH values below 6. The active-site design was guided by mechanistic insights and the knowledge of amino acid protonation states at low pH obtained from previous joint X-ray/neutron crystallographic experiments. Tagging the enzyme with 6 or 12 histidine residues at the N-terminus resulted in a significant increase in the active-site affinity towards substrate at pH 5.8. Substituting an asparagine at position 215, which hydrogen bonded to the metal-bound Glu181 and Asp245, with an aspartate gave a variant with almost an order of magnitude lower KM than measured for the native enzyme, with a 4-fold increase in activity. Other studied variants showed similar (Asp57Asn, Glu186Gln/Asn215Asp), lower (Asp57His, Asn247Asp, Lys289His, Lys289Glu) or no (Gln256Asp, Asp287Asn, ΔAsp287) activity in acidic conditions relative to the native enzyme.
Collapse
Affiliation(s)
- Mary Jo Waltman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | |
Collapse
|
13
|
De Bari I, Cuna D, Di Matteo V, Liuzzi F. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process. N Biotechnol 2013; 31:185-95. [PMID: 24378965 DOI: 10.1016/j.nbt.2013.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/29/2013] [Accepted: 12/22/2013] [Indexed: 11/25/2022]
Abstract
Agricultural by-products such as corn stover are considered strategic raw materials for the production of second-generation bioethanol from renewable and non-food sources. This paper describes the conversion of steam-pretreated corn stover to ethanol utilising a multi-step process including enzymatic hydrolysis, isomerisation, and fermentation of mixed hydrolysates with native Saccharomyces cerevisiae. An immobilised isomerase enzyme was used for the xylose isomerisation along with high concentrations of S. cerevisiae. The objective was to assess the extent of simultaneity of the various conversion steps, through a detailed analysis of process time courses, and to test this process scheme for the conversion of lignocellulosic hydrolysates containing several inhibitors of the isomerase enzyme (e.g. metal ions, xylitol and glycerol). The process was tested on two types of hydrolysate after acid-catalysed steam pretreatment: (a) the water soluble fraction (WSF) in which xylose was the largest carbon source and (b) the entire slurry, containing both cellulose and hemicellulose carbohydrates, in which glucose predominated. The results indicated that the ethanol concentration rose when the inoculum concentration was increased in the range 10-75 g/L. However, when xylose was the largest carbon source, the metabolic yields were higher than 0.51g(ethanol)/g(consumed) sugars probably due to the use of yeast internal cellular resources. This phenomenon was not observed in the fermentation of mixed hydrolysates obtained from the entire pretreated product and in which glucose was the largest carbon source. The ethanol yield from biomass suspensions with dry matter (DM) concentrations of 11-12% (w/v) was 70% based on total sugars (glucose, xylose, galactose). The results suggest that xylulose uptake was more effective in mixed hydrolysates containing glucose levels similar to, or higher than, xylose. Analysis of the factors that limit isomerase activity in lignocellulosic hydrolysates excluded any inhibition due to residual calcium ions after the detoxification of the hemicellulose hydrolysates with Ca(OH)2. By contrast, most of the enzyme activity ceased during the fermentation of the entire slurry after steam explosion, probably due to synergistic inhibition effects of various fermentation co-products.
Collapse
Affiliation(s)
- Isabella De Bari
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Laboratory of Technology and Engineering for Biomass, S.S. 106 Jonica, 75026 Rotondella, MT, Italy.
| | - Daniela Cuna
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Laboratory of Technology and Engineering for Biomass, S.S. 106 Jonica, 75026 Rotondella, MT, Italy
| | - Vincenzo Di Matteo
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Laboratory of Technology and Engineering for Biomass, S.S. 106 Jonica, 75026 Rotondella, MT, Italy
| | - Federico Liuzzi
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Laboratory of Technology and Engineering for Biomass, S.S. 106 Jonica, 75026 Rotondella, MT, Italy
| |
Collapse
|
14
|
DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G. Industrial use of immobilized enzymes. Chem Soc Rev 2013; 42:6437-74. [DOI: 10.1039/c3cs35506c] [Citation(s) in RCA: 897] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Miller KP, Gowtham YK, Henson JM, Harcum SW. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae. Biotechnol Prog 2012; 28:669-80. [PMID: 22866331 DOI: 10.1002/btpr.1535] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.
Collapse
Affiliation(s)
- Kristen P Miller
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
16
|
Liu Z, Wu JC. Ethanol production by In situ xylose isomerization using recombinant Escherichia coli and fermentation using conventional Saccharomyces cerevisiae. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0015-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Yuan D, Rao K, Varanasi S, Relue P. A viable method and configuration for fermenting biomass sugars to ethanol using native Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2012; 117:92-98. [PMID: 22609719 DOI: 10.1016/j.biortech.2012.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 06/01/2023]
Abstract
A system that incorporates a packed bed reactor for isomerization of xylose and a hollow fiber membrane fermentor (HFMF) for sugar fermentation by yeast was developed for facile recovery of the xylose isomerase enzyme pellets and reuse of the cartridge loaded with yeast. Fermentation of pre-isomerized poplar hydrolysate produced using ionic liquid pretreatment in HFMF resulted in ethanol yields equivalent to that of model sugar mixtures of xylose and glucose. By recirculating model sugar mixtures containing partially isomerized xylose through the packed bed and the HFMF connected in series, 39 g/l ethanol was produced within 10h with 86.4% xylose utilization. The modular nature of this configuration has the potential for easy scale-up of the simultaneous isomerization and fermentation process without significant capital costs.
Collapse
Affiliation(s)
- Dawei Yuan
- Department of Bioengineering, 1610 N. Westwood Ave. MS 303, University of Toledo, Toledo, OH 43606, USA
| | | | | | | |
Collapse
|
18
|
Silva CR, Zangirolami TC, Rodrigues JP, Matugi K, Giordano RC, Giordano RLC. An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor. Enzyme Microb Technol 2011; 50:35-42. [PMID: 22133438 DOI: 10.1016/j.enzmictec.2011.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
The use of the hemicellulose fraction of biomass may be important for the feasibility of the production of second generation bioethanol. Wild strains of Saccharomyces cerevisiae are widely used in industry for production of 1st generation ethanol, and the robustness of this yeast is an important advantage in large scale applications. Isomerization of xylose to xylulose is an essential step in this process. This reaction is catalyzed by glucose isomerase (GI). A new biocatalyst is presented here for the simultaneous isomerization and fermentation (SIF) of xylose. GI from Streptomyces rubiginosus was immobilized in chitosan, through crosslinking with glutaraldehyde, and the support containing the immobilized GI (IGI-Ch) was co-immobilized with S. cerevisiae, in calcium alginate gel. The immobilization experiments led to high immobilized protein loads (30-68 mg × g(support)(-1)), high yields (circa of 100%) and high recovered enzyme activity (>90%). The IGI-Ch derivative with maximum activity presented 1700 IU × g(catalyst)(-1), almost twice the activity of a commercial immobilized GI, GENSWEET(®) IGI-HF. At typical operational conditions for xylose SIF operation (pH 5, 30-35 °C, presence of nutrients and ethanol concentrations in the medium up to 70 L(-1)), both derivatives, IGI-Ch and GENSWEET(®) IGI-HF retained app. 90% of the initial activity after 120 h, while soluble GI was almost completely inactive at pH 5, 30 °C. The isomerization xylose/xylulose, catalyzed by IGI-Ch, reached the equilibrium in batch experiments after 4h, with 12,000 IU × L(-1) (7 g(der) × L(-1)), at pH 5 and 30 °C, in the presence of fermentation nutrients. After co-immobilization of IGI-Ch with yeast in alginate gel, this biocatalyst succeeded in producing 12 g × L(-1) of ethanol, 9.5 g × L(-1) of xylitol, 2.5 g × L(-1) of glycerol and 1.9 g × L(-1) of acetate after consumption of 50 g × L(-1) of xylose, in 48 h, using 32.5 × 10(3) IU × L(-1) and 20 g(yeast) × L(-1), at 35 °C and initial pH 5.3.
Collapse
Affiliation(s)
- C R Silva
- Department of Chemical Engineering, Federal University of São Carlos (UFSCar), via Washington Luiz, Km 235, Monjolinho,13565-905, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Yuan D, Rao K, Relue P, Varanasi S. Fermentation of biomass sugars to ethanol using native industrial yeast strains. BIORESOURCE TECHNOLOGY 2011; 102:3246-3253. [PMID: 21129954 DOI: 10.1016/j.biortech.2010.11.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/07/2010] [Accepted: 11/09/2010] [Indexed: 05/30/2023]
Abstract
In this paper, the feasibility of a technology for fermenting sugar mixtures representative of cellulosic biomass hydrolyzates with native industrial yeast strains is demonstrated. This paper explores the isomerization of xylose to xylulose using a bi-layered enzyme pellet system capable of sustaining a micro-environmental pH gradient. This ability allows for considerable flexibility in conducting the isomerization and fermentation steps. With this method, the isomerization and fermentation could be conducted sequentially, in fed-batch, or simultaneously to maximize utilization of both C5 and C6 sugars and ethanol yield. This system takes advantage of a pH-dependent complexation of xylulose with a supplemented additive to achieve up to 86% isomerization of xylose at fermentation conditions. Commercially-proven Saccharomyces cerevisiae strains from the corn-ethanol industry were used and shown to be very effective in implementation of the technology for ethanol production.
Collapse
Affiliation(s)
- Dawei Yuan
- Department of Bioengineering, University of Toledo, Toledo, OH 43606, USA
| | | | | | | |
Collapse
|
20
|
Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. J Ind Microbiol Biotechnol 2010; 38:955-66. [DOI: 10.1007/s10295-010-0867-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
21
|
Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 2009; 82:1037-47. [DOI: 10.1007/s00253-008-1818-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/04/2008] [Accepted: 12/08/2008] [Indexed: 11/30/2022]
|