1
|
Harahap AFP, Conrad J, Wolf M, Pfannstiel J, Klaiber I, Grether J, Hiller E, Vahidinasab M, Salminen H, Treinen C, Perino EHB, Hausmann R. Structure Elucidation and Characterization of Novel Glycolipid Biosurfactant Produced by Rouxiella badensis DSM 100043 T. Molecules 2025; 30:1798. [PMID: 40333752 PMCID: PMC12029617 DOI: 10.3390/molecules30081798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Microbial biosurfactants have become increasingly attractive as promising ingredients for environmentally friendly products. The reasons for this are their generally good performance and biodegradability, low toxicity, production from renewable raw materials, and benefits for the environment perceived by consumers. In this study, we investigated the chemical structure and properties of a novel glycolipid from a new biosurfactant-producing strain, Rouxiella badensis DSM 100043T. Bioreactor cultivation was performed at 30 °C and pH 7.0 for 28 h using 15 g/L glycerol as a carbon source. The glycolipid was successfully purified from the ethyl acetate extract of the supernatant using medium pressure liquid chromatography (MPLC). The structure of the glycolipid was determined by one- and two-dimensional (1H and 13C) nuclear magnetic resonance (NMR) and confirmed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI/MS). NMR analysis revealed the hydrophilic moiety as a glucose molecule and the hydrophobic moieties as 3-hydroxy-5-dodecenoic acid and 3-hydroxydecanoic acid, which are linked with the glucose by ester bonds at the C2 and C3 positions. Surface tension measurement with tensiometry indicated that the glucose-lipid could reduce the surface tension of water from 72.05 mN/m to 24.59 mN/m at 25 °C with a very low critical micelle concentration (CMC) of 5.69 mg/L. Moreover, the glucose-lipid demonstrated very good stability in maintaining emulsification activity at pH 2-8, a temperature of up to 100 °C, and a NaCl concentration of up to 15%. These results show that R. badensis DSM 100043T produced a novel glycolipid biosurfactant with excellent surface-active properties, making it promising for further research or industrial applications.
Collapse
Affiliation(s)
- Andre Fahriz Perdana Harahap
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.)
| | - Jürgen Conrad
- Department of Organic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (J.C.); (M.W.)
| | - Mario Wolf
- Department of Organic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (J.C.); (M.W.)
| | - Jens Pfannstiel
- Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (J.P.); (I.K.)
| | - Iris Klaiber
- Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (J.P.); (I.K.)
| | - Jakob Grether
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.)
| | - Eric Hiller
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.)
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.)
| | - Hanna Salminen
- Department of Food Material Science (150g), Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 21/25, 70599 Stuttgart, Germany;
| | - Chantal Treinen
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Elvio Henrique Benatto Perino
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.)
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.)
| |
Collapse
|
2
|
Pal S, Chatterjee N, Sinha Roy S, Chattopadhyay B, Acharya K, Datta S, Dhar P. Valorization of oil refinery by-products: production of sophorolipids utilizing fatty acid distillates and their potential antibacterial, anti-biofilm, and antifungal activities. World J Microbiol Biotechnol 2024; 40:344. [PMID: 39384621 DOI: 10.1007/s11274-024-04144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
Starmerella bombicola is a native yeast strain producing sophorolipids as secondary metabolites. This study explores the production, characterization, and biological activities of sophorolipids and investigates the antimicrobial, anti-biofilm, and antifungal properties of sophorolipids produced from oil refinery wastes by the yeast Starmerella bombicola. The present work demonstrated that S. bombicola MTCC 1910 when grown in oil refinery wastes namely palm fatty acid distillates and soy fatty acid distillates enhanced the rate of sophorolipids production drastically in comparison to vegetable oil, sunflower oil used as hydrophobic feedstock. Sophorolipid yields were 18.14, 37.21, and 46.1 g/L with sunflower oil, palm, and soy fatty acid distillates respectively. The crude biosurfactants were characterized using TLC, FTIR, and HPLC revealing to be acetylated sophorolipids containing both the acidic and lactonic isomeric forms. The surface lowering and emulsifying properties of the sophorolipids from refinery wastes were significantly higher than the sunflower oil-derived sophorolipids. Also, all the sophorolipids exhibited strong antibacterial properties (minimum inhibitory concentrations were between 50 and 200 µg mL-1) against Salmonella typhimurium, Bacillus cereus, and Staphylococcus epidermidis and were validated with morphological analysis by Scanning electron microscopy. All the sophorolipids were potent biofilm inhibitors and eradicators (minimum biofilm inhibitory and eradication concentrations were between 12.5 to 1000 µg mL-1) for all the tested organisms. Furthermore, antifungal activities were also found to exhibit about 16-56% inhibition at 1 mg mL-1 for fungal mycelial growth. Therefore, this endeavour of sophorolipids production using palm and soy fatty acid distillates not only opens up a window for the bioconversion of industrial wastes into productive biosurfactants but also concludes that sophorolipids from oil refinery wastes are potent antimicrobial, anti-biofilm, and antifungal agents, highlighting their potential in biotechnological and medical applications.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India
| | - Sagnik Sinha Roy
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Brajadulal Chattopadhyay
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, 35, Ballygunge Circular Rd, Ballygunge, Kolkata, 700019, West Bengal, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India.
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India.
| |
Collapse
|
3
|
Kumari S, Kumari A, Dhiman A, Mihooliya KN, Raje M, Prasad GS, Pinnaka AK. Unveiling the potential of novel Metschnikowia yeast biosurfactants: triggering oxidative stress for promising antifungal and anticancer activity. Microb Cell Fact 2024; 23:245. [PMID: 39261862 PMCID: PMC11389333 DOI: 10.1186/s12934-024-02489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Sophorolipids are glycolipid biosurfactants with potential antibacterial, antifungal, and anticancer applications, rendering them promising for research. Therefore, this study hypothesizes that sophorolipids may have a notable impact on disrupting membrane integrity and triggering the production of reactive oxygen species, ultimately resulting in the eradication of pathogenic microbes. RESULTS The current study resulted in the isolation of two Metschnikowia novel yeast strains. Sophorolipids production from these strains reached maximum yields of 23.24 g/l and 21.75 g/l, respectively, at the bioreactors level. Biosurfactants sophorolipids were characterized using FTIR and LC-MS techniques and found to be a mixture of acidic and lactonic forms with molecular weights of m/z 678 and 700. Our research elucidated sophorolipids' mechanism in disrupting bacterial and fungal membranes through ROS generation, confirmed by transmission electron microscopy and FACS analysis. The results showed that these compounds disrupted the membrane integrity and induced ROS production, leading to cell death in Klebsiella pneumoniae and Fusarium solani. In addition, the anticancer properties of sophorolipids were investigated on the A549 lung cancer cell line and found that sophorolipid-11D (SL-11D) and sophorolipid-11X (SL-11X) disrupted the actin cytoskeleton, as evidenced by immunofluorescence microscopy. The A549 cells were stained with Acridine orange/Ethidium bromide, which showed that they underwent necrosis. This was confirmed by flow cytometric analysis using Annexin/PI staining. The SL-11D and SL-11X molecules exhibited low levels of haemolytic activity and in-vitro cytotoxicity in HEK293, Caco-2, and L929 cell lines. CONCLUSION In this work, novel yeast species CIG-11DT and CIG-11XT, isolated from the bee's gut, produce significant yields of sophorolipids without needing secondary oil sources, indicating a more economical production method. Our research shows that sophorolipids disrupt bacterial and fungal membranes via ROS production. They suggest they may act as chemo-preventive agents by inducing apoptosis in lung cancer cells, offering the potential for enhancing anticancer therapies.
Collapse
Affiliation(s)
- Sumeeta Kumari
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, 160036, India
| | - Alka Kumari
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, 160036, India
| | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, 160036, India
| | | | - Manoj Raje
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, 160036, India
| | - G S Prasad
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, 160036, India
| | - Anil Kumar Pinnaka
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
4
|
Singh N, Hu XH, Kumar V, Solanki MK, Kaushik A, Singh VK, Singh SK, Yadav P, Singh RP, Bhardwaj N, Wang Z, Kumar A. Microbially derived surfactants: an ecofriendly, innovative, and effective approach for managing environmental contaminants. Front Bioeng Biotechnol 2024; 12:1398210. [PMID: 39253704 PMCID: PMC11381421 DOI: 10.3389/fbioe.2024.1398210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The natural environment is often contaminated with hydrophobic pollutants such as long-chain hydrocarbons, petrochemicals, oil spills, pesticides, and heavy metals. Hydrophobic pollutants with a toxic nature, slow degradation rates, and low solubility pose serious threats to the environment and human health. Decontamination based on conventional chemical surfactants has been found to be toxic, thereby limiting its application in pharmaceutical and cosmetic industries. In contrast, biosurfactants synthesized by various microbial species have been considered superior to chemical counterparts due to their non-toxic and economical nature. Some biosurfactants can withstand a wide range of fluctuations in temperature and pH. Recently, biosurfactants have emerged as innovative biomolecules not only for solubilization but also for the biodegradation of environmental pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and oil spills. Biosurfactants have been well documented to function as emulsifiers, dispersion stabilizers, and wetting agents. The amphiphilic nature of biosurfactants has the potential to enhance the solubility of hydrophobic pollutants such as petroleum hydrocarbons and oil spills by reducing interfacial surface tension after distribution in two immiscible surfaces. However, the remediation of contaminants using biosurfactants is affected considerably by temperature, pH, media composition, stirring rate, and microorganisms selected for biosurfactant production. The present review has briefly discussed the current advancements in microbially synthesized biosurfactants, factors affecting production, and their application in the remediation of environmental contaminants of a hydrophobic nature. In addition, the latest aspect of the circular bioeconomy is discussed in terms of generating biosurfactants from waste and the global economic aspects of biosurfactant production.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Chemistry, N.A.S.College, Meerut, India
| | - Xiao-Hu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Vikash Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Amit Kaushik
- College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Hisar, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | | | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Priya Yadav
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Rahul Prasad Singh
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
5
|
Abdelraof M, Nooman MU, Hashem AH, Al-Kashef AS. Production and optimization of surfactin produced from locally isolated Bacillus halotolerans grown on agro-industrial wastes and its antimicrobial efficiency. BMC Microbiol 2024; 24:193. [PMID: 38831400 PMCID: PMC11145779 DOI: 10.1186/s12866-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
INTRODUCTION Optimal exploitation of the huge amounts of agro-industrial residuals that are produced annually, which endangers the ecosystem and ultimately contributes to climate change, is one of the solutions available to produce value-added compounds. AIM AND OBJECTIVES This study aimed at the economic production and optimization of surfactin. Therefore, the production was carried out by the microbial conversion of Potato Peel Waste (PPW) and Frying Oil Waste (FOW) utilizing locally isolated Bacillus halotolerans. Also, investigating its potential application as an antimicrobial agent towards some pathogenic strains. RESULTS Screening the bacterial isolates for surfactin production revealed that the strain with the highest yield (49 g/100 g substrate) and efficient oil displacement activity was genetically identified as B. halotolerans. The production process was then optimized utilizing Central Composite Design (CCD) resulting in the amelioration of yield by 11.4% (from 49 to 55.3 g/100 g substrate) and surface tension (ST) by 8.3% (from 36 to 33 mN/m) with a constant level of the critical micelle concentration (CMC) at 125 mg/L. Moreover, the physiochemical characterization studies of the produced surfactin by FTIR, 1H NMR, and LC-MS/MS proved the existence of a cyclic lipopeptide (surfactin). The investigations further showed a strong emulsification affinity for soybean and motor oil (E24 = 50%), as well as the ability to maintain the emulsion stable over a wide pH (4-10) and temperature (10-100 °C) range. Interestingly, surfactin had a broad-spectrum range of inhibition activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, klebsiella pneumonia, and Candida albicans. CONCLUSION Subsequently, the screening of the isolates and the utilized food-processing wastes along with the extraction technique resulted in a high yield of surfactin characterized by acceptable ST and CMC levels. However, optimization of the cultural conditions to improve the activity and productivity was achieved using Factor-At-A-Time (OFAT) and Central Composite Design (CCD). In contrast, surface activity recorded a maximum level of (33 mN/n) and productivity of 55.3 g/100 g substrate. The optimized surfactin had also the ability to maintain the stability of emulsions over a wide range of pH and temperature. Otherwise, the obtained results proved the promising efficiency of the surfactin against bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Dokki, 12622, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Dokki, 12622, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Dokki, 12622, Egypt
| |
Collapse
|
6
|
Mousa AM, Nooman MU, Abbas SS, Gebril SM, Abdelraof M, Al-Kashef AS. Protective effects of microbial biosurfactants produced by Bacillus halotolerans and Candida parapsilosis on bleomycin-induced pulmonary fibrosis in mice: Impact of antioxidant, anti-inflammatory and anti-fibrotic properties via TGF-β1/Smad-3 pathway and miRNA-326. Toxicol Appl Pharmacol 2024; 486:116939. [PMID: 38643951 DOI: 10.1016/j.taap.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κβ, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-β1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amria M Mousa
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| |
Collapse
|
7
|
Araujo JMM, Monteiro JM, Silva DHDS, Veira AK, Silva MRC, Ferraz FA, Braga FHR, de Siqueira EP, Monteiro ADS. Candida krusei M4CK Produces a Bioemulsifier That Acts on Melaleuca Essential Oil and Aids in Its Antibacterial and Antibiofilm Activity. Antibiotics (Basel) 2023; 12:1686. [PMID: 38136720 PMCID: PMC10740703 DOI: 10.3390/antibiotics12121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 12/24/2023] Open
Abstract
Surface-active compounds (SACs) of microbial origin are an active group of biomolecules with potential use in the formulation of emulsions. In this sense, the present study aimed to isolate and select yeasts from fruits that could produce SACs for essential oil emulsions. The Candida krusei M4CK was isolated from the Byrsonima crassifolia fruit to make SACs. This emulsification activity (E24) was equal to or greater 50% in all carbon sources, such as olive oil, sunflower oil, kerosene, hexane, and hexadecane. E24 followed exponential growth according to the growth phase. The stability of emulsions was maintained over a wide range of temperatures, pH, and salinity. The OMBE4CK (melaleuca essential oil emulsion) had better and more significant inhibitory potential for biofilm reduction formation. In addition, bioemulsifier BE4CK alone on Escherichia coli and Pseudomonas aeruginosa biofilm showed few effective results, while there was a significant eradication for Staphylococcus aureus biofilms. The biofilms formed by S. aureus were eradicated in all concentrations of OMBE4CK. At the same time, the preformed biofilm by E. coli and P. aeruginosa were removed entirely at concentrations of 25 mg/mL, 12.5 mg/mL, and 6.25 mg/mL. The results show that the bioemulsifier BE4CK may represent a new potential for antibiofilm application.
Collapse
Affiliation(s)
- Jéssica Mayra Mendes Araujo
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, Saint Louis 65055-310, Brazil; (J.M.M.A.); (J.M.M.)
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | - Joveliane Melo Monteiro
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, Saint Louis 65055-310, Brazil; (J.M.M.A.); (J.M.M.)
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | | | - Amanda Karoline Veira
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | - Maria Raimunda Chagas Silva
- Laboratório de Ciências do Ambiente, Universidade CEUMA, Saint Louis 65075-120, Brazil; (M.R.C.S.); (F.H.R.B.)
| | - Fernanda Avelino Ferraz
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | - Fábio H. Ramos Braga
- Laboratório de Ciências do Ambiente, Universidade CEUMA, Saint Louis 65075-120, Brazil; (M.R.C.S.); (F.H.R.B.)
| | - Ezequias Pessoa de Siqueira
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
| | - Andrea de Souza Monteiro
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, Saint Louis 65055-310, Brazil; (J.M.M.A.); (J.M.M.)
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| |
Collapse
|
8
|
Al-Kashef AS, Nooman MU, Rashad MM, Hashem AH, Abdelraof M. Production and optimization of novel Sphorolipids from Candida parapsilosis grown on potato peel and frying oil wastes and their adverse effect on Mucorales fungal strains. Microb Cell Fact 2023; 22:79. [PMID: 37095542 PMCID: PMC10125861 DOI: 10.1186/s12934-023-02088-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
BRIEF INTRODUCTION Mucormycosis disease, which has recently expanded with the Covid 19 pandemic in many countries, endangers patients' lives, and treatment with common drugs is fraught with unfavorable side effects. AIM AND OBJECTIVES This study deals with the economic production of sophorolipids (SLs) from different eight fungal isolates strains utilizing potato peels waste (PPW) and frying oil waste (FOW). Then investigate their effect against mucormycetes fungi. RESULTS The screening of the isolates for SLs production revealed the highest yield (39 g/100 g substrate) with most efficiency was related to a yeast that have been identified genetically as Candida parapsilosis. Moreover, the characterizations studies of the produced SLs by FTIR, 1H NMR and LC-MS/MS proved the existence of both acidic and lactonic forms, while their surface activity was confirmed by the surface tension (ST) assessment. The SLs production was optimized utilizing Box-Behnken design resulting in the amelioration of yield by 30% (55.3 g/100 g substrate) and ST by 20.8% (38mN/m) with constant level of the critical micelle concentration (CMC) at 125 mg/L. The studies also revealed the high affinity toward soybean oil (E24 = 50%), in addition to maintaining the emulsions stability against broad range of pH (4-10) and temperature (10-100℃). Furthermore, the antifungal activity against Mucor racemosus, Rhizopus microsporus, and Syncephalastrum racemosum proved a high inhibition efficiency of the produced SLs. CONCLUSION The findings demonstrated the potential application of the SLs produced economically from agricultural waste as an effective and safer alternative for the treatment of infection caused by black fungus.
Collapse
Affiliation(s)
- Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Dokki, Egypt
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Dokki, Egypt
| | - Mona M Rashad
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Dokki, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Dokki, Egypt.
| |
Collapse
|
9
|
Wang M, Ding M, Yuan Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering (Basel) 2023; 10:bioengineering10030347. [PMID: 36978738 PMCID: PMC10045523 DOI: 10.3390/bioengineering10030347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Petroleum hydrocarbons are relatively recalcitrant compounds, and as contaminants, they are one of the most serious environmental problems. n-Alkanes are important constituents of petroleum hydrocarbons. Advances in synthetic biology and metabolic engineering strategies have made n-alkane biodegradation more designable and maneuverable for solving environmental pollution problems. In the microbial degradation of n-alkanes, more and more degradation pathways, related genes, microbes, and alkane hydroxylases have been discovered, which provide a theoretical basis for the further construction of degrading strains and microbial communities. In this review, the current advances in the microbial degradation of n-alkanes under aerobic condition are summarized in four aspects, including the biodegradation pathways and related genes, alkane hydroxylases, engineered microbial chassis, and microbial community. Especially, the microbial communities of “Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper” provide new ideas for the degradation of petroleum hydrocarbons. Surfactant producers and nitrogen providers as a “Helper” are discussed in depth. This review will be helpful to further achieve bioremediation of oil-polluted environments rapidly.
Collapse
Affiliation(s)
- Minzhen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Correspondence:
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Deng R, Zhan X. High performance self-assembled nano-chlorapatite in the presence of lactonic sophorolipid for the immobilization of cadmium in polluted sediment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130484. [PMID: 36455326 DOI: 10.1016/j.jhazmat.2022.130484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
A novel lactonic sophorolipid (LS) self-assembled nano-chlorapatite (LS-nClAP) was prepared for the immobilization of severe cadmium (Cd) in sediment. The experimental results indicated that the introduction of LS not only improved the dispersed performance of chlorapatite, but also brought massive hydroxyl and carboxyl groups, which significantly improved the immobilization efficiency of Cd and reduced its eco-toxicity in sediment. LS can significantly increase the effective utilization rate of phosphorus in chlorapatite, and reduce the content of available phosphorus (AP) by half after remediation compared with ClAP. Additionally, the participation of LS possessed a significant impact on the enzyme activities in the sediment, especially for urease, which was closely related to the effective stability of Cd and the introduction of LS. All experimental results of this study provided new insights into the possible effects of Cd immobilization by chlorapatite in contaminated sediments, demonstrating great application potential for sediment remediation in the future.
Collapse
Affiliation(s)
- Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xinyuan Zhan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
11
|
Cui T, Tang Y, Zhao M, Hu Y, Jin M, Long X. Preparing Biosurfactant Glucolipids from Crude Sophorolipids via Chemical Modifications and Their Potential Application in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2964-2974. [PMID: 36723399 DOI: 10.1021/acs.jafc.2c06066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This investigation developed a novel strategy for efficiently preparing glucolipids (GLs) by chemically modifying crude sophorolipids. Running this strategy, crude sophorolipids were effectively transformed into GLs through deglycosylation and de-esterification, with a yield of 54.1%. The acquired GLs were then purified via stepwise extractions, and 66.2% of GLs with 95% purity was recovered. GLs are more hydrophobic and present a stronger surface activity than acidic sophorolipids (ASLs). More importantly, these GLs displayed a superior antimicrobial activity to that of ASLs against the tested Gram-positive food pathogens, with a minimum inhibitory concentration of 32-64 mg/L, except against E. coli . This activity of GLs is pH-dependent and especially more powerful under acidic conditions. The mechanism involved is possibly associated with the more efficient adsorption of GLs, as demonstrated by the hydrophobicity of the cell membrane. These GLs could be used as antimicrobial agents for food preservation and health in the food industry.
Collapse
Affiliation(s)
- Tianyou Cui
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Yujing Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Mengqian Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Yang Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| |
Collapse
|
12
|
Nooman MU, Al-Kashef AS, Rashad MM, Khattab AENA, Ahmed KA, Abbas SS. Sophorolipids produced by Yarrowia lipolytica grown on Moringa oleifera oil cake protect against acetic acid-induced colitis in rats: impact on TLR-4/p-JNK/NFκB-p65 pathway. J Pharm Pharmacol 2023; 75:544-558. [PMID: 36680771 DOI: 10.1093/jpp/rgac101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Toll-like receptor-4 (TLR-4) activation plays a major role in triggering oxidative stress (OS) and inflammation implicated in the pathogenesis of ulcerative colitis (UC). Due to sophorolipids (SLs) antioxidant and anti-inflammatory properties, they are interestingly becoming more valued for their potential effectiveness in treating a variety of diseases. This study was designed to explore the effect of SLs produced by microbial conversion of Moringa oleifera oil cake using isolated yeast Yarrowia lipolytica against UC induced by acetic acid (AA) in rats. METHODS The produced SLs were identified by FTIR, 1H NMR and LC-MS/MS spectra, and administered orally for 7 days (200 mg/kg/day) before AA (2 ml, 4% v/v) to induce UC intrarectally on day eight. Biochemically, the levels of TLR-4, c-Jun N-terminal kinase (JNK), nuclear factor kappa B-p65 (NFκB-p65), interleukin-1beta (IL-1β), malondialdehyd, glutathione, Bax/Bcl2 ratio and the immunohistochemical evaluation of inducible nitric oxide synthase and caspase-3 were assayed. KEY FINDINGS SLs significantly reduced OS, inflammatory and apoptotic markers in AA-treated rats, almost like the reference sulfasalazine. CONCLUSIONS This study provided a novel impact for SLs produced by microbial conversion of M. oleifera oil cake against AA-induced UC in rats through hampering the TLR-4/p-JNK/NFκB-p65 signalling pathway.
Collapse
Affiliation(s)
- Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Mona M Rashad
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Abd El-Nasser A Khattab
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
13
|
Sah D, Rai JPN, Ghosh A, Chakraborty M. A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech 2022; 12:218. [PMID: 35965658 PMCID: PMC9365905 DOI: 10.1007/s13205-022-03277-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022] Open
Abstract
The discharge of potentially toxic petroleum hydrocarbons into the environment has been a matter of concern, as these organic pollutants accumulate in many ecosystems due to their hydrophobicity and low bioavailability. Petroleum hydrocarbons are neurotoxic and carcinogenic organic pollutants, extremely harmful to human and environmental health. Traditional treatment methods for removing hydrocarbons from polluted areas, including various mechanical and chemical strategies, are ineffective and costly. However, many indigenous microorganisms in soil and water can utilise hydrocarbon compounds as sources of carbon and energy and hence, can be employed to degrade hydrocarbon contaminants. Therefore, bioremediation using bacteria that degrade petroleum hydrocarbons is commonly viewed as an environmentally acceptable and effective method. The efficacy of bioremediation can be boosted further by using potential biosurfactant-producing microorganisms, as biosurfactants reduce surface tension, promote emulsification and micelle formation, making hydrocarbons bio-available for microbial breakdown. Further, introducing nanoparticles can improve the solubility of hydrophobic hydrocarbons as well as microbial synthesis of biosurfactants, hence establishing a favourable environment for microbial breakdown of these chemicals. The review provides insights into the role of microbes in the bioremediation of soils contaminated with petroleum hydrocarbons and emphasises the significance of biosurfactants and potential biosurfactant-producing bacteria. The review partly focusses on how nanotechnology is being employed in different critical bioremediation processes.
Collapse
Affiliation(s)
- Diksha Sah
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - J. P. N. Rai
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Ankita Ghosh
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Moumita Chakraborty
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|
14
|
Pardhi DS, Panchal RR, Raval VH, Joshi RG, Poczai P, Almalki WH, Rajput KN. Microbial surfactants: A journey from fundamentals to recent advances. Front Microbiol 2022; 13:982603. [PMID: 35992692 PMCID: PMC9386247 DOI: 10.3389/fmicb.2022.982603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial surfactants are amphiphilic surface-active substances aid to reduce surface and interfacial tensions by accumulating between two fluid phases. They can be generically classified as low or high molecular weight biosurfactants based on their molecular weight, whilst overall chemical makeup determines whether they are neutral or anionic molecules. They demonstrate a variety of fundamental characteristics, including the lowering of surface tension, emulsification, adsorption, micelle formation, etc. Microbial genera like Bacillus spp., Pseudomonas spp., Candida spp., and Pseudozyma spp. are studied extensively for their production. The type of biosurfactant produced is reliant on the substrate utilized and the pathway pursued by the generating microorganisms. Some advantages of biosurfactants over synthetic surfactants comprise biodegradability, low toxicity, bioavailability, specificity of action, structural diversity, and effectiveness in harsh environments. Biosurfactants are physiologically crucial molecules for producing microorganisms which help the cells to grasp substrates in adverse conditions and also have antimicrobial, anti-adhesive, and antioxidant properties. Biosurfactants are in high demand as a potential product in industries like petroleum, cosmetics, detergents, agriculture, medicine, and food due to their beneficial properties. Biosurfactants are the significant natural biodegradable substances employed to replace the chemical surfactants on a global scale in order to make a cleaner and more sustainable environment.
Collapse
Affiliation(s)
- Dimple S. Pardhi
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakeshkumar R. Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Vikram H. Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rushikesh G. Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Waleed H. Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Kiransinh N. Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
15
|
Ingham B, Winterburn J. Developing an understanding of sophorolipid synthesis through application of a central composite design model. Microb Biotechnol 2022; 15:1744-1761. [PMID: 35038384 PMCID: PMC9151336 DOI: 10.1111/1751-7915.14003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023] Open
Abstract
A key barrier to market penetration for sophorolipid biosurfactants is the ability to improve productivity and utilize alternative feedstocks to reduce the cost of production. To do this, a suitable screening tool is required that is able to model the interactions between media components and alter conditions to maximize productivity. In the following work, a central composite design is applied to analyse the effects of altering glucose, rapeseed oil, corn steep liquor and ammonium sulphate concentrations on sophorolipid production with Starmerella bombicola ATCC 222144 after 168 h. Sophorolipid production was analysed using standard least squares regression and the findings related to the growth (OD600 ) and broth conditions (glucose, glycerol and oil concentration). An optimum media composition was found that was capable of producing 39.5 g l-1 sophorolipid. Nitrogen and rapeseed oil sources were found to be significant, linked to their role in growth and substrate supply respectively. Glucose did not demonstrate a significant effect on production despite its importance to biosynthesis and its depletion in the broth within 96 h, instead being replaced by glycerol (via triglyceride breakdown) as the hydrophilic carbon source at the point of glucose depletion. A large dataset was obtained, and a regression model with applications towards substrate screening and process optimisation developed.
Collapse
Affiliation(s)
- Benjamin Ingham
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - James Winterburn
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
16
|
Camarate MC, Merma AG, Hacha RR, Torem ML. Selective bioflocculation of ultrafine hematite particles from quartz using a biosurfactant extracted from Candida stellata yeast. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2021.1881972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marcelo Carneiro Camarate
- Department of Chemical Engineering and Materials, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Gutiérrez Merma
- Department of Chemical Engineering and Materials, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronald Rojas Hacha
- Department of Chemical Engineering and Materials, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Leonardo Torem
- Department of Chemical Engineering and Materials, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Overview on Glycosylated Lipids Produced by Bacteria and Fungi: Rhamno-, Sophoro-, Mannosylerythritol and Cellobiose Lipids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:73-122. [DOI: 10.1007/10_2021_200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Xie M, Song Q, Zhao H. Investigation on the surface-active and antimicrobial properties of a natural glycolipid product. Food Funct 2021; 12:11537-11546. [PMID: 34708225 DOI: 10.1039/d1fo02359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycolipids are a group of sugar-containing lipids with versatile functions. In this study, a natural glycolipid product was obtained from soy lecithin, and its emulsifying, oil-gelling, antibacterial and antiviral properties were investigated. A silica-based extraction method on a preparative scale was used to recover the glycolipid product (GLP) from soy lecithin. The GLP consisted of three different glycolipid classes: acylated sterol glucoside (64.16%), sterol glucoside (25.57%) and cerebroside (6.71%). As an emulsifier, the GLP was able to form a stable water-in-oil emulsion. The GLP exhibited a good oil-gelling property, capable of gelling rapeseed oil at a concentration of 6%. For the investigated microorganisms (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus), the GLP did not show any antibacterial effects. The GLP exerted antiviral activity against lentivirus, but not adenovirus. The results of this study help in enriching the knowledge on the properties of naturally occurring glycolipids, which may find potential applications in the food, pharmaceutical and related industries.
Collapse
Affiliation(s)
- Meizhen Xie
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hong Zhao
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
19
|
Rehman R, Ali MI, Ali N, Badshah M, Iqbal M, Jamal A, Huang Z. Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126276. [PMID: 34119978 DOI: 10.1016/j.jhazmat.2021.126276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the potential of crude oil degrading capabilities of biosurfactant-producing strains of Pseudomonas aeruginosa MF069166 and Meyerozyma sp. MF138126. P. aeruginosa produced mono-/di-rhamnolipids congeners whereas, Meyerozyma sp. produced acidic and lactonic forms of sophorolipids with crude oil. The values of critical micelle concentrations of rhamnolipids and sophorolipids were 40 mg/L and 50 mg/L with reductions in surface tension of water to 29 mN/m and 33 mN/m. Dynamic light scattering revealed that the average diameter of micellar aggregates of rhamnolipids ranged between 300 and 350 nm and the average size of sophorolipids micelles was 309 nm and 380 nm. Biosurfactants from P. aeruginosa and Meyerozyma sp. exhibited emulsification activities of 87% and 84% in crude oil. Cell surface hydrophobicity of both strains was higher in the presence of hydrophobic contaminants. The biosurfactants showed stability under varying pH, NaCl concentrations and temperatures. Gravimetric and GC-MS analyses demonstrated that P. aeruginosa degraded 91% of the petroleum hydrocarbons while Meyerozyma sp. showed 87% biodegradation efficiency. P. aeruginosa and Meyerozyma sp. have also been found to degrade halogen-containing compounds and showed excellent crude oil degradation efficiency. It is concluded that both strains have high potential of applications in the bioremediation of hydrocarbons-contaminated sites.
Collapse
Affiliation(s)
- Ramla Rehman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Ishtiaq Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asif Jamal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Zaixing Huang
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China; Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
20
|
Mendes RM, Francisco AP, Carvalho FA, Dardouri M, Costa B, Bettencourt AF, Costa J, Gonçalves L, Costa F, Ribeiro IAC. Fighting S. aureus catheter-related infections with sophorolipids: Electing an antiadhesive strategy or a release one? Colloids Surf B Biointerfaces 2021; 208:112057. [PMID: 34464911 DOI: 10.1016/j.colsurfb.2021.112057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/31/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Staphylococcus aureus medical devices related-infections, such as blood stream catheter are of major concern. Their prevention is compulsory and strategies, not prone to the development of resistance, to prevent S. aureus biofilms on catheter surfaces (e.g. silicone) are needed. In this work two different approaches using sophorolipids were studied to prevent S. aureus biofilm formation on medical grade silicone: i) an antiadhesive strategy through covalent bond of sophorolipids to the surface; ii) and a release strategy using isolated most active sophorolipids. Sophorolipids produced by Starmerella bombicola, were characterized by UHPLC-MS and RMN, purified by automatic flash chromatography and tested for their antimicrobial activity towards S. aureus. Highest antimicrobial activity was observed for C18:0 and C18:1 diacetylated lactonic sophorolipids showing a MIC of 50 μg mL-1. Surface modification with acidic or lactonic sophorolipids when evaluating the anti-adhesive or release strategy, respectively, was confirmed by contact angle, FTIR-ATR and AFM analysis. When using a mixture of acidic sophorolipids covalently bonded to silicone surface as antiadhesive strategy cytocompatible surfaces were obtained and a reduction of 90 % on biofilm formation was observed. Nevertheless, if a release strategy is adopted with purified lactonic sophorolipids a higher effect is achieved. Most promising compound was C18:1 diacateylated lactonic sophorolipid that showed no cellular viability reduction when a concentration of 1.5 mg mL-1 was selected and a reduction on biofilm around 5 log units. Results reinforce the applicability of these antimicrobial biosurfactants on preventing biofilms and disclose that their antimicrobial effect is imperative when comparing to their antiadhesive properties.
Collapse
Affiliation(s)
- Rita M Mendes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ana P Francisco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Maissa Dardouri
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Bruna Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Ana F Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Judite Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Lidia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Fabíola Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
21
|
Bjerk TR, Severino P, Jain S, Marques C, Silva AM, Pashirova T, Souto EB. Biosurfactants: Properties and Applications in Drug Delivery, Biotechnology and Ecotoxicology. Bioengineering (Basel) 2021; 8:bioengineering8080115. [PMID: 34436118 PMCID: PMC8389267 DOI: 10.3390/bioengineering8080115] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Surfactants are amphiphilic compounds having hydrophilic and hydrophobic moieties in their structure. They can be of synthetic or of microbial origin, obtained respectively from chemical synthesis or from microorganisms’ activity. A new generation of ecofriendly surfactant molecules or biobased surfactants is increasingly growing, attributed to their versatility of applications. Surfactants can be used as drug delivery systems for a range of molecules given their capacity to create micelles which can promote the encapsulation of bioactives of pharmaceutical interest; besides, these assemblies can also show antimicrobial properties. The advantages of biosurfactants include their high biodegradability profile, low risk of toxicity, production from renewable sources, functionality under extreme pH and temperature conditions, and long-term physicochemical stability. The application potential of these types of polymers is related to their properties enabling them to be processed by emulsification, separation, solubilization, surface (interfacial) tension, and adsorption for the production of a range of drug delivery systems. Biosurfactants have been employed as a drug delivery system to improve the bioavailability of a good number of drugs that exhibit low aqueous solubility. The great potential of these molecules is related to their auto assembly and emulsification capacity. Biosurfactants produced from bacteria are of particular interest due to their antibacterial, antifungal, and antiviral properties with therapeutic and biomedical potential. In this review, we discuss recent advances and perspectives of biosurfactants with antimicrobial properties and how they can be used as structures to develop semisolid hydrogels for drug delivery, in environmental bioremediation, in biotechnology for the reduction of production costs and also their ecotoxicological impact as pesticide alternative.
Collapse
Affiliation(s)
- Thiago R. Bjerk
- Institute of Technology and Research (ITP), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil; (T.R.B.); (P.S.); (S.J.); (C.M.)
| | - Patricia Severino
- Institute of Technology and Research (ITP), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil; (T.R.B.); (P.S.); (S.J.); (C.M.)
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Av. Murilo Dantas 300, Aracaju 49032-490, Brazil
| | - Sona Jain
- Institute of Technology and Research (ITP), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil; (T.R.B.); (P.S.); (S.J.); (C.M.)
| | - Conrado Marques
- Institute of Technology and Research (ITP), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil; (T.R.B.); (P.S.); (S.J.); (C.M.)
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Av. Murilo Dantas 300, Aracaju 49032-490, Brazil
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St. 8, 420088 Kazan, Russia;
| | - Eliana B. Souto
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
22
|
Kumari A, Kumari S, Prasad GS, Pinnaka AK. Production of Sophorolipid Biosurfactant by Insect Derived Novel Yeast Metschnikowia churdharensis f.a., sp. nov., and Its Antifungal Activity Against Plant and Human Pathogens. Front Microbiol 2021; 12:678668. [PMID: 34149670 PMCID: PMC8212020 DOI: 10.3389/fmicb.2021.678668] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
Biosurfactants are potential biomolecules that have extensive utilization in cosmetics, medicines, bioremediation and processed foods. Yeast produced biosurfactants offer thermal resistance, antioxidant activity, and no risk of pathogenicity, illustrating their promising use in food formulations. The present study is aimed to assess potential of biosurfactant screened from a novel yeast and their inhibition against food spoilage fungi. A novel asexual ascomycetes yeast strain CIG-6AT producing biosurfactant, was isolated from the gut of stingless bee from Churdhar, HP, India. The phylogenetic analysis revealed that the strain CIG-6AT was closely related to Metschnikowia koreensis, showing 94.38% sequence similarity in the D1D2 region for which the name Metschnikowia churdharensis f.a., sp. nov., is proposed. The strain CIG-6AT was able to produce sophorolipid biosurfactant under optimum conditions. Sophorolipid biosurfactant from strain CIG-6AT effectively reduced the surface tension from 72.8 to 35 mN/m. Sophorolipid biosurfactant was characterized using TLC, FTIR, GC-MS and LC-MS techniques and was a mixture of both acidic and lactonic forms. Sophorolipid assessed promising activity against pathogenic fungi viz. Fusarium oxysporum (MTCC 9913), Fusarium solani (MTCC 350), and Colletotrichum gloeosporioides (MTCC 2190). The inhibitory effect of biosurfactant CIG-6AT against F. solani was studied and MIC was 49 μgm/ml, further confirmed through confocal laser scanning microscopy. We illustrated the antifungal activity of sophorolipid biosurfactant from Metschnikowia genus for the first time and suggested a novel antifungal compound against food spoilage and human fungal pathogen.
Collapse
Affiliation(s)
- Alka Kumari
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, India
| | - G S Prasad
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
23
|
Leyton A, Araya M, Tala F, Flores L, Lienqueo ME, Shene C. Macrocystis pyrifera Extract Residual as Nutrient Source for the Production of Sophorolipids Compounds by Marine Yeast Rhodotorula rubra. Molecules 2021; 26:2355. [PMID: 33919590 PMCID: PMC8074180 DOI: 10.3390/molecules26082355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/03/2022] Open
Abstract
Seaweed processing generates liquid fraction residual that could be used as a low-cost nutrient source for microbial production of metabolites. The Rhodotorula strain is able to produce antimicrobial compounds known as sophorolipids. Our aim was to evaluate sophorolipid production, with antibacterial activity, by marine Rhodotorula rubra using liquid fraction residual (LFR) from the brown seaweed Macrocystis pyrifera as the nutrient source. LFR having a composition of 32% w/w carbohydrate, 1% w/w lipids, 15% w/w protein and 52% w/w ash. The best culture condition for sophorolipid production was LFR 40% v/v, without yeast extract, artificial seawater 80% v/v at 15 °C by 3 growth days, with the antibacterial activity of 24.4 ± 3.1 % on Escherichia coli and 21.1 ± 3.8 % on Staphylococcus aureus. It was possible to identify mono-acetylated acidic and methyl ester acidic sophorolipid. These compounds possess potential as pathogen controllers for application in the food industry.
Collapse
Affiliation(s)
- Allison Leyton
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile; (L.F.); (C.S.)
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico de Algas y otros Recursos Biológicos (CIDTA), Facultad de Ciencias Marinas, Universidad Católica del Norte, Coquimbo 17811421, Chile; (M.A.); (F.T.)
| | - Fadia Tala
- Centro de Investigación y Desarrollo Tecnológico de Algas y otros Recursos Biológicos (CIDTA), Facultad de Ciencias Marinas, Universidad Católica del Norte, Coquimbo 17811421, Chile; (M.A.); (F.T.)
- Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 17811421, Chile
- Coastal Socio-Ecological Millenium Institute (SECOS), Santiago 8370459, Chile
| | - Liset Flores
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile; (L.F.); (C.S.)
| | - María Elena Lienqueo
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago 8370459, Chile;
| | - Carolina Shene
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile; (L.F.); (C.S.)
| |
Collapse
|
24
|
Bao Q, Huang L, Xiu J, Yi L, Ma Y. Study on the treatment of oily sludge in oil fields with lipopeptide/sophorolipid complex bio-surfactant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111964. [PMID: 33524909 DOI: 10.1016/j.ecoenv.2021.111964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
A systematic study had been carried out to get insight into the micellar behavior of anionic lipopeptide (LT) and nonionic sophorolipid (SL) in their different mass ratio mixed state using the technique of tensiometry. The models proposed by Clint, Rubingh and Gibbs et al. had been employed to interpret the formation of mixed micelles and found out synergism. The obtained experimental critical micelle concentrations (CMC) were lower than the ideal CMCs, indicating negative deviation from ideal behavior for all multi-component mixed micelles formation. A suited binary bio-surfactant mixing system was selected as the washing agents to treat the oily sludge produced from Huabei oilfield by the thermal bio-surfactant washing method. The results showed that in case of the mass ratios of 8:2 the CMC was dramatically decreased and synergism was the strongest in LT and SL bi mixed surfactant systems. The studied binary mixed bio-surfactant system showed higher washing efficiency for oily sludge than single surfactant system. In addition, the washing power of binary mixed bio-surfactants towards oily sludge was the best at below washing conditions: (a) the concentration of the mixed system (100 mg/L), (b) temperature (55 ℃), (c) ratio of sludge/liquid (1:3), (d) washing time (3 h), and (e) stirring speed (300 rpm). Certainly, the washing abilities of the selected surfactants not only depend on their mixing ratio and washing conditions but also associate with microstructure and mineral components of oily sludge.
Collapse
Affiliation(s)
- Qinghua Bao
- University of Chinese Academy of Sciences, China; Institute of Porous Flow & Fluid Mechanics, University of Chinese Academy of Sciences, China; PetroChina Research Institute of Petroleum Exploration and Development, China
| | - Lixin Huang
- PetroChina Research Institute of Petroleum Exploration and Development, China.
| | - Jianlong Xiu
- PetroChina Research Institute of Petroleum Exploration and Development, China
| | - Lina Yi
- PetroChina Research Institute of Petroleum Exploration and Development, China
| | - Yuandong Ma
- PetroChina Research Institute of Petroleum Exploration and Development, China
| |
Collapse
|
25
|
Alimagham F, Winterburn J, Dolman B, Domingues PM, Everest F, Platkov M, Basov S, Izakson G, Katzir A, Elliott SR, Hutter T. Real-time bioprocess monitoring using a mid-infrared fibre-optic sensor. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Hirlekar S, Ray D, Aswal VK, Prabhune AA, Nisal A. Lauric Acid Sophorolipid: Accelerating the Gelation of Silk Fibroin. ACS OMEGA 2020; 5:28571-28578. [PMID: 33195908 PMCID: PMC7658940 DOI: 10.1021/acsomega.0c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Silk fibroin (SF) hydrogels find wide applications in tissue engineering. However, their scope has been limited due to the long gelation time in ambient conditions. This paper shows the reduction in gelation time of silk fibroin to minutes upon doping with a newly synthesized lauric acid sophorolipid (LASL). LASL comprises a fatty acid, lauric acid (with a 12-carbon aliphatic chain), that is derivatized by glucose molecules using a non-pathogenic yeast Candida bombicola. LASL was characterized using spectroscopic (Fourier transform infrared spectroscopy) and chromatographic (high-performance liquid chromatography, thin-layer chromatography, and high-resolution mass spectrometry) methods. This gelation of SF is comparable to the effect of an anionic surfactant, sodium dodecyl sulfate (SDS). The microstructure of SF-LASL hydrogels was investigated by small-angle neutron scattering (SANS) measurements and exhibited the beads-on-a-necklace model. The rheological properties of these hydrogels show similarity to SF-SDS hydrogels, therefore presenting a greener alternative for tissue engineering applications.
Collapse
Affiliation(s)
- Swarali Hirlekar
- Polymer
Science Engineering Division, CSIR- National
Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debes Ray
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vinod K. Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Asmita A Prabhune
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Biochemical
Sciences Division, CSIR- National Chemical
Laboratory, Pune 411008, India
| | - Anuya Nisal
- Polymer
Science Engineering Division, CSIR- National
Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
27
|
Drakontis CE, Amin S. Design of sustainable lip gloss formulation with biosurfactants and silica particles. Int J Cosmet Sci 2020; 42:573-580. [DOI: 10.1111/ics.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Samiul Amin
- Chemical Engineering Department Manhattan College 4513 Manhattan College Parkway Riverdale NY10471 USA
| |
Collapse
|
28
|
Luft L, Confortin TC, Todero I, Zabot GL, Mazutti MA. An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Crit Rev Biotechnol 2020; 40:1059-1080. [DOI: 10.1080/07388551.2020.1805405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tássia C. Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Giovani L. Zabot
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
29
|
Panjiar N, Mattam AJ, Jose S, Gandham S, Velankar HR. Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodiphila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138933. [PMID: 32371209 DOI: 10.1016/j.scitotenv.2020.138933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/26/2023]
Abstract
Biosurfactants, amphiphilic compounds that reduce interfacial tension in oil-aqueous mixtures, are used in the petroleum, pharmaceutical, food, and agriculture industries. Fermentative production of biosurfactants requires expensive sugar or lipid substrates. Lignocellulosic biomass is a relatively cheap and abundant agricultural residue that can be used as an alternative substrate. Currently, several million tonnes of rice and wheat straw are generated globally as agricultural residues, most of which is disposed by open-field burning thereby leading to severe environmental pollution. This study aimed to produce biosurfactants in xylose-rich hydrolysates generated from rice straw. The hydrolysate is also a byproduct of 2G biofuel processes that often goes underutilized. A soil bacterium capable of growing and producing biosurfactants in rice straw hydrolysates, which typically contain growth-inhibitory compounds such as furfural and hydroxymethyl furfural, was isolated. Interestingly, the organism, identified as Serratia nematodiphila, exhibited higher glycolipid formation (4.5 ± 0.6 gL-1) in xylose-rich hydrolysate than in glucose-rich enzymatic hydrolysate (3.1 ± 0.2 gL-1) despite the higher bacterial cell density observed with the latter. The biosurfactants were thermostable and possessed promising emulsifying property and anti-microbial activity against bacteria and yeast. Further optimization of C:N resulted in a 2.8-fold increase in glycolipid production from xylose-rich hydrolysates. This study demonstrates the production of glycolipid biosurfactants from lignocellulosic biomass, a low-cost substrate and offers a plausible strategy for the management of these residues. Further, it also provides insights into the generation of additional high-value compounds in a bioethanol biorefinery to improve its commercial feasibility.
Collapse
Affiliation(s)
- Neha Panjiar
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Anu Jose Mattam
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Steffi Jose
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Sriganesh Gandham
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India.
| |
Collapse
|
30
|
Drakontis CE, Amin S. Biosurfactants: Formulations, properties, and applications. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Remediation of Aviation Kerosene-Contaminated Soil by Sophorolipids from Candida bombicola CB 2107. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Yeast-derived biosurfactants may substitute or complement chemical surfactants as green reagents to extract petroleum hydrocarbons from contaminated soil. The effectiveness of contaminant clean-up by sophorolipids was tested on kerosene-contaminated soil with reference to traditional synthetic surfactants. The sophorolipids produced by the yeast Candida bombicola CB 2107, cultivated with the carbon sources 10 g/L glucose and 10 g/L rapeseed oil, were most effective in contaminant removal. This biosurfactant revealed a critical micelle concentration of 108 mg/L which was close to that of Triton X-100 (103 mg/L), the synthetic surfactant considered as reference. It outperformed Triton X-100 in reducing kerosene concentrations (C10–C40) in contaminated soils. In a soil initially containing 1080 mg/kg of C10–C40, the concentration was reduced to 350 mg/kg using the biosurfactant, and to 670 mg/kg using Triton-X. In the soil with initial concentration of 472 mg/kg, concentrations were reduced to 285 and 300 mg/kg for biosurfactant and Triton X-100, respectively. Sophorolipids have the potential to replace synthetic surfactants. Properties and performance of the biosurfactants, however, strongly differ depending on the yeast and the growing conditions during production.
Collapse
|
32
|
Sen S, Borah SN, Kandimalla R, Bora A, Deka S. Sophorolipid Biosurfactant Can Control Cutaneous Dermatophytosis Caused by Trichophyton mentagrophytes. Front Microbiol 2020; 11:329. [PMID: 32226417 PMCID: PMC7080852 DOI: 10.3389/fmicb.2020.00329] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Trichophyton mentagrophytes, a zoophilic species, is one of the most frequently isolated dermatophytes in many parts of the world. This study investigated the efficacy of a sophorolipid (SL-YS3) produced by Rhodotorula babjevae YS3 against dermatophytosis caused by T. mentagrophytes. SL-YS3 was characterized by gas chromatography–mass spectrometry (GC–MS) and ultra-performance liquid chromatography, coupled with electrospray mass spectrometry (UPLC-ESI-MS). SL-YS3 comprised of six different fatty acids as the hydrophobic components of constituent congeners and sophorose as the hydrophilic component. Inhibitory effects of purified SL-YS3 against hyphal growth was found to be 85% at a 2 mg ml–1 concentration, and MIC was 1 mg ml–1. Microscopic examination with scanning electron microscopy (SEM), atomic force microscopy, and confocal laser scanning microscopy (CLSM) revealed that SL-YS3 exerts its effect by disrupting cell membrane integrity causing cell death. SL-YS3 was also effective in reducing the biofilms formed by T. mentagrophytes, which was observed spectrophotometrically with crystal-violet staining and further validated with SEM and CLSM studies of treated biofilms. In vivo studies in a mouse model of cutaneous dermatophytosis involving macroscopic observations, percent culture recovery from skin samples, and histopathological studies showed that SL-YS3 could effectively cure the infected mice after 21 days of topical treatment. Terbinafine (TRB) was used as a standard drug in the experiments. We demonstrate, for the first time, the antidermatophytic activity of a sophorolipid biosurfactant. The findings are suggestive that SL-YS3 can be formulated as a novel antifungal compound to treat cutaneous mycoses caused by T. mentagrophytes.
Collapse
Affiliation(s)
- Suparna Sen
- Environmental Biotechnology Laboratory, Resource Management and Environment Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Siddhartha Narayan Borah
- Environmental Biotechnology Laboratory, Resource Management and Environment Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Raghuram Kandimalla
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Arijit Bora
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati, India
| | - Suresh Deka
- Environmental Biotechnology Laboratory, Resource Management and Environment Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
33
|
Ram H, Kumar Sahu A, Said MS, Banpurkar AG, Gajbhiye JM, Dastager SG. A novel fatty alkene from marine bacteria: A thermo stable biosurfactant and its applications. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120868. [PMID: 31319332 DOI: 10.1016/j.jhazmat.2019.120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, a novel thermo stable biosurfactants, 1-Pentanonacontene (C95H190) a fatty alkene and 3-Hydroxy-16-methylheptadecanoic acid (C18H36O3) were isolated from a marine isolate SGD-AC-13. Biosurfactants were produced using 1% yeast extract in tap water as production medium at 24 h in flask and 12 h in bioreactor. Using 16S rRNA gene sequence (1515 bp) and BCL card (bioMérieux VITEK®), strain was identified as Bacillus sp. Crude biosurfactant reduced the surface tension of distilled water to 31.32 ± 0.93 mN/m with CMC value of 0.3 mg/ml. Cell free supernatant showed excellent emulsification and oil displacement activity with stability up to 160 °C, pH 6-12 and 50 g/L NaCl conc. Biosurfactants were characterized using FTIR, TLC, HPLC LC-MS and NMR spectroscopy. Cell free supernatant reduced the contact angle of distilled water droplet from 117° to 52.28° and of 2% pesticide from 78.77° to 73.42° while 750 μg/ml of crude biosurfactant reduced from 66.06° to 56.33° for 2% pesticide and recovered 35% ULO and 12% HWCO from the contaminated sand. To our best of knowledge, this is the first report of thermo stable fatty alkene as a biosurfactant and is structurally different from previously reported, with having potential application in agriculture, oil recovery and bioremediation.
Collapse
Affiliation(s)
- Hari Ram
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Amit Kumar Sahu
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Madhukar S Said
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Arun G Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
| | - Jayant M Gajbhiye
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Syed G Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
34
|
Ma X, Meng L, Zhang H, Zhou L, Yue J, Zhu H, Yao R. Sophorolipid biosynthesis and production from diverse hydrophilic and hydrophobic carbon substrates. Appl Microbiol Biotechnol 2019; 104:77-100. [DOI: 10.1007/s00253-019-10247-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
35
|
Kithur Mohamed S, Asif M, Nazari MV, Baharetha HM, Mahmood S, Yatim ARM, Abdul Majid AS, Abdul Majid AMS. Antiangiogenic activity of sophorolipids extracted from refined bleached deodorized palm olein. Indian J Pharmacol 2019; 51:45-54. [PMID: 31031467 PMCID: PMC6444841 DOI: 10.4103/ijp.ijp_312_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES: Sophorolipids (SLs) are a group of surface-active glycolipids produced by a type of nonpathogenic yeast Candida bombicola in the presence of vegetable oil through fermentation technology. SLs have shown antitumor activity; however, the mechanism of action underlying the anticancer activity of SLs is poorly understood. This work evaluated the anticancer activity of SLs fermented from palm oil by exploring its antiangiogenic activity. MATERIALS AND METHODS: The SLs that were fermented and further characterized for their biochemical activities. Cytotoxicity study was performed to assess cytostatic properties. A series of in vitro and ex vivo angiogenesis assay was also carried out. The relative fold change in the expression of p53 mRNA by SLs was also studied. RESULTS: Altogether, the data show that SLs derived from palm oil fermentation process inhibited neovascularization in the ex vivo tissue segments and also the endothelial cell proliferation between 50% and 65% inhibition as a whole. The palm oil derived SLs also caused downregulation of the suppression level of vascular endothelial growth factor and also upregulate the p53 mRNA level. The analytical studies revealed the presence of high amount of phenolic compounds but with relatively weak antioxidant activity. The gas chromatography-mass spectrometry studies revealed abundant amount of palmitic and oleic acid, the latter an established antiangiogenic agent, and the former being proangiogenic. CONCLUSION: Therefore, it can be concluded from this study that SLs derived from fermented palm oil have potent antiangiogenic activity which may be attributed by its oleic acid component.
Collapse
Affiliation(s)
- Shazmin Kithur Mohamed
- Department of Pharmacology, EMAN Testing and Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Muhammad Asif
- Department of Pharmacology, EMAN Testing and Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mansoureh Vishkaei Nazari
- Department of Pharmacology, EMAN Testing and Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Hussein M Baharetha
- Department of Pharmacology, EMAN Testing and Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Engineering, Faculty of Engineering Technology, University Malaysia Pahang, Gambang, Malaysia
| | - Abdul Rashid M Yatim
- Advanced Oleochemicals Technology Research Division, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | | | - Amin Malik Shah Abdul Majid
- Department of Pharmacology, EMAN Testing and Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.,ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
36
|
Bollmann T, Zerhusen C, Glüsen B, Schörken U. Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Starmerella bombicola and Candida kuoi are known to secrete structurally divergent sophorolipid type glycolipids (SLs) under nitrogen limitation. In the present work SLs were produced in titers of 3.9–78.6 g L−1 with the two yeast strains utilizing stearic, oleic and linoleic acid as substrates. HPLC-ELSD combined with HPLC-MS and NMR spectroscopy was used for qualitative and quantitative analysis of the SL mixtures. While S. bombicola almost exclusively produced lactonic diacetylated SLs with a preference for subterminal fatty acid hydroxylation, C. kuoi synthesized diacetylated, terminally hydroxylated open chain SLs with up to 25% of dimeric and trimeric products. Surface tension measurements showed a higher surface and interface activity of the lactonic products from S. bombicola in comparison to open chain C. kuoi based SLs. The lowest CMC of 5.4 mg L−1 and minimum surface tension at the CMC of 35.9 mN m−1 were obtained for the stearic acid based lactones. Similar tendencies were observed in interfacial tension analysis with 3.6 mN m−1 for oleic acid based lactonic SLs at the interface water/paraffin oil in comparison to 9.4 mN m−1 for the corresponding open-chain SL. The acidic C. kuoi SL mixtures directly exhibited foaming properties whereas the S. bombicola SLs needed alkaline deacetylation and ring opening to display foaming comparable to that of the structurally related alkyl polyglycosides.
Collapse
|
37
|
Isolation and characterization of sophorolipid producing yeast from fruit waste for application as antibacterial agent. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00069-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Senthil Balan S, Ganesh Kumar C, Jayalakshmi S. Physicochemical, structural and biological evaluation of Cybersan (trigalactomargarate), a new glycolipid biosurfactant produced by a marine yeast, Cyberlindnera saturnus strain SBPN-27. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Van Renterghem L, Clicque H, Huyst A, Roelants SL, Soetaert W. Miniaturization of Starmerella bombicola fermentation for evaluation and increasing (novel) glycolipid production. Appl Microbiol Biotechnol 2019; 103:4347-4362. [DOI: 10.1007/s00253-019-09766-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 11/28/2022]
|
40
|
Jia D, Xu S, Sun J, Zhang C, Li D, Lu W. Yarrowia lipolytica construction for heterologous synthesis of α-santalene and fermentation optimization. Appl Microbiol Biotechnol 2019; 103:3511-3520. [DOI: 10.1007/s00253-019-09735-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/09/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
|
41
|
Zulkifli WNFWM, Razak NNA, Yatim ARM, Hayes DG. Acid Precipitation
versus
Solvent Extraction: Two Techniques Leading to Different Lactone/Acidic Sophorolipid Ratios. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Abdul Rashid M. Yatim
- Advanced Oleochemical Technology Division Malaysian Palm Oil Board 43650, Bandar Baru Bangi Selangor Malaysia
| | - Douglas G. Hayes
- Department of Biosystems Engineering and Soil Science University of Tennessee 2506 E. J. Chapman Drive, Knoxville TN 37996‐2531 USA
| |
Collapse
|
42
|
Patel S, Homaei A, Patil S, Daverey A. Microbial biosurfactants for oil spill remediation: pitfalls and potentials. Appl Microbiol Biotechnol 2018; 103:27-37. [DOI: 10.1007/s00253-018-9434-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
|
43
|
Maeng Y, Kim KT, Zhou X, Jin L, Kim KS, Kim YH, Lee S, Park JH, Chen X, Kong M, Cai L, Li X. A novel microbial technique for producing high-quality sophorolipids from horse oil suitable for cosmetic applications. Microb Biotechnol 2018; 11:917-929. [PMID: 30022625 PMCID: PMC6116743 DOI: 10.1111/1751-7915.13297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022] Open
Abstract
Horse oil contains linoleic, palmitoleic and unsaturated fatty acids that are similar to those in human skin, and may therefore be an ideal substance from which to isolate biosurfactants for cosmetic products to improve human skin quality. Herein, an innovative approach was developed to synthesise sophorolipids from horse oil by hydrolysis, followed by fermentation using the yeast Candida bombicola. The yield of sophorolipids from direct fermentation of horse oil and hydrolysed horse oil was 40.6 ± 1.3 g l-1 and 58.4 ± 1.8 g l-1 respectively. To further increase the yield, 30-40 g l-1 glucose was added in a fed-batch fermentation process to maintain the pH between 4.0 and 4.5, resulting in a conversion yield of 71.7 ± 0.8 g l-1 . The purity and structure of the synthesised sophorolipids were analysed by ultra-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. An in vitro human dermal fibroblast model was used as a surrogate for human skin to measure elastase inhibition activity. Antiwrinkle properties of isolated sophorolipids were better than those of horse oil or hydrolysed horse oil in several in vitro assays. Furthermore, no cytotoxicity was observed at a concentration of 50 μg ml-1 , and wound-healing capacity was evident in a cell culture model. Additionally, the synthesised sophorolipids attenuated lipopolysaccharide-induced expression of inflammatory cytokines in macrophages, and efficiently inhibited several strains of bacteria and yeast. In conclusion, fed-batch fermentation of hydrolysed horse oil is a novel and efficient approach for producing high-quality and high-yield sophorolipids that exhibit great potential as cosmetic ingredients.
Collapse
Affiliation(s)
- Yoojae Maeng
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Collaborative Innovation Center of BiomedicineWenzhou Medical University‐Wenzhou UniversityWenzhou325035China
| | - Kyoung Tae Kim
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Collaborative Innovation Center of BiomedicineWenzhou Medical University‐Wenzhou UniversityWenzhou325035China
| | - Xuan Zhou
- Ningbo First HospitalNingbo315000China
| | - Litai Jin
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Collaborative Innovation Center of BiomedicineWenzhou Medical University‐Wenzhou UniversityWenzhou325035China
| | - Ki Soo Kim
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- BiolandBiotec. Co., Ltd.Zhangjiang Modern Medical Device ParkPudong, Shanghai201203China
| | - Young Heui Kim
- SK Bioland59, Songjeongni 2‐gil, Byeongchen, Dongnam, CheonanChungnam31257Korea
| | - Suyeon Lee
- SK Bioland59, Songjeongni 2‐gil, Byeongchen, Dongnam, CheonanChungnam31257Korea
| | - Ji Ho Park
- SK Bioland162, Gwahaksaneop 3‐ro, OchangCheongwon, Cheongju, Chungbuk28125Korea
| | - Xiuyu Chen
- BiolandBiotec. Co., Ltd.Zhangjiang Modern Medical Device ParkPudong, Shanghai201203China
| | - Mingxia Kong
- BiolandBiotec. Co., Ltd.Zhangjiang Modern Medical Device ParkPudong, Shanghai201203China
| | - Lu Cai
- Departments of Pediatrics, Radiation Oncology, Pharmacology and ToxicologyPediatric Research InstituteUniversity of LouisvilleLouisvilleKY40202USA
| | - Xiaokun Li
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Collaborative Innovation Center of BiomedicineWenzhou Medical University‐Wenzhou UniversityWenzhou325035China
| |
Collapse
|
44
|
Rocha e Silva NMP, Meira HM, Almeida FCG, Soares da Silva RDCF, Almeida DG, Luna JM, Rufino RD, Santos VA, Sarubbo LA. Natural Surfactants and Their Applications for Heavy Oil Removal in Industry. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1474477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nathalia Maria P. Rocha e Silva
- Northeast Biotechnology Network, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Hugo M. Meira
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Fabíola Carolina G. Almeida
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Rita de Cássia F. Soares da Silva
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Darne G. Almeida
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Juliana M. Luna
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raquel D. Rufino
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Valdemir A. Santos
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Leonie A. Sarubbo
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
45
|
Zhang Y, Jia D, Sun W, Yang X, Zhang C, Zhao F, Lu W. Semicontinuous sophorolipid fermentation using a novel bioreactor with dual ventilation pipes and dual sieve-plates coupled with a novel separation system. Microb Biotechnol 2018; 11:455-464. [PMID: 29235728 PMCID: PMC5902327 DOI: 10.1111/1751-7915.13028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/08/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022] Open
Abstract
Sophorolipids (SLs) are biosurfactants with widespread applications. The yield and purity of SLs are two important factors to be considered during their commercial large-scale production. Notably, SL accumulation causes an increase in viscosity, decrease in dissolved oxygen and product inhibition in the fermentation medium. This inhibits the further production and purification of SLs. This describes the development of a novel integrated system for SL production using Candida albicans O-13-1. Semicontinuous fermentation was performed using a novel bioreactor with dual ventilation pipes and dual sieve-plates (DVDSB). SLs were separated and recovered using a newly designed two-stage separation system. After SL recovery, the fermentation broth containing residual glucose and oleic acid was recycled back into the bioreactor. This novel approach considerably alleviated the problem of product inhibition and accelerated the rate of substrate utilization. Production of SLs achieved was 477 g l-1 , while their productivity was 1.59 g l-1 h-1 . Purity of SLs improved by 23.3%, from 60% to 74%, using DVDSB with the separation system. The conversion rate of carbon source increased from 0.5 g g-1 (in the batch fermentation) to 0.6 g g-1 . These results indicated that the integrated system could improve the efficiency of production and purity of SLs.
Collapse
Affiliation(s)
- Yaguang Zhang
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Dan Jia
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Wanqi Sun
- Department of Chemical and Biological EngineeringThe University of Alabama285 Hardaway Hall, 401 7th AvenueTuscaloosaAL35487USA
| | - Xue Yang
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Chuanbo Zhang
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Fanglong Zhao
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Wenyu Lu
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| |
Collapse
|
46
|
Camargo FP, Menezes AJD, Tonello PS, Dos Santos ACA, Duarte ICS. Characterization of biosurfactant from yeast using residual soybean oil under acidic conditions and their use in metal removal processes. FEMS Microbiol Lett 2018; 365:4975271. [DOI: 10.1093/femsle/fny098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/13/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Franciele Pereira Camargo
- Graduate Program in Biotechnology and Environmental Monitoring, Federal University of São Carlos- UFSCar, João Leme dos Santos Highway, Km 101, 18052-780, Sorocaba, São Paulo, Brazil
| | - Aparecido Júnior de Menezes
- Graduate Program in Material Sciences, Universidade Federal de São Carlos UFSCar, Rod. João Leme dos Santos, Km 101, 18052-780, Sorocaba, São Paulo, Brazil
| | - Paulo Sérgio Tonello
- Graduate Program in Environmental Sciences, São Paulo State University (UNESP), Avenue Three March 511, Alto da Boa Vista, 18087-180, Sorocaba, São Paulo, Brazil
| | - André Cordeiro Alves Dos Santos
- Department of Biology, Federal University of São Carlos UFSCar, João Leme dos Santos Highway, Km 101, 18052-780, Sorocaba, São Paulo, Brazil
| | - Iolanda Cristina Silveira Duarte
- Graduate Program in Biotechnology and Environmental Monitoring, Federal University of São Carlos- UFSCar, João Leme dos Santos Highway, Km 101, 18052-780, Sorocaba, São Paulo, Brazil
- Department of Biology, Federal University of São Carlos UFSCar, João Leme dos Santos Highway, Km 101, 18052-780, Sorocaba, São Paulo, Brazil
| |
Collapse
|
47
|
Al-Kashef A, Shaban S, Nooman M, Rashad M. Effect of Fungal Glycolipids Produced by a Mixture of Sunflower Oil Cake and Pineapple Waste as Green Corrosion Inhibitors. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/jest.2018.119.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
A Statistical Approach to Optimize Cold Active β-Galactosidase Production by an Arctic Sediment Pscychrotrophic Bacteria, Enterobacter ludwigii (MCC 3423) in Cheese Whey. Catal Letters 2017. [DOI: 10.1007/s10562-017-2257-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Franco Marcelino PR, da Silva VL, Rodrigues Philippini R, Von Zuben CJ, Contiero J, dos Santos JC, da Silva SS. Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases. PLoS One 2017; 12:e0187125. [PMID: 29125845 PMCID: PMC5695273 DOI: 10.1371/journal.pone.0187125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/13/2017] [Indexed: 01/16/2023] Open
Abstract
Biosurfactants are microbial metabolites with possible applications in various industrial sectors that are considered ecofriendly molecules. In recent years, some studies identified these compounds as alternatives for the elimination of vectors of tropical diseases, such as Aedes aegypti. The major bottlenecks of biosurfactant industrial production have been the use of conventional raw materials that increase production costs as well as opportunistic or pathogenic bacteria, which restrict the application of these biomolecules. The present study shows the potential of hemicellulosic sugarcane bagasse hydrolysate as a raw material for the production of a crystalline glycolipidic BS by Scheffersomyces stipitis NRRL Y-7124, which resulted in an emulsifying index (EI24) of 70 ± 3.4% and a superficial tension of 52 ± 2.9 mN.m-1. Additionally, a possible new application of these compounds as biolarvicides, mainly against A. aegypti, was evaluated. At a concentration of 800 mg.L-1, the produced biosurfactant caused destruction to the larval exoskeletons 12 h after application and presented an letal concentration (LC50) of 660 mg.L-1. Thus, a new alternative for biosurfactant production using vegetal biomass as raw material within the concept of biorefineries was proposed, and the potential of the crystalline glycolipidic biosurfactant in larvicidal formulations against neglected tropical disease vectors was demonstrated.
Collapse
Affiliation(s)
| | - Vinícius Luiz da Silva
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University (Campus Rio Claro), Rio Claro, Brazil
| | | | - Cláudio José Von Zuben
- Department of Zoology, Biosciences Institute, São Paulo State University (Campus Rio Claro), Rio Claro, Brazil
| | - Jonas Contiero
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University (Campus Rio Claro), Rio Claro, Brazil
| | - Júlio César dos Santos
- Department of Biotechnology, Engineering School of Lorena, São Paulo University, Lorena, Brazil
| | | |
Collapse
|
50
|
Shah MUH, Sivapragasam M, Moniruzzaman M, Talukder MMR, Yusup SB, Goto M. Production of sophorolipids by Starmerella bombicola yeast using new hydrophobic substrates. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|