1
|
Tian H, Chen H, Yin X, Lv M, Wei L, Zhang Y, Jia S, Li J, Song H. CORM-3 Inhibits the Inflammatory Response of Human Periodontal Ligament Fibroblasts Stimulated by LPS and High Glucose. J Inflamm Res 2024; 17:4845-4863. [PMID: 39070135 PMCID: PMC11277920 DOI: 10.2147/jir.s460954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Diabetes has been recognized as an independent risk factor for periodontitis. Increasing evidences indicate that hyperglycemia aggravates inflammatory response of human periodontal ligament cells (hPDLCs). Carbon monoxide-releasing molecule-3 (CORM-3) is a water-soluble compound that can release carbon monoxide (CO) in a controllable manner. CORM-3 has been shown the anti-inflammatory effect in different cell lineages. Methods We stimulated periodontal ligament cells with LPS and high glucose. The expression of inflammatory cytokine was detected by ELISA. RT-qPCR, Western blot and immunofluorescence were used to detect the expression of TLR2, TLR4, RAGE and the activation of NF-κB pathway. We performed silencing and overexpression treatment of RAGE targeting the role of RAGE. We performed the immunostaining of paraffin sections of the periodontitis model in diabetes rats. Results The results showed that CORM-3 significantly inhibited the expression of inflammatory cytokine in hPDLCs stimulated with LPS and high glucose. CORM-3 also inhibited LPS and high glucose-induced expression of RAGE/NF-κB pathway and TLR2/TLR4/NF-κB pathway. Silence of RAGE resulted in significantly decreased expression of proteins above. Overexpression of RAGE significantly enhanced the expression of these factors. CORM-3 abrogated the effect of RAGE partially. In animal model, CORM-3 suppressed the inflammatory response of periodontal tissues in experimental periodontitis of diabetic rats. Discussion Our research proved CORM-3 reduced the inflammatory response via RAGE/NF-κB pathway and TLR2/TLR4/NF-κB pathway in the process of high glucose exacerbated periodontitis. These findings demonstrated the role of RAGE in the process of high glucose exacerbated periodontitis and suggested that CORM3 be a potential therapeutic strategy for the treatment of diabetes patients with periodontitis.
Collapse
Affiliation(s)
- Haoyang Tian
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| | - Hui Chen
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Xiaochun Yin
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Meiyi Lv
- Department of Pediatric Dentistry, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Lingling Wei
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| | - Yuna Zhang
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shuhan Jia
- Department of Stomatology, Yancheng NO. 1 People’s Hospital, Yancheng, People’s Republic of China
| | - Jingyuan Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| | - Hui Song
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| |
Collapse
|
2
|
Aryal A. C. S, Nassar M, Rani K. G. A, Al-Rawi AM, Nassar R, Islam MS. Phytic acid effect on periodontal ligament fibroblast: An in-vitro study. PLoS One 2023; 18:e0295612. [PMID: 38096253 PMCID: PMC10721015 DOI: 10.1371/journal.pone.0295612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/26/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVES This study evaluated phytic acid (IP6) effect on the viability, alkaline phosphatase (ALP) activity and calcium release of human periodontal ligament (HPDL) cells in optimal (OGL) and elevated glucose level (EGL) in cell culture media. MATERIALS AND METHODS Cells were seeded in OGL (1000mg/L) or EGL (4500 mg/L) media. IP6 was added at 0.005%, 0.01% or 0.02% concentrations for 24 or 48h, and XTT assay was performed. Cell differentiation and calcium release in presence of 0.02% IP6 in OGL or EGL in non-osteogenic or osteogenic media were analyzed using ALP assay and alizarin red staining, respectively. RESULTS In OGL, IP6 enhanced the viability of the cells at both exposure times (P<0.05). However, IP6 lowered the viability of the cells with the presence of EGL compared to the control at both exposure times, except for 0.02% IP6 which showed comparable viability to the control at 48 h. In OGL and EGL, ALP activity of the cells was not affected by the presence of IP6 in non-osteogenic media; however, in osteogenic media IP6 lowered the ALP activity. Meanwhile, calcium release was the highest with IP6 within osteogenic media of EGL. CONCLUSIONS IP6 effects on the HPDL cells were dependent on IP6 concentration, time of exposure, glucose levels and the osteogenic condition of the media. CLINICAL RELEVANCE This study gives insights on the potential therapeutic effect of IP6 as adjunctive periodontal therapy in patients with diabetes.
Collapse
Affiliation(s)
- Smriti Aryal A. C.
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Aghila Rani K. G.
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed M. Al-Rawi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Md. Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| |
Collapse
|
3
|
He W, Fu Y, Yao S, Huang L. Programmed cell death of periodontal ligament cells. J Cell Physiol 2023; 238:1768-1787. [PMID: 37566596 DOI: 10.1002/jcp.31091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
The periodontal ligament is a crucial tissue that provides support to the periodontium. Situated between the alveolar bone and the tooth root, it consists primarily of fibroblasts, cementoblasts, osteoblasts, osteoclasts, periodontal ligament stem cells (PDLSCs), and epithelial cell rests of Malassez. Fibroblasts, cementoblasts, osteoblasts, and osteoclasts are functionally differentiated cells, whereas PDLSCs are undifferentiated mesenchymal stem cells. The dynamic development of these cells is intricately linked to periodontal changes and homeostasis. Notably, the regulation of programmed cell death facilitates the clearance of necrotic tissue and plays a pivotal role in immune response. However, it also potentially contributes to the loss of periodontal supporting tissues and root resorption. These findings have significant implications for understanding the occurrence and progression of periodontitis, as well as the mechanisms underlying orthodontic root resorption. Further, the regulation of periodontal ligament cell (PDLC) death is influenced by both systemic and local factors. This comprehensive review focuses on recent studies reporting the mechanisms of PDLC death and related factors.
Collapse
Affiliation(s)
- Wei He
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Fu
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Song Yao
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
4
|
Aldoss A, Lambarte R, Alsalleeh F. High-Glucose Media Reduced the Viability and Induced Differential Pro-Inflammatory Cytokines in Human Periodontal Ligament Fibroblasts. Biomolecules 2023; 13:690. [PMID: 37189437 PMCID: PMC10135982 DOI: 10.3390/biom13040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Hyperglycemic condition in diabetic patients tends to exacerbate periodontitis severity. Thus, the influence of hyperglycemia on the biological and inflammatory response of periodontal ligament fibroblasts (PDLFs) needs to be elucidated. In this study, PDLFs were seeded in media containing glucose concentrations (5.5, 25, or 50 mM) and stimulated with 1 µg/mL of lipopolysaccharide (LPS). PDLFs' viability, cytotoxicity, and the migration ability were determined. The mRNA expression of Interleukin (IL)-6, IL-10, and IL-23 (p19/p40), and Toll-like receptor (TLR)-4 were analyzed; at 6 and 24 h, protein expression of IL-6 and IL-10 was also determined. PDLFs grown in 50 mM glucose medium showed lower viability. The 5.5 mM glucose led to the highest percentage of wound closure compared to 25 mM and 50 mM glucose with/without LPS. Additionally, 50 mM glucose with LPS exhibited the least migration ability among all groups. The expression of IL-6 was amplified significantly in LPS-stimulated cells in 50 mM glucose medium. IL-10 was constitutively expressed in different glucose concentrations, and LPS stimulation decreased it. IL-23 p40 was up-regulated after LPS stimulation in 50 mM glucose concentration. TLR-4 was highly expressed after LPS stimulation in all glucose concentrations. Hyperglycemic conditions limit PDLF proliferation and migration, and enhance the expression of certain pro-inflammatory cytokines to induce periodontitis.
Collapse
Affiliation(s)
- Alaa Aldoss
- Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
- Dental University Hospital, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Rhodanne Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif Bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Fahd Alsalleeh
- Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| |
Collapse
|
5
|
Zhu C, Zhao Y, Pei D, Liu Z, Liu J, Li Y, Yu S, Ma L, Sun J, Li A. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose. BMC Oral Health 2022; 22:144. [PMID: 35473620 PMCID: PMC9044577 DOI: 10.1186/s12903-022-02167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/11/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Oxidative stress mediated by hyperglycemia damages cell-reparative processes such as mitophagy. Down-regulation of mitophagy is considered to be a susceptible factor for diabetes mellitus (DM) and its complications. However, the role of mitophagy in DM-associated periodontitis has not been fully elucidated. Apoptosis of human gingival epithelial cells (hGECs) is one of the representative events of DM-associated periodontitis. Thus, this study aimed to investigate PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy activated in the process of high glucose (HG)-induced hGECs apoptosis. METHODS For dose-response studies, hGECs were incubated in different concentrations of glucose (5.5, 15, 25, and 50 mmol/L) for 48 h. Then, hGECs were challenged with 25 mmol/L glucose for 12 h and 48 h, respectively. Apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL), caspase 9 and mitochondrial membrane potential (MMP). Subsequently, autophagy was evaluated by estimating P62, LC3 II mRNA levels, LC3 fluorescent puncta and LC3-II/I ratio. Meanwhile, the involvement of PINK1-mediated mitophagy was assessed by qRT-PCR, western blotting and immunofluorescence. Finally, hGECs were transfected with shPINK1 and analyzed by MMP, caspase 9 and annexin V-FITC apoptosis. RESULTS The number of TUNEL-positive cells and caspase 9 protein were significantly increased in cells challenged with HG (25 mmol/L) for 48 h (HG 48 h). MMP was impaired both at HG 12 h and HG 48 h, but the degree of depolarization was more serious at HG 48 h. The autophagy improved as the amount of LC3 II increased and p62 decreased in HG 12 h. During this process, HG 12 h treatment induced PINK1-mediated mitophagy. PINK1 silencing with HG 12 h resulted in MMP depolarization and cell apoptosis. CONCLUSIONS These results suggested that loss of the PINK1 gene may cause mitochondrial dysfunction and increase sensitivity to HG-induced apoptosis of hGECs at the early stage. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose.
Collapse
Affiliation(s)
- Chunhui Zhu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ying Zhao
- grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Dandan Pei
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Zhongbo Liu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Jin Liu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ye Li
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Shuchen Yu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Lingyan Ma
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Junyi Sun
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Special Clinic, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
The Effect of Diabetes Mellitus on IGF Axis and Stem Cell Mediated Regeneration of the Periodontium. Bioengineering (Basel) 2021; 8:bioengineering8120202. [PMID: 34940355 PMCID: PMC8698546 DOI: 10.3390/bioengineering8120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontitis and diabetes mellitus (DM) are two of the most common and challenging health problems worldwide and they affect each other mutually and adversely. Current periodontal therapies have unpredictable outcome in diabetic patients. Periodontal tissue engineering is a challenging but promising approach that aims at restoring periodontal tissues using one or all of the following: stem cells, signalling molecules and scaffolds. Mesenchymal stem cells (MSCs) and insulin-like growth factor (IGF) represent ideal examples of stem cells and signalling molecules. This review outlines the most recent updates in characterizing MSCs isolated from diabetics to fully understand why diabetics are more prone to periodontitis that theoretically reflect the impaired regenerative capabilities of their native stem cells. This characterisation is of utmost importance to enhance autologous stem cells based tissue regeneration in diabetic patients using both MSCs and members of IGF axis.
Collapse
|
7
|
Martinon P, Fraticelli L, Giboreau A, Dussart C, Bourgeois D, Carrouel F. Nutrition as a Key Modifiable Factor for Periodontitis and Main Chronic Diseases. J Clin Med 2021; 10:jcm10020197. [PMID: 33430519 PMCID: PMC7827391 DOI: 10.3390/jcm10020197] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Nutrition is recognized as an essential component in the prevention of a number of chronic diseases, including periodontal disease. Based on these considerations, a better understanding is required regarding how the diet, and more particularly the intake of macronutrients and micronutrients, could impact the potential relationship between nutrition and periodontal diseases, periodontal diseases and chronic diseases, nutrition and chronic diseases. To overcome this complexity, an up-to-date literature review on the nutriments related to periodontal and chronic diseases was performed. High-sugar, high-saturated fat, low-polyols, low-fiber and low-polyunsaturated-fat intake causes an increased risk of periodontal diseases. This pattern of nutrients is classically found in the Western diet, which is considered as an ‘unhealthy’ diet that causes cardiovascular diseases, diabetes and cancers. Conversely, low-sugar, high-fiber and high-omega-6-to-omega-3 fatty acid ratio intake reduces the risk of periodontal diseases. The Mediterranean, DASH, vegetarian and Okinawa diets that correspond to these nutritional intakes are considered as ‘healthy’ diets, reducing this risk of cardiovascular diseases, diabetes and cancers. The role of micronutrients, such as vitamin D, E, K and magnesium, remains unclear, while others, such as vitamin A, B, C, calcium, zinc and polyphenols have been shown to prevent PDs. Some evidence suggests that probiotics and prebiotics could promote periodontal health. Periodontal and chronic diseases share, with a time delay, nutrition as a risk factor. Thus, any change in periodontal health should be considered as a warning signal to control the dietary quality of patients and thus reduce the risk of developing chronic diseases later on.
Collapse
Affiliation(s)
- Prescilla Martinon
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Laurie Fraticelli
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Agnes Giboreau
- Institute Paul Bocuse Research Center, 69130 Ecully, France;
| | - Claude Dussart
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Denis Bourgeois
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Florence Carrouel
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
- Correspondence: ; Tel.: +33-4-78-78-57-44
| |
Collapse
|
8
|
Monteiro MM, Lima CR, Gomes CC, Cruz MC, Horliana ACRT, Santos MF. Lowered Expression of MicroRNAs 221 and 222 Mediate Apoptosis Induced by High Glucose in Human Periodontal Ligament Cells. Cell Biochem Biophys 2020; 78:391-398. [PMID: 32681442 DOI: 10.1007/s12013-020-00932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Impaired periodontal healing is a common complication of diabetes mellitus (DM), frequently related to hyperglycemia. MicroRNAs 221 and 222 have been studied as biomarkers for inflammatory diseases, including diabetes, but their role in the periodontal ligament (PL) is unknown. The effects of high glucose on human PL cells death were studied, as well as the expression of microRNA-221 and microRNA-222, potentially modulated by DM. Cells were obtained from the premolar teeth of young humans and cultured for 7 days under different glucose concentrations (5 or 30 mM). MicroRNAs-221/222 expressions were evaluated by real-time RT-PCR and apoptosis by TUNEL assays. Caspase-3 expression was studied by western blotting and immunocytochemistry. High glucose increased apoptosis and caspase-3 protein expression by about 3×. MicroRNA-221 and microRNA-222 expressions decreased by nearly 40% under high glucose. MicroRNA-221 and microRNA-222 inhibition using antagomiRs increased apoptosis by 2-3×, while the expression of caspase-3, a validated target for these microRNAs, was increased by 50%. The overexpression of both microRNAs using miR mimics in high glucose cells did no effect on apoptosis but increased caspase-3 expression by 30%. In conclusion, high glucose induces apoptosis of human PL cells potentially through a reduction of microRNA-221 and microRNA-222 expression and elevation of caspase-3.
Collapse
Affiliation(s)
- Mariana M Monteiro
- Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Cilene R Lima
- Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de Sao Paulo, Sao Paulo, SP, Brasil.,Universidade Cruzeiro do Sul, Sao Paulo, SP, Brasil
| | - Cibele C Gomes
- Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Mario C Cruz
- Instituto de Ciencias Biomedicas, Centro de Facilidades de Apoio a Pesquisa (CEFAP-USP), Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Anna C R T Horliana
- Programa de Pos-Graduacao em Biofotonica Aplicada a Ciencias da Saude, Universidade Nove de Julho, Sao Paulo, Brasil
| | - Marinilce F Santos
- Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de Sao Paulo, Sao Paulo, SP, Brasil.
| |
Collapse
|
9
|
Abstract
The susceptibility and severity of periodontal diseases is made more severe by diabetes, with the impact on the disease process inversely proportional to the level of glycemic control. Although type 1 diabetes mellitus and type 2 diabetes mellitus have different etiologies, and their impact on bone is not identical, they share many of the same complications. Studies in animals and humans agree that both forms of diabetes increase inflammatory events in periodontal tissue, impair new bone formation, and increase expression of RANKL in response to bacterial challenge. High levels of glucose, reactive oxygen species, and advanced glycation end-products are found in the periodontium of diabetic individuals and lead to increased activation of nuclear factor-kappa B and expression of inflammatory cytokines such as tumor necrosis factor and interleukin-1. Studies in animals, moreover, suggest that there are multiple cell types in periodontal tissues that are affected by diabetes, including leukocytes, vascular cells, mesenchymal stem cells, periodontal ligament fibroblasts, osteoblasts, and osteocytes. The etiology of periodontal disease involves the host response to bacterial challenge that is affected by diabetes, which increases the expression of RANKL and reduces coupled bone formation. In addition, the inflammatory response also modifies the oral microbiota to render it more pathogenic, as demonstrated by increased inflammation and bone loss in animals where bacteria are transferred from diabetic donors to germ-free hosts compared with transfer from normoglycemic donors. This approach has the advantage of not relying upon limited knowledge of the specific bacterial taxa to determine pathogenicity, and examines the overall impact of the microbiota rather than the presumed pathogenicity of a few bacterial groups. Thus, animal studies have provided new insights into pathogenic mechanisms that identify cause-and-effect relationships that are difficult to perform in human studies.
Collapse
Affiliation(s)
- Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhenjiang Ding
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - Yingming Yang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
High Glucose Exacerbates TNF- α-Induced Proliferative Inhibition in Human Periodontal Ligament Stem Cells through Upregulation and Activation of TNF Receptor 1. Stem Cells Int 2020; 2020:4910767. [PMID: 32089705 PMCID: PMC7025077 DOI: 10.1155/2020/4910767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 01/04/2023] Open
Abstract
Objective This research is aimed at investigating how high glucose affects the proliferation and apoptosis in periodontal ligament stem cells (PDLSCs) in the presence of TNF-α. Methods PDLSCs obtained from periodontal healthy permanent teeth were treated under either high-glucose condition (30 mmol/L, G30 group) or normal glucose condition (5.6 mmol/L, G5.6 group) in the presence or absence of TNF-α (10 ng/ml) for 2 to 6 days. Cell proliferation and cell cycle were evaluated by CCK-8, EdU incorporation assay, and flow cytometry. Cell apoptosis was assessed by annexin V/PI staining. Protein expression was detected by western blotting. Cellular ROS expression was evaluated by CellROX labeling and flow cytometry. Specific antibodies targeting TNFR1 and TNFR2 were used to block TNF-α signaling. Vitamin C was also used to verify if the blockage of ROS can rescue PDLSCs in the presence of high glucose and TNF-α. Results CCK-8 assay showed that high glucose exacerbated TNF-α-induced cell viability inhibition (57.0%, 85.2%, and 100% for the G30+TNF-α group, G5.6+TNF-α group, and control group, respectively) on day 6. High glucose increased protein expression of TNFR1 compared with the control group on day 2 (1.24-fold) and day 6 (1.26-fold). Blocking TNFR1 totally reversed the proliferative inhibition in G30+TNF-α group. The addition of vitamin C or TNFR1 antibody totally reversed the elevation of intracellular ROS expression caused by high glucose and TNF-α. Vitamin C partially restored cell proliferation in the presence of high glucose and TNF-α. Conclusion High glucose exacerbates TNF-α-induced proliferative inhibition in human periodontal ligament stem cells through the upregulation and activation of TNF receptor 1. Inhibition of intracellular ROS expression by vitamin C partially rescues PDLSCs in terms of cell proliferation.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Diabetes has a detrimental effect on bone, increasing the risk of fracture and formation of osteolytic lesions such as those seen in periodontitis. Several diabetic complications are caused by diabetes-enhanced inflammation. This review examines mechanisms by which IL-17 contributes to diabetes-enhanced periodontitis and other effects of IL-17 on bone. RECENT FINDINGS IL-17 upregulates anti-bacterial defenses, yet its expression is also linked to a destructive host response in the periodontium. Periodontal disease is caused by bacteria that stimulate an inflammatory response. Diabetes-enhanced IL-17 increases gingival inflammation, which alters the composition of the oral microbiota to increase its pathogenicity. In addition, IL-17 can induce osteoclastogenesis by upregulation of TNF and RANKL in a number of cell types, and IL-17 has differential effects on osteoblasts and their progenitors. Increased IL-17 production caused by diabetes alters the pathogenicity of the oral microbiota and can promote periodontal bone resorption.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th St, Philadelphia, PA, 19104, USA
| | - Xiyan Pei
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th St, Philadelphia, PA, 19104, USA
- First Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 37 Xishiku Avenue, Xicheng District, Beijing, 100034, China
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Liu HJ, Liu XY, Jing DB. Icariin induces the growth, migration and osteoblastic differentiation of human periodontal ligament fibroblasts by inhibiting Toll-like receptor 4 and NF-κB p65 phosphorylation. Mol Med Rep 2018; 18:3325-3331. [PMID: 30066868 PMCID: PMC6102717 DOI: 10.3892/mmr.2018.9302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
The proliferation, migration and differentiation capacities of human periodontal ligament fibroblasts (HPDLCs) are important for the treatment of periodontal diseases. The aim of the present study was to investigate whether icariin could promote these abilities in HPDLCs, and explore the cellular mechanisms therein. The results indicated that icarrin markedly blocked apoptosis, and increased the viability and migration of HPDLCs, particularly at the concentrations of 20 and 50 µM. In addition, icariin significantly promoted HPDLCs to synthesize extracellular matrix, which was reflected by the decreased expression of matrix matalloproteinase-1 and increased expression of tissue inhibitor of metalloproteinase-1. Furthermore, the levels of bone morphogenetic protein 2, collagen I, osteoprotegerin and alkaline phosphatase were markedly elevated by icariin, indicating that icariin was able to promote the osteogenic differentiation capability of HPDLCs. Icariin also inactivated the Toll-like receptor 4 (TLR)-4/nuclear factor (NF)-κB signaling pathway by suppressing the expression levels of TLR-4 and phosphorylated p65, and by blocking p65 nuclear translocation. These results suggested that icarrin increased the survival, migration and osteoblastic differentiation of HPDLCs by inhibiting the TLR-4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hai-Jiang Liu
- Department of Endodontics, Shanghai Stomatological Hospital, Shanghai 200001, P.R. China
| | - Xue-Yang Liu
- Department of Stomatology, Gongli Hospital, Shanghai 200135, P.R. China
| | - De-Bao Jing
- Department of Stomatology, Gongli Hospital, Shanghai 200135, P.R. China
| |
Collapse
|
13
|
Zou YL, Luo WB, Xie L, Mao XB, Wu C, You ZP. Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from high glucose-induced apoptosis. Endocrine 2018; 60:445-457. [PMID: 29564753 DOI: 10.1007/s12020-018-1575-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/04/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Diabetic retinopathy (DR) is a major vision threatening disease mainly induced by high glucose. Despite great efforts were made to explore the etiology of DR, the exact mechanism responsible for its pathogenesis remains elusive. METHODS In our study, we constructed diabetic rats via Streptozotocin (STZ) injection. TUNEL assay was employed to examine retinal cell apoptosis. The levels of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed via flow cytometry. The mRNA and protein levels of mitochondrial respiratory chain were investigated by RT-qPCR and western blot. RESULTS Compared with normal rats, the retinal cell apoptosis rate in diabetic rats was significantly upregulated. What's more, the signals of 8-OHdG and the levels of Cytochrome C in diabetic rats were enhanced; however, the MnSOD signals and NADPH-1 levels were reduced. We investigated the effect of mitochondrialy targeted hOGG1 (MTS-hOGG1) on the primary rRECs under high glucose. Compared with vector-transfected cells, MTS-hOGG1-expressing cells blocked high glucose-induced cell apoptosis, the loss of MMP and the overproduction of ROS. In addition, under high glucose, MTS-hOGG1 transfection blocked the expression of Cytochrome C, but enhanced the expression of cytochrome c oxidase subunit 1 and NADPH-1. CONCLUSIONS These findings indicated that high glucose induced cell apoptosis by causing the loss of MMP, the overproduction of ROS and mtDNA damage. Targeting DNA repair enzymes hOGG1 in mitochondria partly mitigated the high glucose-induced consequences, which shed new light for DR therapy.
Collapse
Affiliation(s)
- Yu-Ling Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Wen-Bin Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Lin Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Xin-Bang Mao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Zhi-Peng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
14
|
Li J, Wang B, Zhou G, Yan X, Zhang Y. Tetrahydroxy Stilbene Glucoside Alleviates High Glucose-Induced MPC5 Podocytes Injury Through Suppression of NLRP3 Inflammasome. Am J Med Sci 2018; 355:588-596. [PMID: 29891042 DOI: 10.1016/j.amjms.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tetrahydroxy stilbene glucoside (TSG) is an active ingredient of Heshouwu and is an antioxidant. The underlying mechanisms of the renoprotective effect of TSG in diabetic nephropathy have not been previously reported. In this study, we investigated the mechanisms of TSG in preventing podocytes injury in high glucose (HG) condition. METHODS Cultured mouse podocytes (MPC5) were incubated in HG (30mmol/L) plus various concentration of TSG (0.1, 1 and 10μM) for 48 hours. Reactive oxygen species (ROS) production, malondialdehyde (MDA) levels, terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP-biotin nick end-labeling (TUNEL) fluorescence intensity, caspase-3 activity and the mRNA expression of nephrin in cultured podocytes were determined. The protein expression of Nod-like receptor protein 3 (NLRP3) inflammsome, interleukin-1β (IL-1β) and nephrin was detected by Western blot. RESULTS When the podocytes were incubated with various concentrations of TSG under HG conditions for 48 hours, TSG decreased ROS production, MDA levels, TUNEL fluorescence intensity and caspase-3 activity, but increased cell viability and the expression of nephrin in HG-induced podocytes in a dose-dependent manner. Subsequently, the podocytes treated with TSG at 10 μΜ decreased the expression of NLRP3 inflammasome and IL-1β compared with that of control. Furthermore, the podocytes transfected with NLRP3- small interfering RNA (siRNA) exhibited a significant decrease in the expression of caspase-1 and IL-1β, but exhibited a significant increase in the expression of nephrin. Eventually, TSG significantly increased the expression of nephrin in IL-1β-treated podocytes. CONCLUSIONS TSG attenuates high glucose-induced cell apoptosis in vitro partly through the suppression of NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Jinfeng Li
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China
| | - Bing Wang
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China
| | - Guangjie Zhou
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China
| | - Xiujuan Yan
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China
| | - Yuan Zhang
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China.
| |
Collapse
|
15
|
Lipopolysaccharide-induced suppression of periodontal ligament cell proliferation and apoptosis are strengthened under high glucose conditions. Arch Oral Biol 2017; 79:70-76. [DOI: 10.1016/j.archoralbio.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022]
|
16
|
Wiener RC, Shen C, Findley PA, Sambamoorthi U, Tan X. The association between diabetes mellitus, sugar-sweetened beverages, and tooth loss in adults: Evidence from 18 states. J Am Dent Assoc 2017; 148:500-509.e4. [PMID: 28483048 DOI: 10.1016/j.adaj.2017.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sugar-sweetened beverages (SSBs) are dietary sources of sugar that are factors in caries development and tooth loss. Dietary sugar also is linked to diabetes mellitus (DM). There is limited research related to SSBs and tooth loss in people with DM. The authors investigated the association between SSBs and tooth loss as it related to the presence or absence of DM. METHODS The authors used a cross-sectional design with data reported by adults (18 years and older) who responded to the 2012 Behavior Risk Factor Surveillance System questionnaire, which was used in 18 states (N = 95,897; 14,043 who had DM and 81,854 who did not have DM). The authors conducted χ2 and logistic regression analyses to determine associations related to DM status. RESULTS Overall, 12.3% of the survey respondents had DM, 15.5% had 6 or more teeth extracted, and 22.6% reported that they consumed 1 or more SSB daily. In the adjusted analyses, among adults who had DM, those who consumed at least 2 SSBs daily were more likely to have had 6 or more teeth extracted than those who reported that they did not consume SSBs (adjusted odds ratio, 2.35; 95% confidence interval, 1.37 to 4.01; P = .0018). Among adults who did not have DM, those who consumed more than 1 but fewer than 2 SSBs per day were more likely to have had at least 6 teeth extracted (adjusted odds ratio, 1.46; 95% confidence interval, 1.21 to 1.77; P < .0001). CONCLUSIONS The authors found that, among adults with DM, consuming 2 or more SSBs per day was associated with having had 6 or more teeth extracted. PRACTICAL IMPLICATIONS Dietary sugar is a concern for oral and systemic health; however, a strong, independent relationship between the number of teeth extracted and a single source of dietary sugar is not adequate to explain the complexity of tooth loss. Clinicians should use broadly worded dietary messages when discussing caries assessment with patients.
Collapse
|
17
|
Seubbuk S, Sritanaudomchai H, Kasetsuwan J, Surarit R. High glucose promotes the osteogenic differentiation capability of human periodontal ligament fibroblasts. Mol Med Rep 2017; 15:2788-2794. [PMID: 28447734 DOI: 10.3892/mmr.2017.6333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
Periodontal ligament fibroblasts (PDLFs) are important cells, which are involved in maintaining tooth integrity. Diabetes has been found to be associated with periodontal disease in a bidirectional manner. The aim of the present study was to investigate the stemness properties of human PDLFs (HPDLFs) in high glucose conditions. HPDLFs were analyzed for their osteogenic differentiation capacity by inducing the cells with osteogenic medium in various glucose concentrations. The gene expression was then examined using reverse transcription‑quantitative polymerase chain reaction analysis, and examinations of alkaline phosphatase activity and nodule formation were performed. The results of the gene expression analysis revealed that high glucose media induced the expression of NANOG, octamer-binding transcription factor 4, (sex determining region Y)‑box 2, cluster of differentiation 166 (CD166), PERIOSTIN and β‑CATENIN following culture of the cells for 3 days. Alkaline phosphatase activity increased following 14 days in the high glucose condition. In addition, higher numbers of calcified nodules were formed on day 28 in the group cultured with high glucose. The results showed that high glucose induced bone formation by elevating the expression of stem cell markers, particularly CD166, and this induction may be regulated through β-CATENIN.
Collapse
Affiliation(s)
- Sujiwan Seubbuk
- Molecular Medicine Program, Faculty of Science, Mahidol University, Ratchthewi, Bangkok 10400, Thailand
| | - Hathaitip Sritanaudomchai
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Ratchthewi, Bangkok 10400, Thailand
| | - Julalux Kasetsuwan
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Ratchthewi, Bangkok 10400, Thailand
| | - Rudee Surarit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Ratchthewi, Bangkok 10400, Thailand
| |
Collapse
|
18
|
Song B, Zhou T, Yang WL, Liu J, Shao LQ. Programmed cell death in periodontitis: recent advances and future perspectives. Oral Dis 2016; 23:609-619. [PMID: 27576069 DOI: 10.1111/odi.12574] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/31/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
Periodontitis is a highly prevalent infectious disease, characterized by destruction of the periodontium, and is the main cause of tooth loss. Periodontitis is initiated by periodontal pathogens, while other risk factors including smoking, stress, and systemic diseases aggravate its progression. Periodontitis affects many people worldwide, but the molecular mechanisms by which pathogens and risk factors destroy the periodontium are unclear. Programmed cell death (PCD), different from necrosis, is an active cell death mediated by a cascade of gene expression events and can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. Although PCD is involved in many inflammatory diseases, its correlation with periodontitis is unclear. After reviewing the relevant published articles, we found that apoptosis has indeed been reported to play a role in periodontitis. However, the role of autophagy in periodontitis needs further verification. Additionally, implication of necroptosis or pyroptosis in periodontitis remains unknown. Therefore, we recommend future studies, which will unravel the pivotal role of PCD in periodontitis, allowing us to prevent, diagnose, and treat the disease, as well as predict its outcomes.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W L Yang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - J Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Woelber JP, Bremer K, Vach K, König D, Hellwig E, Ratka-Krüger P, Al-Ahmad A, Tennert C. An oral health optimized diet can reduce gingival and periodontal inflammation in humans - a randomized controlled pilot study. BMC Oral Health 2016; 17:28. [PMID: 27460471 PMCID: PMC4962497 DOI: 10.1186/s12903-016-0257-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The aim of this pilot study was to investigate the effects of four weeks of an oral health optimized diet on periodontal clinical parameters in a randomized controlled trial. METHODS The experimental group (n = 10) had to change to a diet low in carbohydrates, rich in Omega-3 fatty acids, and rich in vitamins C and D, antioxidants and fiber for four weeks. Participants of the control group (n = 5) did not change their dietary behavior. Plaque index, gingival bleeding, probing depths, and bleeding upon probing were assessed by a dentist with a pressure-sensitive periodontal probe. Measurements were performed after one and two weeks without a dietary change (baseline), followed by a two week transitional period, and finally performed weekly for four weeks. RESULTS Despite constant plaque values in both groups, all inflammatory parameters decreased in the experimental group to approximately half that of the baseline values (GI: 1.10 ± 0.51 to 0.54 ± 0.30; BOP: 53.57 to 24.17 %; PISA: 638 mm(2) to 284 mm(2)). This reduction was significantly different compared to that of the control group. CONCLUSION A diet low in carbohydrates, rich in Omega-3 fatty acids, rich in vitamins C and D, and rich in fibers can significantly reduce gingival and periodontal inflammation. TRIAL REGISTRATION German Clinical Trials Register; https://www.germanctr.de (DRKS00006301). Registered on 2015-02-21.
Collapse
Affiliation(s)
- J. P. Woelber
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - K. Bremer
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - K. Vach
- Department of Medical Biometry and Statistics, Medical Center – University of Freiburg, Freiburg, Germany
| | - D. König
- Institute of Sports and Sports Science, Medical Center – University of Freiburg, Freiburg, Germany
| | - E. Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - P. Ratka-Krüger
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - A. Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - C. Tennert
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| |
Collapse
|
20
|
Pradeep AR, Suke DK, Prasad MVR, Singh SP, Martande SS, Nagpal K, Naik SB, Guruprasad CN, Raju AP, Singh P, Siddaya M. Expression of key executioner of apoptosis caspase-3 in periodontal health and disease. ACTA ACUST UNITED AC 2014; 7:174-9. [PMID: 25388853 DOI: 10.1111/jicd.12134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/19/2014] [Indexed: 11/29/2022]
Abstract
AIM A highly-regulated form of programmed cell death is apoptosis, and its perturbation has been associated with periodontal disease. Caspase-3 is one of the key executioners of apoptosis. The present study was designed to evaluate and correlate the levels of caspase-3 in gingival crevicular fluid (GCF) and serum in participants with clinically-healthy periodontium, gingivitis, and chronic periodontitis (CP). METHODS Forty-four sex- and age-matched participants were enrolled into three groups based on clinical parameters. Group 1 participants had clinically-healthy periodontium, group 2 participants had gingivitis, and group 3 participants had CP. GCF and serum samples were collected to evaluate the levels of caspase-3. RESULTS The mean caspase-3 concentration in GCF and serum was highest in group 3, followed by group 2, and was significantly correlated with gingival index, probing depth (PD), and clinical attachment level (CAL). CONCLUSION GCF and the serum concentration of caspase-3 proportionally increases with the progression of periodontal disease, that is, gingival inflammation, PD, and CAL.
Collapse
Affiliation(s)
- Avani R Pradeep
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - Deepak Kumar Suke
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - M V Ramchandra Prasad
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - Sonender Pal Singh
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - Santosh Somnath Martande
- Department of Periodontics, Dr D. Y. Patil Dental College and Hospital, Pune, Maharashtra, India
| | - Kanika Nagpal
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - Savitha B Naik
- Department of Conservative Dentistry and Endodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - C N Guruprasad
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - Arjun P Raju
- Department of Radiology, Government Medical College, Haldwani, Uttaranchal, India
| | - Priyanka Singh
- Department of Opthalamology, Grant Medical College and JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Math Siddaya
- Department of Dentistry, Bidar Medical College and Research Institute, Bidar, Karnataka, India
| |
Collapse
|
21
|
Kuma A, Yamada S, Wang KY, Kitamura N, Yamaguchi T, Iwai Y, Izumi H, Tamura M, Otsuji Y, Kohno K. Role of WNT10A-expressing kidney fibroblasts in acute interstitial nephritis. PLoS One 2014; 9:e103240. [PMID: 25054240 PMCID: PMC4108433 DOI: 10.1371/journal.pone.0103240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/26/2014] [Indexed: 12/01/2022] Open
Abstract
WNT signaling mediates various physiological and pathological processes. We previously showed that WNT10A is a novel angio/stromagenic factor involved in such processes as tumor growth, wound healing and tissue fibrosis. In this study, we investigated the role of WNT10A in promoting the fibrosis that is central to the pathology of acute interstitial nephritis (AIN). We initially asked whether there is an association between kidney function (estimated glomerular filtration rate; eGFR) and WNT10A expression using kidney biopsies from 20 patients with AIN. Interestingly, patients with WNT10A expression had significantly lower eGFR than WNT10A-negative patients. However, changes in kidney function were not related to the level of expression of other WNT family members. Furthermore, there was positive correlation between WNT10A and α-SMA expression. We next investigated the involvement of WNT10A in kidney fibrosis processes using COS1 cells, a kidney fibroblast cell line. WNT10A overexpression increased the level of expression of fibronectin and peroxiredoxin 5. Furthermore, WNT10A overexpression renders cells resistant to apoptosis induced by hydrogen peroxide and high glucose. Collectively, WNT10A may induce kidney fibrosis and associate with kidney dysfunction in AIN.
Collapse
Affiliation(s)
- Akihiro Kuma
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, Cardiology and Nephrology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Sohsuke Yamada
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ke-Yong Wang
- Bio-information Research Center, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Noriaki Kitamura
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takahiro Yamaguchi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiko Iwai
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masahito Tamura
- Second Department of Internal Medicine, Cardiology and Nephrology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yutaka Otsuji
- Second Department of Internal Medicine, Cardiology and Nephrology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kimitoshi Kohno
- The President Laboratory, University of Occupational and Environmental Health, Kitakyushu, Japan
- * E-mail:
| |
Collapse
|
22
|
Zeidán-Chuliá F, Gursoy M, de Oliveira BHN, Gelain DP, Könönen E, Gursoy UK, Moreira JCF, Uitto VJ. Focussed microarray analysis of apoptosis in periodontitis and its potential pharmacological targeting by carvacrol. Arch Oral Biol 2014; 59:461-9. [DOI: 10.1016/j.archoralbio.2014.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/17/2022]
|
23
|
Regulation of trehalase expression inhibits apoptosis in diapause cysts of Artemia. Biochem J 2014; 456:185-94. [PMID: 24063546 DOI: 10.1042/bj20131020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Trehalase, which specifically hydrolyses trehalose into glucose, plays an important role in the metabolism of trehalose. Large amounts of trehalose are stored in the diapause encysted embryos (cysts) of Artemia, which are not only vital to their extraordinary stress resistance, but also provide a source of energy for development after diapause is terminated. In the present study, a mechanism for the transcriptional regulation of trehalase was described in Artemia parthenogenetica. A trehalase-associated protein (ArTAP) was identified in Artemia-producing diapause cysts. ArTAP was found to be expressed only in diapause-destined embryos. Further analyses revealed that ArTAP can bind to a specific intronic segment of a trehalase gene. Knockdown of ArTAP by RNAi resulted in the release of cysts with coarse shells in which two chitin-binding proteins were missing. Western blotting showed that the level of trehalase was increased and apoptosis was induced in these ArTAP-knockdown cysts compared with controls. Taken together, these results show that ArTAP is a key regulator of trehalase expression which, in turn, plays an important role in trehalose metabolism during the formation of diapause cysts.
Collapse
|
24
|
Apoptosis: an underlying factor for accelerated periodontal disease associated with diabetes in rats. Clin Oral Investig 2013; 18:1825-33. [DOI: 10.1007/s00784-013-1158-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|