1
|
Zou X, Khan I, Wang Y, Hussain M, Jiang B, Zheng L, Pan Y, Hu J, Khalid MU. Preparation of medium- and long-chain triacylglycerols rich in n-3 polyunsaturated fatty acids by bio-imprinted lipase-catalyzed interesterification. Food Chem 2024; 455:139907. [PMID: 38823130 DOI: 10.1016/j.foodchem.2024.139907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Medium and long-chain triacylglycerol (MLCT) rich in n-3 polyunsaturated fatty acids (PUFAs) were obtained in three-hour interesterification of fish oil with medium-chain triacylglycerol (MCTs), using lipase bio-imprinted with surfactant as a catalyst. Initially, for bio-imprinted lipase preparation, the interesterification reaction conditions were optimized, resulting in a lipase with 1.47 times higher catalytic activity compared to control (non-bio-imprinted). Afterwards, the reaction conditions for MLCT synthesis were optimized, using bio-imprinted lipase as a catalyst. The reaction reached equilibrium within first three hours at 70 °C temperature, 4 wt% lipase load, and molar ratio of substrate 1:1.5. Under these conditions, final product contained 18.52% MCT, 56.65% MLCT, and 24.83% long-chain triacylglycerol (LCT). To reduce the MCT content, a solvent extraction process was performed, yielding 2.42% MCT, 56.19% MLCT, and 41.39% LCT. The obtained structured lipids (SLs), enriched in n-3 PUFAs, offer significant health benefits, enhanced bioavailability, with potential applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yanxi Wang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | | |
Collapse
|
2
|
Goraj W, Pytlak A, Grządziel J, Gałązka A, Stępniewska Z, Szafranek-Nakonieczna A. Dynamics of Methane-Consuming Biomes from Wieliczka Formation: Environmental and Enrichment Studies. BIOLOGY 2023; 12:1420. [PMID: 37998019 PMCID: PMC10669130 DOI: 10.3390/biology12111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
The rocks surrounding Wieliczka salt deposits are an extreme, deep subsurface ecosystem that as we studied previously harbors many microorganisms, including methanotrophs. In the presented research bacterial community structure of the Wieliczka Salt Mine was determined as well as the methanotrophic activity of the natural microbiome. Finally, an enrichment culture of methane-consuming methanotrophs was obtained. The research material used in this study consisted of rocks surrounding salt deposits in the Wieliczka Salt Mine. DNA was extracted directly from the pristine rock material, as well as from rocks incubated in an atmosphere containing methane and mineral medium, and from a methanotrophic enrichment culture from this ecosystem. As a result, the study describes the composition of the microbiome in the rocks surrounding the salt deposits, while also explaining how biodiversity changes during the enrichment culture of the methanotrophic bacterial community. The contribution of methanotrophic bacteria ranged from 2.614% in the environmental sample to 64.696% in the bacterial culture. The methanotrophic enrichment culture was predominantly composed of methanotrophs from the genera Methylomonas (48.848%) and Methylomicrobium (15.636%) with methane oxidation rates from 3.353 ± 0.105 to 4.200 ± 0.505 µmol CH4 mL-1 day-1.
Collapse
Affiliation(s)
- Weronika Goraj
- Department of Biology and Biotechnology of Microorganisms, Faculty of Medicine, The John Paul II Catholic University of Lublin, Str. Konstantynów 1I, 20-708 Lublin, Poland;
| | - Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-280 Lublin, Poland;
| | - Jarosław Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation–State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland; (J.G.); (A.G.)
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation–State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland; (J.G.); (A.G.)
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland;
| | - Anna Szafranek-Nakonieczna
- Department of Biology and Biotechnology of Microorganisms, Faculty of Medicine, The John Paul II Catholic University of Lublin, Str. Konstantynów 1I, 20-708 Lublin, Poland;
| |
Collapse
|
3
|
Martin Del Campo M, Gómez-Secundino O, Camacho-Ruíz RM, Mateos Díaz JC, Müller-Santos M, Rodríguez JA. Effects of kosmotropic, chaotropic, and neutral salts on Candida antarctica B lipase: An analysis of the secondary structure and its hydrolytic activity on triglycerides. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159380. [PMID: 37591327 DOI: 10.1016/j.bbalip.2023.159380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
The effects of different concentrations of Hofmeister salts on the hydrolytic activity on triglycerides and the secondary structure of lipase B from Candida antarctica (CALB) were investigated. Structural changes after short- and long-time incubation at high salt concentrations were determined using circular dichroism (CD), fluorescence, and RMSD-RMSF simulations. At 5.2 M NaCl, the hydrolytic activity of CALB on tributyrin (TC4) and trioctanoin (TC8) was enhanced by 1.5 (from 817 ± 3.9 to 1228 ± 4.3 U/mg)- and 8.7 (from 25 ± 0.3 to 218 ± 2.3 U/mg)-folds compared with 0.15 M NaCl, respectively at pH 7.0 and 40 °C. An activity activation was seen with other salts tested; however, long-time incubation (24 h) did not result in retention of the activation effect for any of the salts tested. Secondary structure CD and fluorescence spectra showed that long-time incubation with NaCl, KCl, and CsCl provokes a compact structure without loss of native conformation, whereas chaotropic LiCl and CaCl2 induced an increase in the α-helical content, and kosmotropic Na2SO4 provoked a molten globule state with rich β-sheet content. The RMSD-RMSF simulation agreed with the CD analysis, highlighting a principal salt-induced effect at the α-helix 5 region, promoting two different conformational states (open and closed) depending on the type and concentration of salt. Lastly, an increase in the interfacial tension occurred when high salt concentrations were added to the reaction media, affecting the catalytic properties. The results indicate that high-salt environments, such as 2-5.2 M NaCl, can be used to increase the lipolytic activity of CALB on TC4 and TC8.
Collapse
Affiliation(s)
- Martha Martin Del Campo
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico; Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, 46200 Colotlán, Jalisco, Mexico.
| | - Osvaldo Gómez-Secundino
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Rosa M Camacho-Ruíz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Juan C Mateos Díaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Marcelo Müller-Santos
- Departamento de Bioquímica e Biología Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980 Curitiba, PR, Brazil.
| | - Jorge A Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Garlapati VK, Parashar SK, Klykov S, Vundavilli PR, Sevda S, Srivastava SK, Taherzadeh MJ. Invasive weed optimization coupled biomass and product dynamics of tuning soybean husk towards lipolytic enzyme. BIORESOURCE TECHNOLOGY 2022; 344:126254. [PMID: 34757227 DOI: 10.1016/j.biortech.2021.126254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Waste to the product approach was proposed for tuning environ-threat soybean husk towards lipolytic enzyme by integrating the invasive weed optimization with biomass and product dynamics study. The invasive weed optimization constitutes based on the non-linear regression model results in a 47 % enhancement in lipolytic enzyme using the optimization parameters of 7% Sigma Final, 9% exponent; Smax of 5 with a population size of 35 and Max. generations of 99. The biomass dynamic study showcases the dynamic parameters of 0.0239 µmax, 8.17 XLimst and 0.852 RFin values. The product dynamic studies reveal the kinetic parameters of kst, kdiv, PFin, which seem to be equal to -0.0338, 0.0896 and 68.1, respectively. Overall, the present study put forth the zero-waste (soybean husk) to the product (lipolytic enzyme) approach by introducing the novel "Invasive Weed Optimization" coupled with "Biomass and product dynamics" to the bioprocessing field.
Collapse
Affiliation(s)
- Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh 173234, India.
| | - Surendra Kumar Parashar
- Department of Chemistry and chemical Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh 473226, India.
| | - Sergey Klykov
- Alpha Integrum Ltd., f.47, b.6,Osennijboulevard, Obolensk, Serpukhov district, Moscow region 142279, Russia
| | - Pandu Ranga Vundavilli
- School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Argul - Jatni Rd, Kansapada, Odisha 752050, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sunil Kumar Srivastava
- Department of Chemistry and chemical Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh 473226, India
| | | |
Collapse
|
5
|
Mohamed M, Awad HM, Mostafa ESE. Purification, catalytic, kinetic, thermodynamic characterization and stability profile of alkalophilic lipase from Streptomyces sp. SBLWN_MH2. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Ubiquitousness of Haloferax and Carotenoid Producing Genes in Arabian Sea Coastal Biosystems of India. Mar Drugs 2021; 19:md19080442. [PMID: 34436281 PMCID: PMC8400781 DOI: 10.3390/md19080442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
This study presents a comparative analysis of halophiles from the global open sea and coastal biosystems through shotgun metagenomes (n = 209) retrieved from public repositories. The open sea was significantly enriched with Prochlorococcus and Candidatus pelagibacter. Meanwhile, coastal biosystems were dominated by Marinobacter and Alcanivorax. Halophilic archaea Haloarcula and Haloquandratum, predominant in the coastal biosystem, were significantly (p < 0.05) enriched in coastal biosystems compared to the open sea. Analysis of whole genomes (n = 23,540), retrieved from EzBioCloud, detected crtI in 64.66% of genomes, while cruF was observed in 1.69% Bacteria and 40.75% Archaea. We further confirmed the viability and carotenoid pigment production by pure culture isolation (n = 1351) of extreme halophiles from sediments (n = 410 × 3) sampling at the Arabian coastline of India. All red-pigmented isolates were represented exclusively by Haloferax, resistant to saturated NaCl (6 M), and had >60% G + C content. Multidrug resistance to tetracycline, gentamicin, ampicillin, and chloramphenicol were also observed. Our study showed that coastal biosystems could be more suited for bioprospection of halophiles rather than the open sea.
Collapse
|
7
|
Mohammed ABA, Hegazy AE, Salah A. Predigested high-fat meats based on Lactobacillus fermentum lipase enzyme immobilized on silver-alginate nanoparticle matrix. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Mohamed MA, Awad HM. New lipase-producing Streptomyces isolated from halo-alkaline habitat in Wadi El Natrun: polyphasic identification and statistical optimization of enzyme production. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-020-00090-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bioprospecting lipase producers in non-conventional habitats are the way to find special enzymes of diverse applications. Halo-alkaline marshes in Wadi El Natrun in Egypt are some of the most stable ecological systems in the world, and because of the double extremities of alkalinity and salinity, they harbor individual microbes capable of adapting stress conditions.
Results
Eight strains were recovered from the coastline soil of Al-Beida Lake in Wadi El Natrun and have been tested for lipase production. Among the eight isolates, the strain SBLWN_MH2 was the most active producer of lipase (7.5 U/ml). The crude SBLWN_MH2 lipase showed activity over a wide pH range (3.5 to 13) with an optimum pH at 10.5, and it was able to show more than 75% of its highest activity at pH elevated up to 13. The identification using phenotypic and genotypic methods strongly indicated that the strain SBLWN_MH2 belonged to the genus Streptomyces with a similarity of 99%. Thus, it has been given the suggested name Streptomyces sp. SBLWN_MH2 (MG593538). SBLWN_MH2 produced extracellular lipase in modified starch casein medium supplemented with different oils or Tween-80, and the potential production rate has been attained in the case of linseed oil after 3 days. Further experiments have been carried out to optimize medium composition through Box-Behnken design and response surface methodology, and it was possible to achieve more than 3.5-fold increase in lipase production.
Conclusions
The present study indicates that Streptomyces sp. SBLWN_MH2 is a potential lipase producer and could be fruitfully employed in the large-scale production of highly alkaline lipase.
Collapse
|
9
|
Characterization of a novel halotolerant esterase from Chromohalobacter canadensis isolated from salt well mine. 3 Biotech 2020; 10:430. [PMID: 32983823 DOI: 10.1007/s13205-020-02420-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
A esterase gene was characterized from a halophilic bacterium Chromohalobacter canadensis which was originally isolated from a salt well mine. Sequence analysis showed that the esterase, named as EstSHJ2, contained active site serine encompassed by a conserved pentapeptide motif (GSSMG). The EstSHJ2 was classified into a new lipase/esterase family by phylogenetic association analysis. Molecular weight of EstSHJ2 was 26 kDa and the preferred substrate was p-NP butyrate. The EstSHJ2 exhibited a maximum activity at 2.5 M NaCl concentration. Intriguingly, the optimum temperature, pH and stability of EstSHJ2 were related to NaCl concentration. At 2.5 M NaCl concentration, the optimum temperature and pH of EstSHJ2 were 65 ℃ and pH 9.0, and enzyme remained 81% active after 80 ℃ treatment for 2 h. Additionally, the EstSHJ2 showed strong tolerance to metal ions and organic solvents. Among these, 10 mM K+, Ca2+ , Mg2+ and 30% hexane, benzene, toluene has significantly improved activity of EstSHJ2. The EstSHJ2 was the first reported esterase from Chromohalobacter canadensis, and may carry considerable potential for industrial applications under extreme conditions.
Collapse
|
10
|
Singh P, Patel V, Shah V, Madamwar D. A Solvent-tolerant Alkaline Lipase from Bacillus sp. DM9K3 and Its Potential Applications in Esterification and Polymer Degradation. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819060139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Staphylococcus arlettae Genomics: Novel Insights on Candidate Antibiotic Resistance and Virulence Genes in an Emerging Opportunistic Pathogen. Microorganisms 2019; 7:microorganisms7110580. [PMID: 31752379 PMCID: PMC6920755 DOI: 10.3390/microorganisms7110580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Coagulase Negative Staphylococci (CoNS) are becoming increasingly recognized as an important cause of human and animal infections. Notwithstanding their clinical relevance, annotation of genes potentially involved in pathogenicity and/or antibiotic resistance in the CoNS species Staphylococcus arlettae (SAR) is currently very limited. In the current work we describe the genome of a novel methicillin resistant isolate of SAR, which we named Bari, and present a comprehensive analysis of predicted antibiotic resistance profiles and virulence determinants for all the 22 currently available SAR genomes. By comparing predicted antibiotic resistance and virulence-associated genes with those obtained from a manual selection of 148 bacterial strains belonging to 14 different species of staphylococci and to two “outgroup” species, Bacillus subtilis (BS) and Macrococcus caseoliticus (MC), we derived some interesting observations concerning the types and number of antibiotic resistance-related and virulence-like genes in SAR. Interestingly, almost 50% of the putative antibiotic resistance determinants identified in this work, which include the clinically relevant mec, van, and cls genes, were shared among all the SAR strains herein considered (Bari included). Moreover, comparison of predicted antibiotic resistance profiles suggest that SAR is closely related to well-known pathogenic Staphylococcus species, such as Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE). A similar analysis of predicted virulence factors, revealed that several genes associated with pathogenesis (including, for example, ica, nuc, and ssp), which are commonly found in the genomes of pathogenic staphylococci such as Staphylococcus haemolyticus (SH) and Staphylococcus saprophyticus (SS), are observed also in the SAR strains for which a genomic sequence is available. All in all, we believe that the analyses presented in the current study, by providing a consistent and comprehensive annotation of virulence and antibiotic resistance-related genes in SAR, can constitute a valuable resource for the study of molecular mechanisms of opportunistic pathogenicity in this species.
Collapse
|
12
|
Satari Faghihi L, Seyedalipour B, Ahmady-asbchin S, Riazi G. Moderately Halophilic Bacteria and Their Industrially Important Enzymes from the Ancient Ecosystem Badab-e Surt. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2018.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Leila Satari Faghihi
- University of Mazandaran, Department of Molecular and Cell Biology, Babolsar, Iran
| | - Bagher Seyedalipour
- University of Mazandaran, Department of Molecular and Cell Biology, Babolsar, Iran
| | | | - Gholamhossein Riazi
- University of Tehran, Institute of Biochemistry and Biophysics, Biochemistry Department, Tehran, Iran
| |
Collapse
|
13
|
Naganthran A, Masomian M, Rahman RNZRA, Ali MSM, Nooh HM. Improving the Efficiency of New Automatic Dishwashing Detergent Formulation by Addition of Thermostable Lipase, Protease and Amylase. Molecules 2017; 22:molecules22091577. [PMID: 28925972 PMCID: PMC6151835 DOI: 10.3390/molecules22091577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/07/2017] [Accepted: 09/16/2017] [Indexed: 11/16/2022] Open
Abstract
The use of T1 lipase in automatic dishwashing detergent (ADD) is well established, but efficiency in hard water is very low. A new enzymatic environmentally-friendly dishwashing was formulated to be efficient in both soft and hard water. Thermostable enzymes such as T1 lipase from Geobacillus strain T1, Rand protease from Bacillus subtilis strain Rand, and Maltogenic amylase from Geobacillus sp. SK70 were produced and evaluated for an automatic dishwashing detergent formulation. The components of the new ADD were optimized for compatibility with these three enzymes. In compatibility tests of the enzymes with different components, several criteria were considered. The enzymes were mostly stable in non-ionic surfactants, especially polyhydric alcohols, Glucopon UP 600, and in a mixture of sodium carbonate and glycine (30:70) buffer at a pH of 9.25. Sodium polyacrylate and sodium citrate were used in the ADD formulation as a dispersing agent and a builder, respectively. Dishwashing performance of the formulated ADDs was evaluated in terms of percent of soil removed using the Leenert‘s Improved Detergency Tester. The results showed that the combination of different hydrolysis enzymes could improve the washing efficiency of formulated ADD compared to the commercial ADD “Finish” at 40 and 50 C.
Collapse
Affiliation(s)
- Ashwini Naganthran
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Malihe Masomian
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Hisham Mohd Nooh
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
14
|
Bhardwaj KK, Saun NK, Gupta R. Immobilization of Lipase from Geobacillus sp. and Its Application in Synthesis of Methyl Salicylate. J Oleo Sci 2017; 66:391-398. [DOI: 10.5650/jos.ess16153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University
| |
Collapse
|
15
|
Chauhan M, Yennamalli RM, Garlapati VK. Biochemical characterization and molecular modeling of a unique lipase from Staphylococcus arlettaeJPBW-1. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mamta Chauhan
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat Himachal Pradesh India
| | - Ragothaman M. Yennamalli
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat Himachal Pradesh India
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat Himachal Pradesh India
| |
Collapse
|
16
|
Jain D, Mishra S. Multifunctional solvent stable Bacillus lipase mediated biotransformations in the context of food and fuel. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Evaluation of Production Parameters for Maximum Lipase Production by P. stutzeri MTCC 5618 and Scale-Up in Bioreactor. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/208462] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intracellular lipase producer screened from the library available in the laboratory, identified through 16S rRNA as Pseudomonas stutzeri, was studied for maximum enzyme production in shake flask. The work was intended to evaluate the effect of different physicochemical factors like carbon, nitrogen, metal ions, surfactant, inoculum, pH, temperature, agitation, and aeration on lipase production. Optimized media showed 1.62-fold increase in lipase production when compared to basal media. Scale-up of lipase in in situ bioreactor showed reduction in fermentation time in both basal and optimized media, giving 41 and 99 U/mg of lipase activity after 48 h of fermentation.
Collapse
|
18
|
Chauhan M, Garlapati VK. Modeling Embedded Optimization Strategy for the Formulation of Bacterial Lipase-Based Biodetergent. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401357h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mamta Chauhan
- Bioprocess Engineering Laboratory,
Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh 173 234, India
| | - Vijay Kumar Garlapati
- Bioprocess Engineering Laboratory,
Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh 173 234, India
| |
Collapse
|
19
|
Modelling and Optimization Studies on a Novel Lipase Production by Staphylococcus arlettae through Submerged Fermentation. Enzyme Res 2013; 2013:353954. [PMID: 24455210 PMCID: PMC3880713 DOI: 10.1155/2013/353954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/12/2013] [Accepted: 11/28/2013] [Indexed: 11/23/2022] Open
Abstract
Microbial enzymes from extremophilic regions such as hot spring serve as an important source of various stable and valuable industrial enzymes. The present paper encompasses the modeling and optimization approach for production of halophilic, solvent, tolerant, and alkaline lipase from Staphylococcus arlettae through response surface methodology integrated nature inspired genetic algorithm. Response surface model based on central composite design has been developed by considering the individual and interaction effects of fermentation conditions on lipase production through submerged fermentation. The validated input space of response surface model (with R2 value of 96.6%) has been utilized for optimization through genetic algorithm. An optimum lipase yield of 6.5 U/mL has been obtained using binary coded genetic algorithm predicted conditions of 9.39% inoculum with the oil concentration of 10.285% in 2.99 hrs using pH of 7.32 at 38.8°C. This outcome could contribute to introducing this extremophilic lipase (halophilic, solvent, and tolerant) to industrial biotechnology sector and will be a probable choice for different food, detergent, chemical, and pharmaceutical industries. The present work also demonstrated the feasibility of statistical design tools integration with computational tools for optimization of fermentation conditions for maximum lipase production.
Collapse
|
20
|
Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability. BIOMED RESEARCH INTERNATIONAL 2013; 2013:374967. [PMID: 24106703 PMCID: PMC3782757 DOI: 10.1155/2013/374967] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022]
Abstract
Lipases are the enzymes of choice for laundry detergent industries owing to their triglyceride removing ability from the soiled fabric which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In the present study, a partially purified bacterial lipase from Staphylococcus arlettae JPBW-1 isolated from the rock salt mine has been assessed for its triglyceride removing ability by developing a presoak solution so as to use lipase as an additive in laundry detergent formulations. The effects of selected surfactants, commercial detergents, and oxidizing agents on lipase stability were studied in a preliminary evaluation for its further usage in the industrial environment. Partially purified lipase has shown good stability in presence of surfactants, commercial detergents, and oxidizing agents. Washing efficiency has been found to be enhanced while using lipase with 0.5% nonionic detergent than the anioinic detergent. The wash performance using 0.5% wheel with 40 U lipase at 40°C in 45 min results in maximum oil removal (62%) from the soiled cotton fabric. Hence, the present study opens the new era in enzyme-based detergent sector for formulation of chemical-free detergent using alkaline bacterial lipase.
Collapse
|