1
|
Pereira MJ, Pedrosa SS, Costa JR, Carvalho MJ, Neto T, Oliveira AL, Pintado M, Madureira AR. Sugarcane Straw Hemicellulose Extraction by Autohydrolysis for Cosmetic Applications. Molecules 2025; 30:1208. [PMID: 40141985 PMCID: PMC11945048 DOI: 10.3390/molecules30061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Sugarcane is a popular crop whose cultivation generates a wide range of by-products. The aim was to optimize the hydrothermal extraction of hemicellulose from sugarcane straw using response-surface methods with a two-factor composite design and to assess its functional qualities. Three process parameters were subject to optimization: solid/liquid ratio (1:6-1:18), temperature (143-186 °C), and extraction time (20-60 min). A xylooligosaccharide (XOS)-enriched extract was characterized regarding its chemical composition, molecular weight, and antioxidant and antimicrobial potential. The optimized extraction yield was 24.46 g/100 g of straw with a polymerization degree of 17.40. Both hemicellulose and XOS demonstrated notable antioxidant properties, with antioxidant effects of 73% and 85%, respectively. Regarding skin enzyme activity, hemicellulose inhibited elastase by more than 50%, while XOS showed no significant effect. However, both extracts exhibited collagenase (MMP1) inhibition comparable to the positive control. In terms of production feasibility, the estimated costs were 130.5 EUR/kg for hemicellulose and 272.5 EUR/kg for XOS. Overall, the optimized XOS-enriched sugarcane straw extract demonstrated promising anti-aging, antioxidant, and preservative properties, highlighting its potential for cosmetic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana L. Oliveira
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.P.); (J.R.C.); (M.J.C.); (T.N.); (M.P.); (A.R.M.)
| | | | | |
Collapse
|
2
|
Gufe C, Jambwa P, Marumure J, Makuvara Z, Khunrae P, Kayoka-Kabongo PN. Are phenolic compounds produced during the enzymatic production of prebiotic xylooligosaccharides (XOS) beneficial: a review. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:867-882. [PMID: 38594834 DOI: 10.1080/10286020.2024.2328723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Phenolics produced during xylooligosaccharide production might inhibit xylanases and enhance the antioxidant and antimicrobial activities of XOS. The effects of phenolic compounds on xylanases may depend on the type and concentration of the compound, the plant biomass used, and the enzyme used. Understanding the effects of phenolic compounds on xylanases and their impact on XOS is critical for developing viable bioconversion of lignocellulosic biomass to XOS. Understanding the complex relationship between phenolic compounds and xylanases can lead to the development of strategies that improve the efficiency and cost-effectiveness of XOS manufacturing processes and optimise enzyme performance.
Collapse
Affiliation(s)
- Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Borrowdale Road, Harare, Zimbabwe
| | - Prosper Jambwa
- Department of Veterinary Biosciences, Faculty of Veterinary Science, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Jerikias Marumure
- School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Zakio Makuvara
- School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bang Mod, Thung Khru, Bangkok, Thailand
| | | |
Collapse
|
3
|
Chaoua S, Flahaut S, Cornu B, Hiligsmann S, Chaouche NK. Unlocking the potential of Algerian lignocellulosic biomass: exploring indigenous microbial diversity for enhanced enzyme and sugar production. Arch Microbiol 2024; 206:277. [PMID: 38789671 DOI: 10.1007/s00203-024-04011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Nowadays, natural resources like lignocellulosic biomass are gaining more and more attention. This study was conducted to analyse chemical composition of dried and ground samples (500 μm) of various Algerian bioresources including alfa stems (AS), dry palms (DP), olive pomace (OP), pinecones (PC), and tomato waste (TW). AS exhibited the lowest lignin content (3.60 ± 0.60%), but the highest cellulose (58.30 ± 2.06%), and hemicellulose (20.00 ± 3.07%) levels. DP, OP, and PC had around 30% cellulose, and 10% hemicellulose. OP had the highest lignin content (29.00 ± 6.40%), while TW contained (15.70 ± 2.67% cellulose, 13.70 ± 0.002% hemicellulose, and 17.90 ± 4.00% lignin). Among 91 isolated microorganisms, nine were selected for cellulase, xylanase, and/or laccase production. The ability of Bacillus mojavensis to produce laccase and cellulase, as well as B. safensis to produce cellulase and xylanase, is being reported for the first time. In submerged conditions, TW was the most suitable substrate for enzyme production. In this conditions, T. versicolor K1 was the only strain able to produce laccase (4,170 ± 556 U/L). Additionally, Coniocheata hoffmannii P4 exhibited the highest cellulase activity (907.62 ± 26.22 U/L), and B. mojavensis Y3 the highest xylanase activity (612.73 ± 12.73 U/L). T. versicolor K1 culture showed reducing sugars accumulation of 18.87% compared to initial concentrations. Sucrose was the predominant sugar detected by HPLC analysis (13.44 ± 0.02 g/L). Our findings suggest that T. versicolor K1 holds promise for laccase production, while TW represents a suitable substrate for sucrose production.
Collapse
Affiliation(s)
- Samah Chaoua
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria.
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium.
| | - Sigrid Flahaut
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Serge Hiligsmann
- Bioengineering Department, CELABOR Research Center, Herve, Belgium
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
4
|
Rudra Gouda M, Kumaranag K, Ramakrishnan B, Subramanian S. Deciphering the complex interplay between gut microbiota and crop residue breakdown in forager and hive bees ( Apis mellifera L.). CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100233. [PMID: 38572354 PMCID: PMC10990707 DOI: 10.1016/j.crmicr.2024.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
This study investigates A. mellifera gut microbiota diversity and enzymatic activities, aiming to utilize identified isolates for practical applications in sustainable crop residue management and soil health enhancement. This study sampled honey bees, analyzed gut bacterial diversity via 16S rRNA gene, and screened isolates for cellulolytic, hemicellulolytic, and pectinolytic activities, with subsequent assessment of enzymatic potential. The study reveals that cellulolytic and hemicellulolytic bacterial isolates, mainly from γ-Proteobacteria, Actinobacteria, and Firmicutes, have significant potential for crop residue management. Some genera, like Aneurinibacillus, Bacillus, Clostridium, Enterobacter, Serratia, Stenotrophomonas, Apilactobacillus, Lysinibacillus, and Pseudomonas, are very good at breaking down cellulose and hemicellulase. Notable cellulose-degrading genera include Cedecea (1.390 ± 0.57), Clostridium (1.360 ± 0.86 U/mg), Enterobacter (1.493 ± 1.10 U/mg), Klebsiella (1.380 ± 2.03 U/mg), and Serratia (1.402 ± 0.31 U/mg), while Aneurinibacillus (1.213 ± 1.12 U/mg), Bacillus (3.119 ± 0.55 U/mg), Enterobacter (1.042 ± 0.14 U/mg), Serratia (1.589 ± 0.05 U/mg), and Xanthomonas (1.156 ± 0.08 U/mg) excel in hemicellulase activity. Specific isolates with high cellulolytic and hemicellulolytic activities are identified, highlighting their potential for crop residue management. The research explores gut bacterial compartmentalization in A. mellifera, emphasising gut physiology's role in cellulose and hemicellulose digestion. Pectinolytic activity is observed, particularly in the Bacillaceae clade (3.229 ± 0.02), contributing to understanding the honey bee gut microbiome. The findings offer insights into microbiome diversity and enzymatic capabilities, with implications for biotechnological applications in sustainable crop residue management. The study concludes by emphasizing the need for ongoing research to uncover underlying mechanisms and ecological factors influencing gut microbiota, impacting honey bee health, colony dynamics, and advancements in crop residue management.
Collapse
Affiliation(s)
- M.N. Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - K.M. Kumaranag
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - B. Ramakrishnan
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
5
|
Rahmawati IS, Kusumaningrum HD, Yuliana ND, Sitanggang AB. A systematic review and meta‐analysis of
in vitro
antibacterial activity of depolymerised polysaccharides. Int J Food Sci Technol 2023. [DOI: 10.1111/ijfs.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Xylanase covalent binding onto amidated pectin beads: Optimization, thermal, operational and storage stability studies and application. Int J Biol Macromol 2023; 236:124018. [PMID: 36921821 DOI: 10.1016/j.ijbiomac.2023.124018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Amidated pectin-polyethylene imine-glutaraldehyde (AP-PEI-GA) immobilizer was prepared. The ideal protocol that should be adopted during the immobilizer preparation was investigated via Box-Behnken design (BBD), and it comprised processing the AP beads with 3.4 % (w/w) PEI solution of pH 9.65 followed by 5.96 % (v/v) GA solution. The obtained AP-PEI-GA immobilizer was efficient, and it acquired 3.03 U.g-1 of immobilized xylanase (im-xylanase) activity. The computed Km and Vmax values for AP-PEI-GA im-xylanase were 16.67 mg.ml-1 and 20 g.ml-1.min-1, respectively. Through covalent coupling to AP-PEI-GA, Aspergillus niger xylanase thermodynamic properties T1/2 and D-values were increased by 2.05, 3.08, and 1.35 at 40, 50, and 60 °C, respectively. ΔHd and ΔGd for AP-PEI-GA im-xylanase at 40, 50, and 60 °C were higher than those for free form emphasizing more resistance to thermal denaturation. Im-xylanase showed 100 % activity for 20 successive cycles and hydrolyzed different agro-industrial wastes into reducing sugar and xylooligosaccharides (XOS) with more efficiency on pea peel (PP). AP-PEI-GA im-xylanase, PP weight, and hydrolysis time that should be adopted to obtain the highest reducing sugar and XOS yield were optimized through central composite design (CCD). Extracted XOS showed prebiotic and anti-oxidant activities.
Collapse
|
7
|
Sun Z, Yue Z, Liu E, Li X, Li C. Assessment of the bifidogenic and antibacterial activities of xylooligosaccharide. Front Nutr 2022; 9:858949. [PMID: 36091239 PMCID: PMC9453197 DOI: 10.3389/fnut.2022.858949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Xylooligosaccharide (XOS) is an attractive prebiotic mainly due to its bifidogenic effect. However, commercial XOS with different compositions is often applied in the food industry at different doses without specifications. In this study, we evaluated the bifidogenic activity of XOS at different doses with either mixtures or pure fractions with different degrees of polymerization (DP), using three strains of Bifidobacterium spp., including B. breve ATCC 15700, B. bifidum ATCC 29521, and B. animalis subsp. lactis HN019. Three growth indicators showed strain-specific bifidogenic activity of XOS, and the activity was both dose- and fraction-dependent as only certain fractions stimulated significant growth. Adding 0.25% XOS (w/v) also promoted increase in total bifidobacterial population of rat fecal samples fermented in vitro. Albeit the antibacterial activity of XOS fractions can be demonstrated, significant growth inhibition can only be achieved when 4.0% XOS mixture was added in Staphylococcus aureus ATCC 6538 pure culture. In contrast, in the presence of B. lactis HN019, 1.0% XOS showed significant antibacterial activity against S. aureus ATCC 6538 in milk. In addition, RNA sequencing suggested downregulation of genes involved in S. aureus ATCC 6538 infection, pathogenesis, and quorum sensing, by XOS. In conclusion, the report urges scientific specifications on XOS chemistry for its effective application as a novel food ingredient or functional food and provides novel insights into its bifidogenic and antibacterial activities.
Collapse
Affiliation(s)
- Zhongke Sun
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, China
- *Correspondence: Zhongke Sun,
| | - Zonghao Yue
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, China
| | - Erting Liu
- Henan Heagreen Bio-technology Co., Ltd., Zhoukou, China
| | - Xianfeng Li
- Henan Heagreen Bio-technology Co., Ltd., Zhoukou, China
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Chengwei Li,
| |
Collapse
|
8
|
Cheong KL, Li JK, Zhong S. Preparation and Structure Characterization of High-Value Laminaria digitata Oligosaccharides. Front Nutr 2022; 9:945804. [PMID: 35873409 PMCID: PMC9301192 DOI: 10.3389/fnut.2022.945804] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Algae-derived marine oligosaccharides have been reported to be promising bioactive compounds because of their various properties with health benefits and potential significance in numerous applications in industrial biotechnology. In this study, laminaran oligosaccharides (LOs) with varying degrees of polymerization were obtained through partial acid hydrolysis of laminaran derived from Laminaria digitata. Based on response surface methodology, the optimum LOs yield was obtained for acid hydrolysis laminaran at a hydrolysis time of 55 min, temperature of 71°C, and acid concentration of 1.00 mol/L. The size-exclusion resin Bio-Gel P-2 was considered to be a better option for LOs purification. The structure of the purified oligosaccharides was analyzed through mass spectrometry and nuclear magnetic resonance. They demonstrated the main oligosaccharide structure corresponding to the connection of glucose with β-D-Glcp-(1→3)-β-D-Glcp, which was identified as laminaribiose (DP2), laminaritriose (DP3), laminaritetrose (DP4), and laminaripentaose (DP5). LOs demonstrate excellent antioxidant activities, as evidenced from their reactions with oxidizing free radicals, 1, 1-diphenyl-2-picryl-hydrazyl, and 2, 2′-azino-bis (3-etilbenzotiazoline-6-sulfonic acid) radicals. LOs exhibited a prebiotic effect on the growth of Bifidobacterium adolescentis and Lactobacillus plantarum. Therefore, we propose the development of LOs as natural antioxidants and prebiotics in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Jia-Kang Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Saiyi Zhong,
| |
Collapse
|
9
|
Liu M, Cai M, Ding P. Oligosaccharides from Traditional Chinese Herbal Medicines: A Review of Chemical Diversity and Biological Activities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:577-608. [PMID: 33730992 DOI: 10.1142/s0192415x21500269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Most of traditional Chinese herbal medicine (TCHM) substances come from medicinal plants, among which oligosaccharides have gradually attracted widespread attention at home and abroad due to their important biological activities and great medicinal potential. Numerous in vitro and in vivo experiments exhibited that oligosaccharides possess various activities, such as antitumor, anti-oxidation, modulate the gut microflora, anti-inflammatory, anti-infection, and immune-regulatory activities. Generally, biological activities are closely related to chemical structures, including molecular weight, monosaccharide composition, glycosidic bond connection, etc. The structural analysis of oligosaccharides is an important basis for studying their structure-activity relationship, but the structural diversity and complexity of carbohydrate compounds limit the study of oligosaccharides activities. Understanding the structures and biological functions of oligosaccharides is important for the development of new bioactive substances with natural oligosaccharides. This review provides a systematic introduction of the current knowledge of the chemical structures and biological activities of oligosaccharides. Most importantly, the reported chemical characteristics and biological activities of the famous TCHM oligosaccharides were briefly summarized, including Morinda officinalis, Rehmannia glutinosa, Arctium lappa, Polygala tenuifolia, Panax ginseng, Lycium barbarum and Astragalus membranaceus. TCHM oligosaccharides play an important role in nutrition, health care, disease diagnosis and prevention as well as have broad application prospects in the field of medicine.
Collapse
Affiliation(s)
- Mengyun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Miaomiao Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Conversion of Wheat Bran to Xylanases and Dye Adsorbent by Streptomyces thermocarboxydus. Polymers (Basel) 2021; 13:polym13020287. [PMID: 33477336 PMCID: PMC7830096 DOI: 10.3390/polym13020287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Agro-byproducts can be utilized as effective and low-cost nutrient sources for microbial fermentation to produce a variety of usable products. In this study, wheat bran powder (WBP) was found to be the most effective carbon source for xylanase production by Streptomyces thermocarboxydus TKU045. The optimal media for xylanase production was 2% (w/v) WBP, 1.50% (w/v) KNO3, 0.05% (w/v) MgSO4, and 0.10% (w/v) K2HPO4, and the optimal culture conditions were 50 mL (in a 250 mL-volume Erlenmeyer flask), initial pH 9.0, 37 °C, 125 rpm, and 48 h. Accordingly, the highest xylanase activity was 6.393 ± 0.130 U/mL, 6.9-fold higher than that from un-optimized conditions. S. thermocarboxydus TKU045 secreted at least four xylanases with the molecular weights of >180, 36, 29, and 27 kDa when cultured on the WBP-containing medium. The enzyme cocktail produced by S. thermocarboxydus TKU045 was optimally active over a broad range of temperature and pH (40–70 °C and pH 5–8, respectively) and could hydrolyze birchwood xylan to produce xylobiose as the major product. The obtained xylose oligosaccharide (XOS) were investigated for 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and the growth effect of lactic acid bacteria. Finally, the solid waste from the WBP fermentation using S. thermocarboxydus TKU045 revealed the high adsorption of Congo red, Red 7, and Methyl blue. Thus, S. thermocarboxydus TKU045 could be a potential strain to utilize wheat bran to produce xylanases for XOS preparation and dye adsorbent.
Collapse
|
11
|
Si D, Shang T, Liu X, Zheng Z, Hu Q, Hu C, Zhang R. Production and characterization of functional wheat bran hydrolysate rich in reducing sugars, xylooligosaccharides and phenolic acids. ACTA ACUST UNITED AC 2020; 27:e00511. [PMID: 32775234 PMCID: PMC7397401 DOI: 10.1016/j.btre.2020.e00511] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/01/2022]
Abstract
The aim was to enhance production of functional hydrolysate from wheat bran (WB). WB was hydrolyzed with 3000 U/mL ɑ-amylase and 1200 U/mL alkaline protease to prepare WB insoluble dietary fibre (WBIDF). Functional hydrolysate production from the extract containing crude xylan of WBIDF by xylanase was optimized by Taguchi method. The optimal condition for xylan degradation and functional substances production was 78.50 U/mL xylanase, pH 10.0, 50 °C, and reaction time 6 h. The maximum yield of reducing sugars was 614.0 μg/mL, xylobiose increased from 12.9 μg/mL to 213.3 μg/mL, xylotriose increased from 34.9 μg/mL to 174.0 μg/mL, ferulic acid 13.1 μg/mL made up 57.5 % of the total identifiable phenolic pool in the hydrolysate. The total antioxidant activity of hydrolysate was 141.8 mg ascorbic acid equivalents g-1 crude xylan, and the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity reached 92.7 %. The hydrolysate exhibited great potential in agricultural and food industry application.
Collapse
Key Words
- AAE, ascorbic acid equivalents
- ANOVA, analysis of variance
- Antioxidant capacity
- DAD, diode array detector
- DNS, dinitrosalicylic acid
- DP, degree of polymerization
- DPPH, 1,1-diphenyl-2-picrylhydrazyl
- Hydrolysis optimization
- Phenolic acids
- Reducing sugars
- WB, wheat bran
- WBIDF, wheat bran insoluble dietary fibre
- Wheat bran
- X2, xylobiose
- X3, xylotriose
- X4, xylotetraose
- X5, xylopentose
- X6, xylohexose
- XOS, xylooligosaccharides
- Xylooligosaccharides
Collapse
Affiliation(s)
- Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Tingting Shang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China.,Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Key Laboratory for Feed Biotechnology, No. 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
| | - Xuhui Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Zhaojun Zheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Qingyong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Cong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
12
|
Sun T, Yan P, Zhan N, Zhang L, Chen Z, Zhang A, Shan A. The optimization of fermentation conditions for Pichia pastoris GS115 producing recombinant xylanase. Eng Life Sci 2020; 20:216-228. [PMID: 32874185 PMCID: PMC7447871 DOI: 10.1002/elsc.201900116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Xylanase is a member of an important family of enzymes that has been used in many biotechnological processes. However, the overall cost of enzyme production has been the main problem in the industrial application of enzymes. To obtain maximum xylanase production, statistical approaches based on the Plackett-Burman design and response surface methodology were employed. The results of the statistical analyses demonstrated that the optimal conditions for increased xylanase production were the following: inoculum size, 3.8%; maize meal, 4.5%; histidine, 0.6%; methanol, 1%; culture volume, 20%; bean pulp, 30 g L-1; and Tween-80, 0.8%; and pH 5.0. Verification of the optimization demonstrated that 3273 U mL-1 xylanase was observed under the optimal conditions in shake flask experiments. SDS-PAGE results showed that the size of xylanase protein was about 23 kDa. The results showed that the xylanase produced by fermentation came from Aspergillus Niger by MALDI-TOF-MS. The optimized medium resulted in 2.1- and 1.4-fold higher the activity of xylanase compared with the unoptimized medium (the main nutrients are maize meal and bean pulp) and laboratory medium (the main nutrients are yeast extract and peptone), respectively. The optimization of fermentation conditions is an effective means to reduce production cost and improve xylanase activity.
Collapse
Affiliation(s)
- Taotao Sun
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Ping Yan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Na Zhan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Licong Zhang
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Zhihui Chen
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Aizhong Zhang
- College of Animal Science & Veterinary MedicineHeilongjiang Bayi Agricultural UniversityDaqingP. R. China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| |
Collapse
|
13
|
Khat‐udomkiri N, Toejing P, Sirilun S, Chaiyasut C, Lailerd N. Antihyperglycemic effect of rice husk derived xylooligosaccharides in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rat model. Food Sci Nutr 2020; 8:428-444. [PMID: 31993169 PMCID: PMC6977422 DOI: 10.1002/fsn3.1327] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Rice husk (RH) is an agricultural waste obtained from rice milling process. Our previous study demonstrated the optimized process of extracting xylooligosaccharides (XOS), a prebiotic that can support the growth and activity of beneficial gut microbiota, from RH. Accumulated evidences indicate that the composition of gut microbiota is involved in the progression of insulin resistance and diabetes. This study aims to evaluate the antihyperglycemic effect and putative mechanisms of RH-XOS using a diabetic rat model induced by high-fat diet and streptozotocin injection. Diabetic rats were randomly assigned to receive vehicle (DMC), XOS (DM-XOS), metformin (DMM), and a combination of XOS and metformin (DMM-XOS). An additional group of rats were fed with normal diet plus vehicle (NDC) and normal diet plus XOS (ND-XOS). Supplementation with RH-XOS for 12 weeks successfully decreased the fasting plasma glucose, insulin, leptin, and LPS levels in DM-XOS compared with DMC. Likewise, the insulin-stimulated glucose uptake assessed by in vitro study was significantly enhanced in DM-XOS, DMM, and DMM-XOS. The diminished protein expressions of GLUT4 and pAktSer473 as well as pAMPKThr172 were significantly modulated in DM-XOS, DMM, and DMM-XOS groups. Interestingly, RH-XOS supplementation reversed the changed gut permeability, elevated the number of beneficial bacteria, both Lactobacillus and Bifidobacterium spp., and increased SCFAs production. Taken together, the results confirm the efficacy of RH-XOS in achieving good glycemic control in diabetes by maintenance of gut microbiota and attenuation of endotoxemia. The findings reveal the benefits of RH-XOS and open an opportunity to improve its value by its development as a nutraceutical for diabetes.
Collapse
Affiliation(s)
- Nuntawat Khat‐udomkiri
- Innovation Center for Holistic Health, Nutraceuticals and CosmeceuticalsFaculty of PharmacyChiang Mai UniversityChiang MaiThailand
| | - Parichart Toejing
- Department of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals and CosmeceuticalsFaculty of PharmacyChiang Mai UniversityChiang MaiThailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and CosmeceuticalsFaculty of PharmacyChiang Mai UniversityChiang MaiThailand
| | - Narissara Lailerd
- Innovation Center for Holistic Health, Nutraceuticals and CosmeceuticalsFaculty of PharmacyChiang Mai UniversityChiang MaiThailand
- Department of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
14
|
Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0276-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Xylan is the second most abundant naturally occurring renewable polysaccharide available on earth. It is a complex heteropolysaccharide consisting of different monosaccharides such as l-arabinose, d-galactose, d-mannoses and organic acids such as acetic acid, ferulic acid, glucuronic acid interwoven together with help of glycosidic and ester bonds. The breakdown of xylan is restricted due to its heterogeneous nature and it can be overcome by xylanases which are capable of cleaving the heterogeneous β-1,4-glycoside linkage. Xylanases are abundantly present in nature (e.g., molluscs, insects and microorganisms) and several microorganisms such as bacteria, fungi, yeast, and algae are used extensively for its production. Microbial xylanases show varying substrate specificities and biochemical properties which makes it suitable for various applications in industrial and biotechnological sectors. The suitability of xylanases for its application in food and feed, paper and pulp, textile, pharmaceuticals, and lignocellulosic biorefinery has led to an increase in demand of xylanases globally. The present review gives an insight of using microbial xylanases as an “Emerging Green Tool” along with its current status and future prospective.
Collapse
|
15
|
Costa JR, Amorim M, Vilas-Boas A, Tonon RV, Cabral LMC, Pastrana L, Pintado M. Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract. Food Funct 2019; 10:1856-1869. [PMID: 30950465 DOI: 10.1039/c8fo02534g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Grape pomace (GP) is a major byproduct worldwide, and it is well known for its bioactive compounds, such as fibers and phenolic compounds, that are popular for their impact upon human health, including gastrointestinal health. The objective of this work was to evaluate the chemical composition and biological activities of an enzymatic GP extract, as well as to investigate how gastrointestinal digestion (GID) modulates these properties. GP extract was previously produced using an enzymatic cocktail with xylanase activity and was then exposed to simulated conditions of GID, characterized for its chemical composition, and screened for antimicrobial, prebiotic, and antioxidant activities. The safety of this ingredient after GID was also assessed. GP extract presented high contents of dietary fiber and other carbohydrates, including xylooligosaccharides, in addition to minerals and phenolic compounds. In vitro simulated GID revealed that xylobiose was resistant to gastric conditions, unlike phenolic compounds. The use of 2% (w/v) of this ingredient proved to be a potential carbon source that could be fermented by Lactobacillus and Bifidobacterium spp, even after digestion. The extract also exhibited strong antioxidant and antimicrobial activities against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa; however, after GID, the antioxidant capacity decreased, and the antimicrobial capacity was strongly reduced or lost. Furthermore, the extract safety was also guaranteed on Caco-2 intestinal cells. This novel and green GP extract proved to be composed of relevant bioactive molecules, including xylooligosaccharides, polyphenols, organic acids, and minerals, which provided different biological properties; it has potential applications in the food industry such that it can be used as an ingredient in the development of new functional foods.
Collapse
Affiliation(s)
- Joana R Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
16
|
Xylanase and Fermented Polysaccharide of Hericium caputmedusae Reduce Pathogenic Infection of Broilers by Improving Antioxidant and Anti-Inflammatory Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4296985. [PMID: 30693063 PMCID: PMC6332932 DOI: 10.1155/2018/4296985] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/12/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Background Pathogenic infection in broilers has become an important issue in the development of poultry industry. Xylooligosaccharides released from xylan via xylanase and fermented polysaccharide of Hericium caputmedusae (FPHC) have antimicrobial potential against many pathogens. Objective We aimed to explore the effects of xylanase and FPHC on pathogenic infection in the broilers (Gallus gallus domesticus). Methods Three hundred and thirty 21-day male broilers were assigned into four groups: control group (CG, basic diet), xylanase group (XG, basic diet + xylanase), FPHC group (HG, basic diet + FPHC), and XHG group (basic diet + xylanase + FPHC). Average daily feed intake (ADFI) and daily gain (ADG) were measured. Microflora from broiler feces was analyzed using 16S rRNA sequencing. Serum tumor necrosis factor- (TNF-) α, interleukin-1β (IL-1β), IL-1 receptor antagonist (IL-1ra), IL-10, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) contents were detected using kits. The variables were compared using the Student t-test between two groups. Results Microbiological investigations showed that 75% of broilers were affected by bacterial pathogens in the CG group, most notably by coagulase-negative staphylococci. Comparatively, 15%, 26%, and 5% of broilers were affected by bacterial pathogens in the XG, HG, and XHG groups, respectively. Xylanase and FPHC treatment increased the ratio of ADG to ADFI and antioxidant capacity by increasing the levels of T-AOC, SOD, and GSH-Px and reducing the levels of MDA (P < 0.05). Xylanase and FPHC treatment improved anti-inflammatory capacity by increasing serum levels of IL-1ra and IL-10 and reducing the levels of IL-1β and TNF-α. On the other hand, the treatment increased probiotic concentration of Bacillus licheniformis, Bacillus subtilis, and Lactobacillus plantarum (P < 0.05), which were also proved in cell culture. Conclusions Xylanase and FPHC ameliorate pathogen infection by increasing antioxidant and anti-inflammatory activities of broilers via the increase of probiotics.
Collapse
|
17
|
Valls C, Pastor FJ, Vidal T, Roncero MB, Díaz P, Martínez J, Valenzuela SV. Antioxidant activity of xylooligosaccharides produced from glucuronoxylan by Xyn10A and Xyn30D xylanases and eucalyptus autohydrolysates. Carbohydr Polym 2018; 194:43-50. [DOI: 10.1016/j.carbpol.2018.04.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
|
18
|
Linares-Pastén JA, Aronsson A, Karlsson EN. Structural Considerations on the Use of Endo-Xylanases for the Production of prebiotic Xylooligosaccharides from Biomass. Curr Protein Pept Sci 2018; 19:48-67. [PMID: 27670134 PMCID: PMC5738707 DOI: 10.2174/1389203717666160923155209] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 11/24/2022]
Abstract
Xylooligosaccharides (XOS) have gained increased interest as prebiotics during the last years. XOS and arabinoxylooligosaccharides (AXOS) can be produced from major fractions of biomass including agricultural by-products and other low cost raw materials. Endo-xylanases are key enzymes for the production of (A)XOS from xylan. As the xylan structure is broadly diverse due to different substitutions, diverse endo-xylanases have evolved for its degradation. In this review structural and functional aspects are discussed, focusing on the potential applications of endo-xylanases in the production of differently substituted (A)XOS as emerging prebiotics, as well as their implication in the processing of the raw materials. Endo-xylanases are found in at least eight different glycoside hydrolase families (GH), and can either have a retaining or an inverting catalytic mechanism. To date, it is mainly retaining endo-xylanases that are used in applications to produce (A)XOS. Enzymes from these GH-families (mainly GH10 and GH11, and the more recently investigated GH30) are taken as prototypes to discuss substrate preferences and main products obtained. Finally, the need of new and accessory enzymes (new specificities from new families or sources) to increase the yield of different types of (A)XOS is discussed, along with in vitro tests of produced oligosaccharides and production of enzymes in GRAS organisms to facilitate use in functional food manufacturing.
Collapse
Affiliation(s)
| | - Anna Aronsson
- Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
19
|
Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol 2017; 102:17-37. [DOI: 10.1007/s00253-017-8564-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
|
20
|
Kallel F, Driss D, Chaari F, Zouari-Ellouzi S, Chaabouni M, Ghorbel R, Chaabouni SE. Statistical optimization of low-cost production of an acidic xylanase by Bacillus mojavensis UEB-FK: Its potential applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2015.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Research Progress Concerning Fungal and Bacterial β-Xylosidases. Appl Biochem Biotechnol 2015; 178:766-95. [DOI: 10.1007/s12010-015-1908-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023]
|