1
|
Liu Y, Zhang N, Ma J, Zhou Y, Wei Q, Tian C, Fang Y, Zhong R, Chen G, Zhang S. Advances in cold-adapted enzymes derived from microorganisms. Front Microbiol 2023; 14:1152847. [PMID: 37180232 PMCID: PMC10169661 DOI: 10.3389/fmicb.2023.1152847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Cold-adapted enzymes, produced in cold-adapted organisms, are a class of enzyme with catalytic activity at low temperatures, high temperature sensitivity, and the ability to adapt to cold stimulation. These enzymes are largely derived from animals, plants, and microorganisms in polar areas, mountains, and the deep sea. With the rapid development of modern biotechnology, cold-adapted enzymes have been implemented in human and other animal food production, the protection and restoration of environments, and fundamental biological research, among other areas. Cold-adapted enzymes derived from microorganisms have attracted much attention because of their short production cycles, high yield, and simple separation and purification, compared with cold-adapted enzymes derived from plants and animals. In this review we discuss various types of cold-adapted enzyme from cold-adapted microorganisms, along with associated applications, catalytic mechanisms, and molecular modification methods, to establish foundation for the theoretical research and application of cold-adapted enzymes.
Collapse
Affiliation(s)
- Yehui Liu
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Na Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Jie Ma
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Yuqi Zhou
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Qiang Wei
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yi Fang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Rongzhen Zhong
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
2
|
Solid-state Fermentation of Cassava (Manihot esculenta) Peels Using Rhizopus Oligosporus: Application of the Fermented Peels in Yeast Production and Characterization of α-amylase Enzyme Produced in the Process. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Arthrobacter terrae sp. nov., a psychrophilic actinobacterium with multi copies of capA gene isolated from Antarctic soil. Antonie van Leeuwenhoek 2022; 115:635-644. [PMID: 35338420 DOI: 10.1007/s10482-022-01727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
A Gram-staining-positive, non-spore-forming, non-flagellated, ellipsoidal, strain Z1-20 T belonging to the genus Arthrobacter was isolated from a soil sample collected from the Zhongshan station, Antarctic. Phylogenetic analysis of the 16S rRNA gene sequences and phylogenetic analysis revealed that strain Z1-20 T formed a unique single cluster in the genus Arthrobacter and shared high 16S rRNA sequence similarities of 97.1% and 96.9% with A. glacialis HLT2-12-2 T and A. psychrochitiniphilus GP3T, respectively. Values of Digital DNA-DNA hybridization (dDDH) between strain Z1-20 T against A. glacialis HLT2-12-2 T and A. psychrochitiniphilus GP3T were 20.3% and 13.8%, respectively. Average nucleotide identity (ANI) score between strain Z1-20 T against A. glacialis HLT2-12-2 T and A. psychrochitiniphilus GP3T were 72.5% and 72.1%, respectively. Genes for the synthesis of the osmoprotectant glycine betaine and higher copies of capA gene encoding cold shock protein were found in genome of Z1-20 T that may help Z1-20 T in cold-adaptation. Strain Z1-20 T comprised lysine as the diagnostic diamino acid. Based on the results of phylogenetic, phenotypic and chemotaxonomic features, strain Z1-20 T represents a novel species of a novel taxon of genus Arthrobacter, for which the name Arthrobacter terrae gen. nov., sp. nov. is proposed.
Collapse
|
4
|
Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact 2021; 20:208. [PMID: 34717620 PMCID: PMC8557517 DOI: 10.1186/s12934-021-01698-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentrations of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solubility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinformatics, modelling, and ‘omics’ based systems-level analysis techniques to provide a structured, holistic approach. Our analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the reproducibility and growth of the research in this field.
Collapse
Affiliation(s)
- Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Ariaeenejad S, Zolfaghari B, Sadeghian Motahar SF, Kavousi K, Maleki M, Roy S, Hosseini Salekdeh G. Highly Efficient Computationally Derived Novel Metagenome α-Amylase With Robust Stability Under Extreme Denaturing Conditions. Front Microbiol 2021; 12:713125. [PMID: 34526977 PMCID: PMC8437397 DOI: 10.3389/fmicb.2021.713125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
α-Amylases are among the very critical enzymes used for different industrial purposes. Most α-amylases cannot accomplish the requirement of industrial conditions and easily lose their activity in harsh environments. In this study, a novel α-amylase named PersiAmy1 has been identified through the multistage in silico screening pipeline from the rumen metagenomic data. The long-term storage of PersiAmy1 in low and high temperatures demonstrated 82.13 and 71.01% activities after 36 days of incubation at 4 and 50°C, respectively. The stable α-amylase retained 61.09% of its activity after 180 min of incubation at 90°C and was highly stable in a broad pH range, showing 60.48 and 86.05% activities at pH 4.0 and pH 9.0 after 180 min of incubation, respectively. Also, the enzyme could resist the high-salinity condition and demonstrated 88.81% activity in the presence of 5 M NaCl. PersiAmy1 showed more than 74% activity in the presence of various metal ions. The addition of the detergents, surfactants, and organic solvents did not affect the α-amylase activity considerably. Substrate spectrum analysis showed that PersiAmy1 could act on a wide array of substrates. PersiAmy1 showed high stability in inhibitors and superb activity in downstream conditions, thus useful in detergent and baking industries. Investigating the applicability in detergent formulation, PersiAmy1 showed more than 69% activity after incubation with commercial detergents at different temperatures (30–50°C) and retained more than 56% activity after incubation with commercial detergents for 3 h at 10°C. Furthermore, the results of the wash performance analysis exhibited a good stain removal at 10°C. The power of PersiAmy1 in the bread industry revealed soft, chewable crumbs with improved volume and porosity compared with control. This study highlights the intense power of robust novel PersiAmy1 as a functional bio-additive in many industrial applications.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Behrouz Zolfaghari
- Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Seyedeh Fatemeh Sadeghian Motahar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics, Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Morteza Maleki
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Swapnoneel Roy
- School of Computing, University of North Florida, Jacksonville, FL, United States
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
6
|
Carretas-Valdez MI, Moreno-Cordova EN, Ibarra-Hernandez BG, Cinco-Moroyoqui FJ, Castillo-Yañez FJ, Casas-Flores S, Osuna-Amarillas PS, Islas-Osuna MA, Arvizu-Flores AA. Characterization of the trypsin-III from Monterey sardine (Sardinops caeruleus): Insights on the cold-adaptation from the A236N mutant. Int J Biol Macromol 2020; 164:2701-2710. [PMID: 32827617 DOI: 10.1016/j.ijbiomac.2020.08.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Trypsins (E.C. 3.4.21.4) are digestive enzymes that catalyze the hydrolysis of peptide bonds containing arginine and lysine residues. Some trypsins from fish species are active at temperatures just above freezing, and for that are called cold-adapted enzymes, having many biotechnological applications. In this work, we characterized a recombinant trypsin-III from Monterey sardine (Sardinops caeruleus) and studied the role of a single residue on its cold-adapted features. The A236N mutant from sardine trypsin-III showed higher activation energy for the enzyme-catalyzed reaction, it was more active at higher temperatures, and exhibited a higher thermal stability than the wild-type enzyme, suggesting a key role of this residue. The thermodynamic activation parameters revealed an increase in the activation enthalpy for the A236N mutant, suggesting the existence of more intramolecular contacts during the activation step. Molecular models for both enzymes suggest that a hydrogen-bond involving N236 may contact the C-terminal α-helix to the vicinity of the active site, thus affecting the biochemical and thermodynamic properties of the enzyme.
Collapse
Affiliation(s)
- Manuel I Carretas-Valdez
- Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Elena N Moreno-Cordova
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Brisa G Ibarra-Hernandez
- Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Francisco J Cinco-Moroyoqui
- Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Francisco J Castillo-Yañez
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Sergio Casas-Flores
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, Col. Lomas 4a sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Pablo S Osuna-Amarillas
- Universidad Estatal de Sonora, Carretera Navojoa-Huatabampo km 5, Navojoa, Sonora 85874, Mexico
| | - Maria A Islas-Osuna
- Centro de Investigación en Alimentación y Desarrollo, Laboratorio de Genética y Biología Molecular de Plantas, Carr. Gustavo Enrique Astiazarán Rosas, N0. 46. Col. La Victoria, Hermosillo, Sonora 83304, Mexico.
| | - Aldo A Arvizu-Flores
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
7
|
González V, Vargas-Straube MJ, Beys-da-Silva WO, Santi L, Valencia P, Beltrametti F, Cámara B. Enzyme Bioprospection of Marine-Derived Actinobacteria from the Chilean Coast and New Insight in the Mechanism of Keratin Degradation in Streptomyces sp. G11C. Mar Drugs 2020; 18:E537. [PMID: 33126528 PMCID: PMC7693968 DOI: 10.3390/md18110537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 01/10/2023] Open
Abstract
Marine actinobacteria are viewed as a promising source of enzymes with potential technological applications. They contribute to the turnover of complex biopolymers, such as pectin, lignocellulose, chitin, and keratin, being able to secrete a wide variety of extracellular enzymes. Among these, keratinases are a valuable alternative for recycling keratin-rich waste, which is generated in large quantities by the poultry industry. In this work, we explored the biocatalytic potential of 75 marine-derived actinobacterial strains, focusing mainly on the search for keratinases. A major part of the strains secreted industrially important enzymes, such as proteases, lipases, cellulases, amylases, and keratinases. Among these, we identified two streptomycete strains that presented great potential for recycling keratin wastes-Streptomyces sp. CHA1 and Streptomyces sp. G11C. Substrate concentration, incubation temperature, and, to a lesser extent, inoculum size were found to be important parameters that influenced the production of keratinolytic enzymes in both strains. In addition, proteomic analysis of culture broths from Streptomyces sp. G11C on turkey feathers showed a high abundance and diversity of peptidases, belonging mainly to the serine and metallo-superfamilies. Two proteases from families S08 and M06 were highly expressed. These results contributed to elucidate the mechanism of keratin degradation mediated by streptomycetes.
Collapse
Affiliation(s)
- Valentina González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile; (V.G.); (M.J.V.-S.)
| | - María José Vargas-Straube
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile; (V.G.); (M.J.V.-S.)
| | - Walter O. Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; (W.O.B.-d.-S.); (L.S.)
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; (W.O.B.-d.-S.); (L.S.)
| | - Pedro Valencia
- Laboratorio de Biocatálisis y Procesamiento de Alimentos, Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile;
| | | | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile; (V.G.); (M.J.V.-S.)
| |
Collapse
|
8
|
Plaza-Vinuesa L, Hernandez-Hernandez O, Moreno FJ, de Las Rivas B, Muñoz R. Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1. Microb Cell Fact 2019; 18:183. [PMID: 31655584 PMCID: PMC6815381 DOI: 10.1186/s12934-019-1237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background α-Amylases specifically catalyse the hydrolysis of the internal α-1, 4-glucosidic linkages of starch. Glycoside hydrolase (GH) family 13 is the main α-amylase family in the carbohydrate-active database. Lactobacillus plantarum WCFS1 possesses eleven proteins included in GH13 family. Among these, proteins annotated as maltose-forming α-amylase (Lp_0179) and maltogenic α-amylase (Lp_2757) were included. Results In this study, Lp_0179 and Lp_2757 L. plantarum α-amylases were structurally and biochemically characterized. Lp_2757 displayed structural features typical of GH13_20 subfamily which were absent in Lp_0179. Genes encoding Lp_0179 (Amy2) and Lp_2757 were cloned and overexpressed in Escherichia coli BL21(DE3). Purified proteins showed high hydrolytic activity on pNP-α-D-maltopyranoside, being the catalytic efficiency of Lp_0179 remarkably higher. In relation to the hydrolysis of starch-related carbohydrates, Lp_0179 only hydrolysed maltopentaose and dextrin, demonstrating that is an exotype glucan hydrolase. However, Lp_2757 was also able to hydrolyze cyclodextrins and other non-cyclic oligo- and polysaccharides, revealing a great preference towards α-1,4-linkages typical of maltogenic amylases. Conclusions The substrate range as well as the biochemical properties exhibited by Lp_2757 maltogenic α-amylase suggest that this enzyme could be a very promising enzyme for the hydrolysis of α-1,4 glycosidic linkages present in a broad number of starch-carbohydrates, as well as for the investigation of an hypothetical transglucosylation activity under appropriate reaction conditions.
Collapse
Affiliation(s)
- Laura Plaza-Vinuesa
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Oswaldo Hernandez-Hernandez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Blanca de Las Rivas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rosario Muñoz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
9
|
Cloning, Expression and Characterization of a Novel α-Amylase from Salinispora arenicola CNP193. Protein J 2019; 38:716-722. [DOI: 10.1007/s10930-019-09870-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Wang X, Kan G, Shi C, Xie Q, Ju Y, Wang R, Qiao Y, Ren X. Purification and characterization of a novel wild-type α-amylase from Antarctic sea ice bacterium Pseudoalteromonas sp. M175. Protein Expr Purif 2019; 164:105444. [PMID: 31200017 DOI: 10.1016/j.pep.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
A novel wild-type α-amylase named wtAmy175 from Pseudoalteromonas sp. M175 strain was purified through ammonium sulphate precipitation, DEAE cellulose, and Sephadex G-75 sequentially (25.83-fold, 7.67%-yield) for biochemical characterization. SDS-PAGE and zymographic activity staining of purified enzyme showed a single band with a predicted molecular mass of about 61 kDa. The optimum temperature and pH for enzyme activity were 30 °C and 7.5, respectively. Additionally, the enzyme exhibited high activity and remarkable stability in 0-10 mM SDS. The values of Km and Vmax for soluble starch as substrate were 2.47 mg/ml and 0.103 mg/ml/min, respectively. Analysis of hydrolysis products of soluble starch and maltooligosaccharides showed that wtAmy175 cleaved the interior and the terminal α-1,4-glycosidic linkage in starch, and had transglycosylation activity. The result of fluorescence spectroscopy showed that wtAmy175 had strong binding affinity with soluble starch. In brief, this study discovered the first wild-type α-amylase so far with several distinctive properties of cold activity, SDS-resistance, and the mixed activity of α-amylase and α-glucosidase, suggesting that wtAmy175 possess high adaptive capability to endure harsh industrial conditions and would be an excellent candidate in detergent and textile industries.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China.
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Qiuju Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Ruiqi Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Yongping Qiao
- Wendeng Osteopath Hospital, Wendeng, 264400, PR China
| | - Xiulian Ren
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China.
| |
Collapse
|
11
|
Sanchez AC, Ravanal MC, Andrews BA, Asenjo JA. Heterologous expression and biochemical characterization of a novel cold-active α-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3. Protein Expr Purif 2018; 155:78-85. [PMID: 30496815 DOI: 10.1016/j.pep.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 11/27/2022]
Abstract
α-Amylase is an endo-acting enzyme which catalyzes random hydrolysis of starch. These enzymes are used in various biotechnological processes including the textile, paper, food, biofuels, detergents and pharmaceutical industries. The use of active enzymes at low temperatures has a high potential because these enzymes would avoid the demand for heating during the process thereby reducing costs. In this work, the gene of α-amylase from Pseudoalteromonas sp. 2-3 (Antarctic bacteria) has been sequenced and expressed in Escherichia coli BL21(DE3). The ORF of the α-amylase gene cloned into pET22b(+) is 1824 bp long and codes for a protein of 607 amino acid residues including a His6-tag. The mature protein has a calculated molecular mass of 68.8 kDa. Recombinant α-amylase was purified with Ni-NTA affinity chromatography. The purified enzyme is active on potato starch with a Km of 6.94 mg/ml and Vmax of 0.27 mg/ml*min. The pH optimum is 8.0 and the optimal temperature is 20 °C. This enzyme was strongly activated by Ca2+; results consistent with other α-amylases. To the best of our knowledge, this enzyme has the lowest temperature optimum so far reported for α-amylases.
Collapse
Affiliation(s)
- Anamaria C Sanchez
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| | - María Cristina Ravanal
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia, Chile.
| | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| |
Collapse
|
12
|
Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 2018; 201:1-16. [PMID: 30478730 DOI: 10.1007/s00203-018-1602-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/04/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
Abstract
Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.
Collapse
|
13
|
Molecular Cloning and Characterization of a Novel α-Amylase from Antarctic Sea Ice Bacterium Pseudoalteromonas sp. M175 and Its Primary Application in Detergent. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3258383. [PMID: 30050926 PMCID: PMC6040283 DOI: 10.1155/2018/3258383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 11/17/2022]
Abstract
A novel cold-adapted and salt-tolerant α-amylase gene (amy175) from Antarctic sea ice bacterium Pseudoalteromonas sp. M175 was successfully cloned and expressed. The open reading frame (ORF) of amy175 had 1722 bp encoding a protein of 573 amino acids residues. Multiple alignments indicated Amy175 had seven highly conserved sequences and the putative catalytic triad (Asp244, Glu286, and Asp372). It was the first identified member of GH13_36 subfamily which contained QPDLN in the CSR V. The recombinant enzyme (Amy175) was purified to homogeneity with a molecular mass of about 62 kDa on SDS-PAGE. It had a mixed enzyme specificity of α-amylase and α-glucosidase. Amy175 displayed highest activity at pH 8.0 and 25°C and exhibited extreme salt-resistance with the maximum activity at 1 M NaCl. Amy175 was strongly stimulated by Mg2+, Ni2+, K+, 1 mM Ca2+, 1 mM Ba2+, 1 mM Pb2+, 1 mM sodium dodecyl sulphate (SDS), and 10% dimethyl sulfoxide (DMSO) but was significantly inhibited by Cu2+, Mn2+, Hg2+, 10 mM β-mercaptoethanol (β-ME), and 10% Tween 80. Amy175 demonstrated excellent resistance towards all the tested commercial detergents, and wash performance analysis displayed that the addition of Amy175 improved the stain removal efficiency. This study demonstrated that Amy175 would be proposed as a novel α-amylase source for industrial application in the future.
Collapse
|
14
|
Molecular cloning, expression, and biochemical characterization of a novel cold-active α-amylase from Bacillus sp. dsh19-1. Extremophiles 2018; 22:739-749. [DOI: 10.1007/s00792-018-1034-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
|
15
|
Arabacı N, Arıkan B. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8. Prep Biochem Biotechnol 2018; 48:419-426. [PMID: 29561221 DOI: 10.1080/10826068.2018.1452256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A cold-active alkaline amylase producer Bacillus subtilis N8 was isolated from soil samples. Amylase synthesis optimally occurred at 15°C and pH 10.0 on agar plates containing starch. The molecular weight of the enzyme was found to be 205 kDa by performing SDS-PAGE. While the enzyme exhibited the highest activity at 25°C and pH 8.0, it was highly stable in alkaline media (pH 8.0-12.0) and retained 96% of its original activity at low temperatures (10-40°C) for 24 hr. While the amylase activity increased in the presence of β-mercaptoethanol (103%); Ba2+, Ca2+, Na+, Zn2+, Mn2+, H2O2, and Triton X-100 slightly inhibited the activity. The enzyme showed resistance to some denaturants: such as SDS, EDTA, and urea (52, 65, and 42%, respectively). N8 α-amylase displayed the maximum remaining activity of 56% with 3% NaCl. The major final products of starch were glucose, maltose, and maltose-derived oligosaccharides. This novel cold-active α-amylase has the potential to be used in the industries of detergent and food, bioremediation process and production of prebiotics.
Collapse
Affiliation(s)
- Nihan Arabacı
- a Department of Biology , Çukurova University , Adana , Turkey
| | - Burhan Arıkan
- a Department of Biology , Çukurova University , Adana , Turkey
| |
Collapse
|