1
|
Wang MK, Xiao F, Xu X. Antibacterial properties and biological activity of 3D-printed titanium alloy implants with a near-infrared photoresponsive surface. Int J Implant Dent 2025; 11:3. [PMID: 39779604 PMCID: PMC11711858 DOI: 10.1186/s40729-024-00587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO2 coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility. METHODS Using SLM technology, titanium alloy sheets were 3D printed, and a nano-TiO2 coating was prepared on its surface via a hydrothermal method to obtain Ti6Al4V@TiO2. The surface morphology, physicochemical properties, and photothermal response of the samples were observed. The Ti6Al4V groups and Ti6Al4V@TiO2 groups were cocultured with S. aureus and E. coli and exposed to 808 nm NIR light (0.8 W/cm2) and viable plate count experiments and live/dead bacterial staining were used to assess their in vitro antibacterial properties. RESULTS The hydrophilicity of the nano-TiO2 coating sample significantly improved and the sample exhibited an excellent photothermal response. The temperature reached 46.9± 0.32 °C after 15 min of irradiation with 808 nm NIR light (0.8 W/cm2). The Ti6Al4V group showed significant antibacterial properties after irradiation with 808 nm NIR light, and the Ti6Al4V@TiO2 group also had partial antibacterial ability without irradiation. After irradiation with 808 nm NIR light, the Ti6Al4V@TiO2 group showed the strongest antibacterial properties, reaching 90.11± 2.20% and 90.60± 1.08% against S. aureus and E. coli, respectively. CONCLUSIONS A nano-TiO2 coating prepared via a hydrothermal method produced synergistic antibacterial effects after NIR light irradiation.
Collapse
Affiliation(s)
- Ming-Kang Wang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Fan Xiao
- College of Mechanical Engineering, Zhejiang University of Technology, 310023, Zhejiang, People's Republic of China
| | - Xu Xu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
| |
Collapse
|
2
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
3
|
Hamedi H, Green SW, Puri R, Luo R, Lee M, Liu J, Cho H, Hansford DJ, Chandler HL, Swindle-Reilly KE. Lens epithelial cell response to polymer stiffness and polymer chemistry. JOURNAL OF POLYMER SCIENCE 2024; 62:1820-1830. [PMID: 39183793 PMCID: PMC11340881 DOI: 10.1002/pol.20230736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 08/27/2024]
Abstract
Posterior capsule opacification (PCO) is the most common complication of cataract surgery, and intraocular lens (IOL) implantation is the standard of care for cataract patients. Induction of post-operative epithelial-mesenchymal transition (EMT) in residual lens epithelial cells (LEC) is the main mechanism by which PCO forms. Previous studies have shown that IOLs made with different materials have varying incidence of PCO. The aim of this paper was to study the interactions between human (h)LEC and polymer substrates. Polymers and copolymers of 2-hydroxyethyl methacrylate (HEMA) and 3-methacryloxypropyl tris (trimethylsiloxy) silane (TRIS) were synthesized and evaluated due to the clinical use of these materials as ocular biomaterials and implants. The chemical properties of the polymer surfaces were evaluated by contact angle, and polymer stiffness and roughness were measured using atomic force microscopy. In vitro studies showed the effect of polymer mechanical properties on the behavior of hLECs. Stiffer polymers increased α-smooth muscle actin expression and induced cell elongation. Hydrophobic and rough polymer surfaces increased cell attachment. These results demonstrate that attachment of hLECs on different surfaces is affected by surface properties in vitro, and evaluating these properties may be useful for investigating prevention of PCO.
Collapse
Affiliation(s)
- Hamid Hamedi
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Spencer W Green
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Raima Puri
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Richard Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Michael Lee
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jian Liu
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Hanna Cho
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Derek J Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Rosas-Díaz JC, Malpartida-Carrillo V, Córdova-Limaylla NE, Guerrero ME, Palomino-Zorrilla JJ, Cervantes-Ganoza LA, Cayo-Rojas CF. Resonance Frequency Analysis Mapping During Implant Healing Using a Nanostructured Hydroxyapatite Surface. J Int Soc Prev Community Dent 2023; 13:365-372. [PMID: 38124725 PMCID: PMC10729884 DOI: 10.4103/jispcd.jispcd_265_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 11/11/2022] Open
Abstract
Aim Stability measured by resonance frequency analysis (RFA) is an important factor to be considered in the success of dental implant treatments, which can be evaluated from the implant stability quotient (ISQ). The aim of the present case series was to map the RFA during healing of implants with nanostructured hydroxyapatite surface to describe the behavior of ISQ values related to individual factors. Materials and Methods Twenty-three implants were placed in eight patients by conventional surgical protocol, and ISQ values were monitored from the day of implant placement until week 20. To obtain the ISQ values, an Osstell device was used and the placed implants were grouped in proportional amounts to describe the ISQ behavior considering the length (≤10 or >10 mm), the diameter (3.5 or 4.3 mm), the insertion torque (<40 N-cm or ≥40 N-cm), and the placement area (maxilla or mandible). Results All the implants assessed decreased their values in the first 3 weeks after placement. Subsequently, the ISQ values increased by amounts similar to those obtained at the time of the placement and even more. Implants with length >10 mm, diameter 4.3 mm, and insertion torque ≥40 N-cm showed the highest ISQ values. Conclusions A decrease in the ISQ values of dental implants with nanostructured hydroxyapatite surface was evidenced between weeks 2 and 3 considering length, diameter, insertion torque, and maxillary or mandibular placement site.
Collapse
Affiliation(s)
| | | | | | - Maria Eugenia Guerrero
- Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Department of Medico Surgical Stomatology, Lima, Peru
| | | | | | | |
Collapse
|
5
|
Han J, Ma Q, An Y, Wu F, Zhao Y, Wu G, Wang J. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology 2023; 21:277. [PMID: 37596638 PMCID: PMC10439657 DOI: 10.1186/s12951-023-02017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
With the continuous innovation and breakthrough of nanomedical technology, stimuli-responsive nanotechnology has been gradually applied to the surface modification of titanium implants to achieve brilliant antibacterial activity and promoted osteogenesis. Regarding to the different physiological and pathological microenvironment around implants before and after surgery, these surface nanomodifications are designed to respond to different stimuli and environmental changes in a timely, efficient, and specific way/manner. Here, we focus on the materials related to stimuli-responsive nanotechnology on titanium implant surface modification, including metals and their compounds, polymer materials and other materials. In addition, the mechanism of different response types is introduced according to different activation stimuli, including magnetic, electrical, photic, radio frequency and ultrasonic stimuli, pH and enzymatic stimuli (the internal stimuli). Meanwhile, the associated functions, potential applications and developing prospect were discussion.
Collapse
Affiliation(s)
- Jingyuan Han
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien, Oslo, 710455 Norway
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fan Wu
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Yuqing Zhao
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Jing Wang
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
6
|
Malheiros SS, Nagay BE, Bertolini MM, de Avila ED, Shibli JA, Souza JGS, Barão VAR. Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development. Expert Rev Med Devices 2023:1-17. [PMID: 37228179 DOI: 10.1080/17434440.2023.2218547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations. AREAS COVERED Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility. EXPERT OPINION Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.
Collapse
Affiliation(s)
- Samuel S Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna M Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, Sao Paulo 16015-050, Brazil
| | - Jamil A Shibli
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais39401-303, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
7
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
8
|
Wood J, Hayles A, Bright R, Palms D, Vasilev K, Hasan J. Nanomechanical tribological characterisation of nanostructured titanium alloy surfaces using AFM: A friction vs velocity study. Colloids Surf B Biointerfaces 2022; 217:112600. [PMID: 35665641 DOI: 10.1016/j.colsurfb.2022.112600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
Abstract
Medical-grade titanium alloys used for orthopaedic implants are at risk from infections and complications such as wear and tear. We have recently shown that hydrothermally etched (HTE) nanostructures (NS) formed on the Ti6AlV4 alloy surfaces impart enhanced anti-bacterial activity which results in inhibited formation of bacterial biofilm. Although these titanium alloy nanostructures may resist bacterial colonisation, their frictional properties are yet to be understood. Orthopaedic devices are encapsulated by bone and muscle tissue. Contact friction between orthopaedic implant surfaces and these host tissues may trigger inflammation, osteolysis and wear. To address these challenges, we performed simulation of the contact behaviour between a smooth control Ti6Al4V alloy and HTE surfaces against a hardwearing SiO2 sphere using Atomic Force Microscopy (AFM) in Lateral Force Microscopy mode. The friction study was evaluated in both air and liquid environments at high (5 Hz) and low (0.5 Hz) scan velocities. Lower scan velocities demonstrated opposing friction force changes between the two mediums, with friction stabilising at higher velocities. The friction measured on the NS alloy surfaces was reduced by ~20% in air and ~80% in phosphate buffered saline, in comparison to the smooth control surface, displaying a non-linear behaviour of the force applied by the AFM tip. Changes in friction values and cantilever scan velocities on different substrates are discussed with respect to the Stribeck curve. Reduced friction on nanostructured surfaces may improve wear resistance and aid osseointegration.
Collapse
Affiliation(s)
- Jonathan Wood
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
| | - Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia.
| |
Collapse
|
9
|
Metallic Implants Used in Lumbar Interbody Fusion. MATERIALS 2022; 15:ma15103650. [PMID: 35629676 PMCID: PMC9146470 DOI: 10.3390/ma15103650] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, pedicle fixation systems have evolved and modifications in spinal fusion techniques have been developed to increase fusion rates and improve clinical outcomes after lumbar interbody fusion (LIF). Regarding materials used for screw and rod manufacturing, metals, especially titanium alloys, are the most popular resources. In the case of pedicle screws, that biomaterial can be also doped with hydroxyapatite, CaP, ECM, or tantalum. Other materials used for rod fabrication include cobalt-chromium alloys and nitinol (nickel-titanium alloy). In terms of mechanical properties, the ideal implant used in LIF should have high tensile and fatigue strength, Young's modulus similar to that of the bone, and should be 100% resistant to corrosion to avoid mechanical failures. On the other hand, a comprehensive understanding of cellular and molecular pathways is essential to identify preferable characteristics of implanted biomaterial to obtain fusion and avoid implant loosening. Implanted material elicits a biological response driven by immune cells at the site of insertion. These reactions are subdivided into innate (primary cellular response with no previous exposure) and adaptive (a specific type of reaction induced after earlier exposure to the antigen) and are responsible for wound healing, fusion, and also adverse reactions, i.e., hypersensitivity. The main purposes of this literature review are to summarize the physical and mechanical properties of metal alloys used for spinal instrumentation in LIF which include fatigue strength, Young's modulus, and corrosion resistance. Moreover, we also focused on describing biological response after their implantation into the human body. Our review paper is mainly focused on titanium, cobalt-chromium, nickel-titanium (nitinol), and stainless steel alloys.
Collapse
|
10
|
Hou C, An J, Zhao D, Ma X, Zhang W, Zhao W, Wu M, Zhang Z, Yuan F. Surface Modification Techniques to Produce Micro/Nano-scale Topographies on Ti-Based Implant Surfaces for Improved Osseointegration. Front Bioeng Biotechnol 2022; 10:835008. [PMID: 35402405 PMCID: PMC8990803 DOI: 10.3389/fbioe.2022.835008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
Titanium and titanium alloys are used as artificial bone substitutes due to the good mechanical properties and biocompatibility, and are widely applied in the treatment of bone defects in clinic. However, Pure titanium has stress shielding effect on bone, and the effect of titanium-based materials on promoting bone healing is not significant. To solve this problem, several studies have proposed that the surface of titanium-based implants can be modified to generate micro or nano structures and improve mechanical properties, which will have positive effects on bone healing. This article reviews the application and characteristics of several titanium processing methods, and explores the effects of different technologies on the surface characteristics, mechanical properties, cell behavior and osseointegration. The future research prospects in this field and the characteristics of ideal titanium-based implants are proposed.
Collapse
Affiliation(s)
- Chuang Hou
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing An
- Nursing Teaching and Research Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao Ma
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weilin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhiyu Zhang, ; Fusheng Yuan,
| | - Fusheng Yuan
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhiyu Zhang, ; Fusheng Yuan,
| |
Collapse
|
11
|
Influence of Bioinspired Lithium-Doped Titanium Implants on Gingival Fibroblast Bioactivity and Biofilm Adhesion. NANOMATERIALS 2021; 11:nano11112799. [PMID: 34835563 PMCID: PMC8618897 DOI: 10.3390/nano11112799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/20/2023]
Abstract
Soft tissue integration (STI) at the transmucosal level around dental implants is crucial for the long-term success of dental implants. Surface modification of titanium dental implants could be an effective way to enhance peri-implant STI. The present study aimed to investigate the effect of bioinspired lithium (Li)-doped Ti surface on the behaviour of human gingival fibroblasts (HGFs) and oral biofilm in vitro. HGFs were cultured on various Ti surfaces—Li-doped Ti (Li_Ti), NaOH_Ti and micro-rough Ti (Control_Ti)—and were evaluated for viability, adhesion, extracellular matrix protein expression and cytokine secretion. Furthermore, single species bacteria (Staphylococcus aureus) and multi-species oral biofilms from saliva were cultured on each surface and assessed for viability and metabolic activity. The results show that both Li_Ti and NaOH_Ti significantly increased the proliferation of HGFs compared to the control. Fibroblast growth factor-2 (FGF-2) mRNA levels were significantly increased on Li_Ti and NaOH_Ti at day 7. Moreover, Li_Ti upregulated COL-I and fibronectin gene expression compared to the NaOH_Ti. A significant decrease in bacterial metabolic activity was detected for both the Li_Ti and NaOH_Ti surfaces. Together, these results suggest that bioinspired Li-doped Ti promotes HGF bioactivity while suppressing bacterial adhesion and growth. This is of clinical importance regarding STI improvement during the maintenance phase of the dental implant treatment.
Collapse
|
12
|
Villaça-Carvalho MFL, de Araújo JCR, Beraldo JM, do Prado RF, de Moraes MEL, Manhães Junior LRC, Codaro EN, Acciari HA, Machado JPB, Regone NN, Lobo AO, Marciano FR, de Vasconcellos LMR. Bioactivity of an Experimental Dental Implant with Anodized Surface. J Funct Biomater 2021; 12:jfb12020039. [PMID: 34200191 PMCID: PMC8293239 DOI: 10.3390/jfb12020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Several studies proved that anodic oxidation improves osseointegration. This study aimed to optimize osseointegration through anodization in dental implants, obtaining anatase phase and controlled nanotopography. Methods: The division of the groups with 60 titanium implants was: control (CG); sandblasted (SG); anodized (AG): anodized pulsed current (duty cycle 30%, 30 V, 0.2 A and 1000 Hz). Before surgery, surface characterization was performed using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Dispersive Energy Spectroscopy (EDS) and Raman Spectroscopy. For in vivo tests, 10 New Zealand white rabbits received an implant from each group. The sacrifice period was 2 and 6 weeks (n = 5) and the specimens were subjected to computed microtomography (μCT) and reverse torque test. Results: AFM and SEM demonstrated a particular nanotopography on the surface in AG; the anatase phase was proved by Raman spectroscopy. In the μCT and in the reverse torque test, the AG group presented better results than the other groups. Conclusion: The chemical composition and structure of the TiO2 film were positively affected by the anodizing technique, intensifying the biological characteristics in osseointegration.
Collapse
Affiliation(s)
- Maria Fernanda Lima Villaça-Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP—São Paulo State University São José dos Campos, São Paulo 12245-000, Brazil; (M.F.L.V.-C.); (J.C.R.d.A.); (J.M.B.); (M.E.L.d.M.); (L.R.C.M.J.)
| | - Juliani Caroline Ribeiro de Araújo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP—São Paulo State University São José dos Campos, São Paulo 12245-000, Brazil; (M.F.L.V.-C.); (J.C.R.d.A.); (J.M.B.); (M.E.L.d.M.); (L.R.C.M.J.)
| | - Juliana Mariano Beraldo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP—São Paulo State University São José dos Campos, São Paulo 12245-000, Brazil; (M.F.L.V.-C.); (J.C.R.d.A.); (J.M.B.); (M.E.L.d.M.); (L.R.C.M.J.)
| | - Renata Falchete do Prado
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP—São Paulo State University São José dos Campos, São Paulo 12245-000, Brazil; (M.F.L.V.-C.); (J.C.R.d.A.); (J.M.B.); (M.E.L.d.M.); (L.R.C.M.J.)
- Correspondence: (R.F.d.P.); (L.M.R.d.V.); Tel.: +55-129-8818-1514 (R.F.d.P.); +55-129-9773-3291 (L.M.R.d.V.)
| | - Mari Eli Leonelli de Moraes
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP—São Paulo State University São José dos Campos, São Paulo 12245-000, Brazil; (M.F.L.V.-C.); (J.C.R.d.A.); (J.M.B.); (M.E.L.d.M.); (L.R.C.M.J.)
| | - Luiz Roberto Coutinho Manhães Junior
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP—São Paulo State University São José dos Campos, São Paulo 12245-000, Brazil; (M.F.L.V.-C.); (J.C.R.d.A.); (J.M.B.); (M.E.L.d.M.); (L.R.C.M.J.)
| | - Eduardo Norberto Codaro
- Department of Chemistry and Energy, School of Engineering, Guaratinguetá Campus, UNESP—São Paulo State University, Guaratinguetá, São Paulo 12516-410, Brazil; (E.N.C.); (H.A.A.)
| | - Heloisa Andrea Acciari
- Department of Chemistry and Energy, School of Engineering, Guaratinguetá Campus, UNESP—São Paulo State University, Guaratinguetá, São Paulo 12516-410, Brazil; (E.N.C.); (H.A.A.)
| | - João Paulo Barros Machado
- Associated Laboratory of Sensors and Materials, National Institute for Space Research, INPE, São José dos Campos, São Paulo 12227-010, Brazil;
| | - Natal Nerímio Regone
- Department of Aeronautic and Communication Engineering São João da Boa Vista Campus, UNESP—São Paulo State University, São João da Boa Vista, São Paulo 13876-750, Brazil;
| | - Anderson Oliveira Lobo
- LIMAV—Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil;
| | | | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP—São Paulo State University São José dos Campos, São Paulo 12245-000, Brazil; (M.F.L.V.-C.); (J.C.R.d.A.); (J.M.B.); (M.E.L.d.M.); (L.R.C.M.J.)
- Correspondence: (R.F.d.P.); (L.M.R.d.V.); Tel.: +55-129-8818-1514 (R.F.d.P.); +55-129-9773-3291 (L.M.R.d.V.)
| |
Collapse
|
13
|
Limami Y, Leger DY, Liagre B, Pécout N, Viana M. Ibuprofen-loaded calcium phosphate granules: A new bone substitute for local relieving symptoms of osteoarthritis. Eur J Pharm Sci 2020; 158:105679. [PMID: 33346009 DOI: 10.1016/j.ejps.2020.105679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022]
Abstract
Musculoskeletal diseases often demand a drug treatment at the specific site of injury or defect site. In this context, the use of calcium phosphates is attractive as it allows both the bone substitution and the local delivery of a drug substance. In this work, we present a drug delivery device that combines calcium phosphate bioceramic granules and ibuprofen, a widely used anti-inflammatory drug. After verifying in vitro biocompatibility of the ibuprofen-loaded calcium phosphate granules on murine preosteoblastic cells (MC3T3), we evaluated in vitro efficiency of the drug substance released from the bioceramic using rheumatoid arthritis synoviocytes. Our data document that ibuprofen-loaded calcium phosphate granules reduced inflammatory response and increased apoptosis of synoviocytes. In vivo study showed that both unloaded, and ibuprofen-loaded calcium phosphate granules induced a progressive osteogenesis, but in the case of ibuprofen-loaded implants, bone ingrowth was more limited in first weeks. However, as far as concerns inflammation, while unloaded granules showed inflammation up to 4 weeks, ibuprofen loaded granules did not show any significant inflammation. Ibuprofen concentration determination in blood samples showed that a very small amount of the drug reached the general circulation which render this drug delivery system suitable for both bone substitution and reduction of inflammation at the implantation site. Thus, this new drug carrier could be used to locally relieve inflammatory bone diseases symptoms including rheumatoid arthritis but, beyond this study, this kind of granules could be considered for the delivery of therapeutic agents such as antibiotic, analgesic or anticancer drugs.
Collapse
Affiliation(s)
- Youness Limami
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté de Pharmacie, 2 rue du Dr Marcland, F- 87000 Limoges, France; Immunology and Biodiversity Laboratory, Biology department, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco; Research Center, International Abulcasis University for Health Sciences, Madinat Al Irfane, Rabat, Morocco.
| | - David Yannick Leger
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté de Pharmacie, 2 rue du Dr Marcland, F- 87000 Limoges, France
| | - Bertrand Liagre
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté de Pharmacie, 2 rue du Dr Marcland, F- 87000 Limoges, France
| | - Nathalie Pécout
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté de Pharmacie, 2 rue du Dr Marcland, F- 87000 Limoges, France
| | - Marylène Viana
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté de Pharmacie, 2 rue du Dr Marcland, F- 87000 Limoges, France
| |
Collapse
|
14
|
Wu C, Shao X, Lin X, Gao W, Fang Y, Wang J. Surface modification of titanium with collagen/hyaluronic acid and bone morphogenetic protein 2/7 heterodimer promotes osteoblastic differentiation. Dent Mater J 2020; 39:1072-1079. [PMID: 33028783 DOI: 10.4012/dmj.2019-249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the effects of a collagen/hyaluronic acid coating without or with incorporated heterodimeric bone morphogenetic protein 2/7 (BMP2/7) on in-vitro osteoblastic differentiation on titanium discs. The multilayer collagen/hyaluronic acid coatings without or without incorporated BMP2/7 were deposited on titanium discs via a layer-by-layer technique. The effects of the coatings were evaluated by assessing the alkaline phosphatase (ALP) activity (an early osteoblastic differentiation marker) and the osteocalcin expression (a late osteoblastic differentiation marker). The expression levels of the osteoblastic genes, such as alkaline phosphatase 2 (AKP2) and osteocalcin (OC) were detected using real-time RT-PCR. ALP activity and OC expression were significantly increased when cells were cultured with collagen/hyaluronic acid+BMP2/7 heterodimer (p<0.05). The same result was found in cells with the expression of a BMP2/7 fusion gene, OC and AKP2. These results indicated that collagen/hyaluronic acid+BMP2/7 heterodimer-coated discs might have the potential to greatly enhance osseointegration than a either BMP2 or BMP7 solution or a mixture of BMP2 and BMP7 BMP2/7.
Collapse
Affiliation(s)
- Chengzhong Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Xia Shao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Xianglin Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Weijin Gao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Yiming Fang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Jingxiao Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
15
|
Abstract
Antibiotic resistance is a global human health threat, causing routine treatments of bacterial infections to become increasingly difficult. The problem is exacerbated by biofilm formation by bacterial pathogens on the surfaces of indwelling medical and dental devices that facilitate high levels of tolerance to antibiotics. The development of new antibacterial nanostructured surfaces shows excellent prospects for application in medicine as next-generation biomaterials. The physico-mechanical interactions between these nanostructured surfaces and bacteria lead to bacterial killing or prevention of bacterial attachment and subsequent biofilm formation, and thus are promising in circumventing bacterial infections. This Review explores the impact of surface roughness on the nanoscale in preventing bacterial colonization of synthetic materials and categorizes the different mechanisms by which various surface nanopatterns exert the necessary physico-mechanical forces on the bacterial cell membrane that will ultimately result in cell death.
Collapse
|
16
|
Polo TOB, Silva WPP, Momesso GAC, Lima-Neto TJ, Barbosa S, Cordeiro JM, Hassumi JS, da Cruz NC, Okamoto R, Barão VAR, Faverani LP. Plasma Electrolytic Oxidation as a Feasible Surface Treatment for Biomedical Applications: an in vivo study. Sci Rep 2020; 10:10000. [PMID: 32561767 PMCID: PMC7305204 DOI: 10.1038/s41598-020-65289-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES In this in vivo animal study, we evaluated the effect of plasma electrolytic oxidation (PEO) coating on the topographic and biological parameters of implants installed in rats with induced osteoporosis and low-quality bones. MATERIALS AND METHODS In total 44 Wistar rats (Rattus novergicus), 6 months old, were submitted to ovariectomy (OXV group) and dummy surgery (SHAM group). After 90 days, the ELISA test was performed and the ovariectomy effectiveness was confirmed. In each tibial metaphysis, an implant with PEO coating containing Ca2+ and P5+ molecules were installed, and the other tibia received an implant with SLA acid etching and blasting (AC) (control surface). After 42 days, 16 rats from each group were euthanized, their tibias were removed for histological and immunohistochemical analysis (OPG, RANKL, OC and TRAP), as well as reverse torque biomechanics. Data were submitted to One-way ANOVA or Kruskal-Wallis tests, followed by a Tukey post-test; P < 0.05. Histological analyses showed higher bone neoformation values among the members of the PEO group, SHAM and OVX groups. Immunohistochemical analysis demonstrated equilibrium in all groups when comparing surfaces for TRAP, OC and RANKL (P > 0.05), whereas OPG showed higher PEO labeling in the OVX group (P < 0.05). Biomechanical analysis showed higher reverse torque values (N.cm) for PEO, irrespective of whether they were OVX or SHAM groups (P < 0.05). CONCLUSION The results indicated that the PEO texturing method favored bone formation and showed higher bone maturation levels during later periods in osteoporotic rats.
Collapse
Affiliation(s)
- Tárik Ocon Braga Polo
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - William Phillip Pereira Silva
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Gustavo Antonio Correa Momesso
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Tiburtino José Lima-Neto
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Stéfany Barbosa
- Undergradutate student, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Jairo Matozinho Cordeiro
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av Limeira, 901, Piracicaba, São Paulo, CEP13414-903, Brazil.,Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Sao Paulo, Brazil
| | - Jaqueline Suemi Hassumi
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Nilson Cristino da Cruz
- Technological Plasma Laboratory (LaPTec), Experimental Campus of Sorocaba, Sao Paulo State University-Unesp, Sorocaba, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av Limeira, 901, Piracicaba, São Paulo, CEP13414-903, Brazil.,Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Sao Paulo, Brazil
| | - Leonardo P Faverani
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil.
| |
Collapse
|
17
|
Li B, Xia X, Guo M, Jiang Y, Li Y, Zhang Z, Liu S, Li H, Liang C, Wang H. Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Sci Rep 2019; 9:14052. [PMID: 31575877 PMCID: PMC6773704 DOI: 10.1038/s41598-019-49941-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/30/2019] [Indexed: 11/09/2022] Open
Abstract
Titanium (Ti) is the widely used implant material in clinic, however, failures still frequently occur due to its bioinertness and poor antibacterial property. To improve the biological and antibacterial properties of Ti implants, micro-nanostructured hydroxyapatite (HA) coating was prepared on Ti surface by micro-arc oxidation (MAO), and then the antibacterial agent of chitosan (CS) was loaded on the HA surface through dip-coating method. The results showed that the obtained HA/CS composite coating accelerated the formation of apatite layer in SBF solution, enhanced cell adhesion, spreading and proliferation, and it also inhibited the bacterial growth, showing improved biological and antibacterial properties. Although, with the increased CS amount, the coverage of HA coating would be enlarged, resulting in depressed biological property, however, the antibacterial property of the composite coating was enhanced, and the cytotoxicity about CS was not detected in this work. In conclusion, the HA/CS coating has promising application in orthopedics, dentistry and other biomedical devices.
Collapse
Affiliation(s)
- Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaomei Xia
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Miaoqi Guo
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yu Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Shimin Liu
- Department of Gem and Material Technology, Tianjin University of Commerce, Tianjin, 300134, China
| | - Haipeng Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Hongshui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
18
|
Chu L, Li R, Liao Z, Yang Y, Dai J, Zhang K, Zhang F, Xie Y, Wei J, Zhao J, Yu Z, Tang T. Highly Effective Bone Fusion Induced by the Interbody Cage Made of Calcium Silicate/Polyetheretherketone in a Goat Model. ACS Biomater Sci Eng 2019; 5:2409-2416. [PMID: 33405749 DOI: 10.1021/acsbiomaterials.8b01193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interbody fusion surgery is often used to settle matters such as degenerative disc disease or disc herniation in clinical orthopedics. Considering the deficiencies of the current treatment methods, we developed an interbody fusion cage made of calcium silicate (CS)/polyetheretherketone (PEEK) and hoped that the bioactive cage could exhibit great fusion ability and maintain stable mechanical function. In the goat model of cervical interbody fusion, the CS/PEEK cage showed stronger interbody fusion at 12 and 26 weeks compared with pure PEEK cage based on the X-ray analysis. The micro-CT scanning and analysis indicated that the CS/PEEK cage induced more new bone ingrowth than the PEEK cage and led to nearly complete interbody fusion at 26 weeks. Moreover, the CS/PEEK group showed excellent mechanical stability and stiffness as evaluated by the spine kinematic assay at the time points. The histological assessment showed the rapid osseointegration and mineralized bone formation around the CS/PEEK cage. This study confirmed that the bioactive CS/PEEK cage is capable of inducing highly effective bone fusion and has high potential to be used in the clinics of spine surgery.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Rui Li
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Zhenhua Liao
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Ying Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jianjun Dai
- Institute of Animal Science and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 200011, P. R. China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Feng Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Youzhuan Xie
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| |
Collapse
|
19
|
Voltrova B, Hybasek V, Blahnova V, Sepitka J, Lukasova V, Vocetkova K, Sovkova V, Matejka R, Fojt J, Joska L, Daniel M, Filova E. Different diameters of titanium dioxide nanotubes modulate Saos-2 osteoblast-like cell adhesion and osteogenic differentiation and nanomechanical properties of the surface. RSC Adv 2019; 9:11341-11355. [PMID: 35520235 PMCID: PMC9062999 DOI: 10.1039/c9ra00761j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 01/09/2023] Open
Abstract
Nanostructured cpTi surfaces affected Saos-2 cell adhesion, proliferation, and osteogenic differentiation as well as the nanomechanical properties of the surface.
Collapse
|
20
|
Kunrath MF, Hübler R. A bone preservation protocol that enables evaluation of osseointegration of implants with micro- and nanotextured surfaces. Biotech Histochem 2018; 94:261-270. [PMID: 30556450 DOI: 10.1080/10520295.2018.1552017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Development of surface treatments has enabled secure attachment of dental implants in less than 1 month. Consequently, it is necessary to characterize accurately the osseointegration of the implant surface in the region of the bone-implant contact (BIC). We developed a method for sample preparation that preserves both bone and BIC to permit analysis of the contact interface. We prepared eight nanotextured implants and implanted them in rabbit tibias. After healing for 30 days, outcomes were analyzed using both our bone preservation protocol and routine decalcification followed by preparation of histological sections stained by hematoxylin and eosin (H & E). Pull-out tests for implant osseointegration were performed after healing. Non-implanted samples of rabbit mandible were used as a control for assessing organic and mineralized bone characteristics and bone structure. Our bone preservation protocol enabled evaluation of many of the same bone characteristics as histological sections stained with H & E. Our protocol enables analysis of implant samples, implant surfaces and osseointegration without risk of BIC damage.
Collapse
Affiliation(s)
- M F Kunrath
- a Dentistry University , School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre , Brazil
| | - R Hübler
- b Materials and Nanoscience Laboratory , Physics University, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
21
|
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018; 180:143-162. [PMID: 30036727 PMCID: PMC6710094 DOI: 10.1016/j.biomaterials.2018.07.017] [Citation(s) in RCA: 570] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
Bone fractures are the most common traumatic injuries in humans. The repair of bone fractures is a regenerative process that recapitulates many of the biological events of embryonic skeletal development. Most of the time it leads to successful healing and the recovery of the damaged bone. Unfortunately, about 5-10% of fractures will lead to delayed healing or non-union, more so in the case of co-morbidities such as diabetes. In this article, we review the different strategies to heal bone defects using synthetic bone graft substitutes, biologically active substances and stem cells. The majority of currently available reviews focus on strategies that are still at the early stages of development and use mostly in vitro experiments with cell lines or stem cells. Here, we focus on what is already implemented in the clinics, what is currently in clinical trials, and what has been tested in animal models. Treatment approaches can be classified in three major categories: i) synthetic bone graft substitutes (BGS) whose architecture and surface can be optimized; ii) BGS combined with bioactive molecules such as growth factors, peptides or small molecules targeting bone precursor cells, bone formation and metabolism; iii) cell-based strategies with progenitor cells combined or not with active molecules that can be injected or seeded on BGS for improved delivery. We review the major types of adult stromal cells (bone marrow, adipose and periosteum derived) that have been used and compare their properties. Finally, we discuss the remaining challenges that need to be addressed to significantly improve the healing of bone defects.
Collapse
Affiliation(s)
- Antalya Ho-Shui-Ling
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Laurence E Rustom
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
| | - Amy Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61081, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium.
| | - Catherine Picart
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France.
| |
Collapse
|
22
|
Zhang X, Zhang G, Li J, He X, Wang Y, Hang R, Huang X, Tang B, Chu PK. Cellular response to nano-structured Zr and ZrO2 alloyed layers on Ti-6Al-4V. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:523-530. [DOI: 10.1016/j.msec.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022]
|
23
|
Elkhidir Y, Lai R, Feng Z. The impact of photofunctionalized gold nanoparticles on osseointegration. Heliyon 2018; 4:e00662. [PMID: 30094359 PMCID: PMC6077240 DOI: 10.1016/j.heliyon.2018.e00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/10/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The aims of this study were to create a new surface topography using simulated body fluids (SBF) and Gold Nanoparticles (GNPs) and then to assess the influence of UV Photofunctionalization (PhF) on the osteogenic capacity of these surfaces. MATERIALS AND METHODS Titanium plates were divided into six groups All were acid etched with 67% Sulfuric acid, 4 were immersed in SBF and 2 of these were treated with 10 nm GNPs. Half of the TiO2 plates were photofunctionalized to be compared with the non-PhF ones. Rat's bone marrow stem cells were seeded into the plates and then CCK8 assay, cell viability assay, immunofluorescence, and Scanning electron microscopy (SEM) were done after 24 hours. Gene expression analysis was done using real time quantitative PCR (qPCR) one week later to check for the mRNA expression of Collagen-1, Osteopontin and Osteocalcin. Alkaline phosphatase (ALP) activity was assessed after 2 weeks of cell seeding. RESULTS Our new topography has shown remarkable osteogenic potential. The new surface was the most biocompatible, and the 10 nm GNPs did not show any cytotoxicity. There was a significant increase in bioactivity, enhanced gene expressions and ALP activity. CONCLUSIONS GNPs enhances osteogenic differentiation of stem cells and Photofunctionalizing GNPs highly increases this. We have further created a novel highly efficient topography which highly enhances the speed and extent of osseointegration. This may have great potential for improving treatment outcomes for implant, maxillofacial as well as orthopedic patients.
Collapse
Affiliation(s)
| | | | - Zhiqiang Feng
- Implant Department – Suihua, The First Affiliated Stomatological Hospital of Jinan University, PR China
| |
Collapse
|