1
|
Roncero-Ramos B, Savaglia V, Durieu B, Van de Vreken I, Richel A, Wilmotte A. Ecophysiological and genomic approaches to cyanobacterial hardening for restoration. JOURNAL OF PHYCOLOGY 2024; 60:465-482. [PMID: 38373045 DOI: 10.1111/jpy.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/20/2024]
Abstract
Cyanobacteria inhabit extreme environments, including drylands, providing multiple benefits to the ecosystem. Soil degradation in warm drylands is increasing due to land use intensification. Restoration methods adapted to the extreme stress in drylands are being developed, such as cyanobacteria inoculation to recover biocrusts. For this type of restoration method to be a success, it is crucial to optimize the survival of inoculated cyanobacteria in the field. One strategy is to harden them to be acclimated to stressful conditions after laboratory culturing. Here, we analyzed the genome and ecophysiological response to osmotic desiccation and UVR stresses of an Antarctic cyanobacterium, Stenomitos frigidus ULC029, which is closely related to other cyanobacteria from warm and cold dryland soils. Chlorophyll a concentrations showed that preculturing ULC029 under moderate osmotic stress improved its survival during an assay of desiccation plus rehydration under UVR. Additionally, its sequential exposure to these stress factors increased the production of exopolysaccharides, carotenoids, and scytonemin. Desiccation, but not osmotic stress, increased the concentrations of the osmoprotectants trehalose and sucrose. However, osmotic stress might induce the production of other osmoprotectants, for which the complete pathways were observed in the ULC029 genome. In total, 140 genes known to be involved in stress resistance were annotated. Here, we confirm that the sequential application of moderate osmotic stress and dehydration could improve cyanobacterial hardening for soil restoration by inducing several resistance mechanisms. We provide a high-quality genome of ULC029 and a description of the main resistance mechanisms (i.e., production of exopolysaccharides, osmoprotectants, chlorophyll, and carotenoids; DNA repair; and oxidative stress protection).
Collapse
Affiliation(s)
- Beatriz Roncero-Ramos
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Valentina Savaglia
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Benoit Durieu
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| | | | - Aurore Richel
- TERRA-Biomass and Green Technologies, University of Liège, Gembloux, Belgium
| | - Annick Wilmotte
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| |
Collapse
|
2
|
Claudia MV, Javiera AA, Sebastián NS, José FR, Gloria L. Interplay between desiccation and oxidative stress responses in iron-oxidizing acidophilic bacteria. J Biotechnol 2024; 383:64-72. [PMID: 38311245 DOI: 10.1016/j.jbiotec.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Variations in water availability represent a foremost stress factor affecting the growth and survival of microorganisms. Acidophilic bioleaching bacteria are industrially applied for releasing metals from mineral sulphides, and they are considered extremely tolerant to oxidative conditions prevailing in acidic bioleaching environments. Such processes usually are performed in heaps and thus these microorganisms are also exposed to intermittent desiccations or high osmolarity periods that reduce the water availability. However, the tolerance to water stress and the molecular basis of adaptation to it are still largely unknown. The aim of this work was to determine the cellular response to desiccation stress and establish its relationship to oxidative stress response in the acidophilic iron-oxidizing bacteria Acidithiobacillus ferrooxidans ATCC 23270 and Leptospirillum ferriphilum DSM 14647. Results showed that the exposure of cell cultures to desiccation (0-120 min) led to a significant reduction in cell growth, and to an increase in content in reactive oxygen species in both bacteria. However, Leptospirillum ferriphilum turned out to be more tolerant than Acidithiobacillus ferrooxidans. In addition, the pre-treatment of the cell cultures with compatible solutes (trehalose and ectoine), and antioxidants (glutathione and cobalamin) restored all stress parameters to levels exhibited by the control cultures. To evaluate the role of the osmotic and redox homeostasis mechanisms in coping with desiccation stress, the relative expression of a set of selected genes was approached by RT-qPCR experiments in cells exposed to desiccation for 30 min. Results showed a generalized upregulation of genes that code for mechanosensitive channels, and enzymes related to the biosynthesis of compatible solutes and oxidative stress response in both bacteria. These data suggest that acidophiles show variable tolerance to desiccation and allow to establish that water stress can trigger oxidative stress, and thus anti-oxidative protection capability can be a relevant mechanism when cells are challenged by desiccation or other anhydrobiosis states.
Collapse
Affiliation(s)
- Muñoz-Villagrán Claudia
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Acevedo-Arbunic Javiera
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Navarro-Salazar Sebastián
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Fuentes-Rubio José
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Levicán Gloria
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile.
| |
Collapse
|
3
|
Bhakat S, Mondal A, Mandal S, Rath J. Role of exopolysaccharides of Anabaena sp. in desiccation tolerance and biodeterioration of ancient terracotta monuments of Bishnupur. Arch Microbiol 2024; 206:105. [PMID: 38363385 DOI: 10.1007/s00203-024-03841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
Colonization of the cyanobacteria in the Bishnupur terracotta temples, one of the heritage sites of West Bengal, India is in an alarming state of deterioration now. Among the cyanobacteria Anabaena sp. (VBCCA 052002) has been isolated from most of the crust samples of terracotta monuments of Bishnupur. The identification was done using micromorphological characters and confirmed by 16S rRNA gene sequencing. The isolated strain produces enormous exopolysaccharides, which are extracted, hydrolyzed, and analyzed by HPLC. We have studied desiccation tolerance in this cyanobacterium and found biosynthesis of trehalose with an increase in durations of desiccation. The in vitro experiment shows that Chlorophyll-a and carotenoid content increase with fourteen days of desiccation, and cellular carbohydrates increase continuously. However, cellular protein decreases with desiccation. To gain insights into the survival strategies and biodeterioration mechanisms of Anabaena sp. in the desiccated conditions of the Bishnupur monuments, the present study focuses on the physiological aspects of the cyanobacteria under controlled in vitro conditions. Our study indicates that in desiccation conditions, trehalose biosynthesis takes place in Anabaena sp. As a result of the excessive sugar and polysaccharide produced, it adheres to the surface of the terracotta structure. The continuous contraction and expansion of these polysaccharides contribute to the biodeterioration of these monuments.
Collapse
Affiliation(s)
- Shailen Bhakat
- Department of Botany, Sambhu Nath College, Labpur, Birbhum, West Bengal, 731303, India
| | - Arka Mondal
- Department of Botany, Visva-Bharati (Central University), Santiniketan, West Bengal, 731235, India
| | - Sikha Mandal
- Department of Botany, Sree Chaitanya College, Habra, West Bengal, 743268, India.
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati (Central University), Santiniketan, West Bengal, 731235, India
| |
Collapse
|
4
|
Parvin N, Mandal S, Rath J. Microbiome of seventh-century old Parsurameswara stone monument of India and role of desiccation-tolerant cyanobacterium Lyngbya corticicola on its biodeterioration. BIOFOULING 2024; 40:40-53. [PMID: 38359904 DOI: 10.1080/08927014.2024.2305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The Parsurameswara stone monument, built in the seventh century, is one of the oldest stone monuments in Odisha, India. Metagenomic analysis of the biological crust samples collected from the stone monument revealed 17 phyla in the microbiome, with Proteobacteria being the most dominant phylum, followed by cyanobacteria. Eight cyanobacteria were isolated. Lyngbya corticicola was the dominant cyanobacterium in all crust samples and could tolerate six months of desiccation in vitro. With six months of desiccation, chlorophyll-a decreased; however, carotenoid and cellular carbohydrate contents of this organism increased in the desiccated state. Resistance to desiccation, high carotenoid content, and effective trehalose biosynthesis in this cyanobacterium provide a distinct advantage over other microbiomes. Comparative metabolic profiles of the biological crust and L. corticicola show strongly corrosive organic acids such as dichloroacetic acid, which might be responsible for the biocorrosion of stone monuments.
Collapse
Affiliation(s)
- Nousi Parvin
- Department of Botany, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | - Sikha Mandal
- Department of Botany, Sree Chaitanya College, Habra, West Bengal, India
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| |
Collapse
|
5
|
Sąsiadek-Andrzejczak E, Jaszczak M, Kozicki M. Capsule Dosimeters for Ultraviolet Radiation Measurements on Coral Reefs and in Seawater. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5734. [PMID: 37687427 PMCID: PMC10488686 DOI: 10.3390/ma16175734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
This work reports on the new chemical dosimeters for UV radiation dose measurements on coral reefs and in seawater. The proposed dosimeters can measure the actual dose of UV radiation, which consists of 95% UVA and 5% UVB radiation, unlike the currently-used radiometers in marine and ocean waters that measure the dose of UVA and UVB radiation separately. The dosimeters are composed of water, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127) as a gel matrix, and 2,3,5-triphenyltetrazolium chloride (TTC) as a UV radiation-sensitive compound. In the work, the dosimeters were characterised in terms of their response to the dose of UV radiation depending on the TTC concentration and the irradiation and storage conditions of the dosimeters. The stability of the dosimeters over time was also examined. The obtained results indicate that the TTC-Pluronic F-127 dosimeters can be used to measure absorbed doses of UV radiation in the saltwater environment. The developed dosimeters with a concentration of 0.1% TTC can be used up to 5 J/cm2, which predisposes them to UV radiation measurements at a depth of more than 10 m in sea and ocean waters in 10-min intervals during all months throughout the year.
Collapse
Affiliation(s)
- Elżbieta Sąsiadek-Andrzejczak
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-543 Lodz, Poland; (M.J.); (M.K.)
| | | | | |
Collapse
|
6
|
Perera RMTD, Herath KHINM, Sanjeewa KKA, Jayawardena TU. Recent Reports on Bioactive Compounds from Marine Cyanobacteria in Relation to Human Health Applications. Life (Basel) 2023; 13:1411. [PMID: 37374193 DOI: 10.3390/life13061411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The ocean is a valuable natural resource that contains numerous biologically active compounds with various bioactivities. The marine environment comprises unexplored sources that can be utilized to isolate novel compounds with bioactive properties. Marine cyanobacteria are an excellent source of bioactive compounds that have applications in human health, biofuel, cosmetics, and bioremediation. These cyanobacteria exhibit bioactive properties such as anti-inflammatory, anti-cancer, anti-bacterial, anti-parasitic, anti-diabetic, anti-viral, antioxidant, anti-aging, and anti-obesity effects, making them promising candidates for drug development. In recent decades, researchers have focused on isolating novel bioactive compounds from different marine cyanobacteria species for the development of therapeutics for various diseases that affect human health. This review provides an update on recent studies that explore the bioactive properties of marine cyanobacteria, with a particular focus on their potential use in human health applications.
Collapse
Affiliation(s)
- R M T D Perera
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - K H I N M Herath
- Department of Bio-Systems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura 60170, Sri Lanka
| | - K K Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| |
Collapse
|
7
|
Li C, Zhang X, Ye T, Li X, Wang G. Protection and Damage Repair Mechanisms Contributed To the Survival of Chroococcidiopsis sp. Exposed To a Mars-Like Near Space Environment. Microbiol Spectr 2022; 10:e0344022. [PMID: 36453906 PMCID: PMC9769825 DOI: 10.1128/spectrum.03440-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Chroococcidiopsis spp. can withstand extremely harsh environments, including a Mars-like environment. However, studies are lacking on the molecular mechanisms of Chroococcidiopsis sp. surviving in Mars-like environments. In the HH-21-5 mission, the desert cyanobacterium Chroococcidiopsis sp. was exposed to a Mars-like environment (near space; 35 km altitude) for 4 h, and a single-factor environment of near space was simulated on the ground. We investigated the survival and endurance mechanisms of Chroococcidiopsis sp. ASB-02 after exposing it to near space by studying its physiological and transcriptional properties. After the exposure, Chroococcidiopsis sp. ASB-02 exhibited high cell viability, although photosystem II activity decreased and the levels of reactive oxygen species increased. The single-factor simulation experiments revealed that for the survival of Chroococcidiopsis sp. ASB-02 in near space, UV radiation was the most important limiting factor, and it was followed by temperature. The near space environment triggered multiple metabolic pathway responses in Chroococcidiopsis sp. ASB-02. The upregulation of extracellular polysaccharides as well as carotenoid and scytonemin biosynthesis genes in response to UV radiation attenuated the extent of radiation reaching the cells. At the same time, genes related to protein synthesis were upregulated in response to the low temperature, overcoming the decrease in metabolic activity that was caused by the low temperature. In near space and after rehydration, the genes involved in various DNA and photosystem II repair pathways were upregulated. This reflected the damage to the DNA and photosystem II protein subunits in cells during the flight and suggested that repair mechanisms play an important role in the recovery of Chroococcidiopsis sp. ASB-02. IMPORTANCE This study reported that the protective and repair mechanisms of Chroococcidiopsis sp. ASB-02 contributed to its endurance ability in a Mars-like near space environment. In Chroococcidiopsis sp. ASB-02, a Mars-like near space environment activated the expression of genes involved in extracellular polysaccharides (EPS), carotenoid, scytonemin, and protein syntheses, which provided additional protection. Additionally, the cell damage repair process enhanced the recovery rate of Chroococcidiopsis sp. ASB-02 after the flight. This study will help to enhance the understanding of the tolerance mechanism of Chroococcidiopsis sp. and to provide important guidance as to the survival requirements for microbial life in a Mars-like environment.
Collapse
Affiliation(s)
- Caiyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianyuan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Phinyo K, Ruangrit K, Pekkoh J, Tragoolpua Y, Kaewkod T, Duangjan K, Pumas C, Suwannarach N, Kumla J, Pathom-aree W, Gu W, Wang G, Srinuanpan S. Naturally Occurring Functional Ingredient from Filamentous Thermophilic Cyanobacterium Leptolyngbya sp. KC45: Phytochemical Characterizations and Their Multiple Bioactivities. Antioxidants (Basel) 2022; 11:antiox11122437. [PMID: 36552645 PMCID: PMC9774153 DOI: 10.3390/antiox11122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are rich in phytochemicals, which have beneficial impacts on the prevention of many diseases. This study aimed to comprehensively characterize phytochemicals and evaluate multifunctional bioactivities in the ethanolic extract of the cyanobacterium Leptolyngbya sp. KC45. Results found that the extract mainly contained chlorophylls, carotenoids, phenolics, and flavonoids. Through LC-ESI-QTOF-MS/MS analysis, 38 phenolic compounds with promising bioactivities were discovered, and a higher diversity of flavonoids was found among the phenolic compounds identified. The extract effectively absorbed the harmful UV rays and showed high antioxidant activity on DPPH, ABTS, and PFRAP. The extract yielded high-efficiency inhibitory effects on enzymes (tyrosinase, collagenase, ACE, and α-glucosidase) related to diseases. Interestingly, the extract showed a strong cytotoxic effect on cancer cells (skin A375, lung A549, and colon Caco-2), but had a much smaller effect on normal cells, indicating a satisfactory level of safety for the extract. More importantly, the combination of the DNA ladder assay and the TUNEL assay proved the appearance of DNA fragmentation in cancer cells after a 48 h treatment with the extract, confirming the apoptosis mechanisms. Our findings suggest that cyanobacterium extract could be potentially used as a functional ingredient for various industrial applications in foods, cosmetics, pharmaceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Duangjan
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| |
Collapse
|
9
|
Santiesteban-Romero B, Martínez-Ruiz M, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Microalgae Photo-Protectants and Related Bio-Carriers Loaded with Bioactive Entities for Skin Applications-An Insight of Microalgae Biotechnology. Mar Drugs 2022; 20:487. [PMID: 36005491 PMCID: PMC9409820 DOI: 10.3390/md20080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Microalgae are photosynthetic organisms known for producing valuable metabolites under different conditions such as extreme temperatures, high salinity, osmotic pressure, and ultraviolet radiation. In recent years, these metabolites have become a trend due to their versatility in applications such as pharmaceuticals, cosmetics, and others. They have even been proposed as an alternative source of bioactive metabolites to avoid the harmful effects on the environment produced by active compounds such as oxybenzone in commercials sunscreens. One of the most studied applications is the use of microalgae for skin care and topical use as cosmeceuticals. With the increasing demand for more environmentally friendly products in cosmetics, microalgae have been further explored in relation to this application. It has been shown that some microalgae are resistant to UV rays due to certain compounds such as mycosporine-like amino acids, sporopollenin, scytonemin, and others. These compounds have different mechanisms of action to mitigate UV damage induced. Still, they all have been proven to confer UV tolerance to microalgae with an absorbance spectrum like the one in conventional sunscreens. This review focuses on the use of these microalgae compounds obtained by UV stimulation and takes advantage of their natural UV-resistant characteristics to potentially apply them as an alternative for UV protection products.
Collapse
Affiliation(s)
- Berenice Santiesteban-Romero
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
10
|
Hosseinabadi T, Gharib R, Salehian S, Tabarzad M. A Study on the Effect of Nitrate and Phosphate Concentrations on the Production of Mycosporine-Like Amino Acids by Chlorella Vulgaris. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3194. [PMID: 36381286 PMCID: PMC9618020 DOI: 10.30498/ijb.2022.313739.3194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cyanobacteria can produce compounds absorbing ultraviolet irradiation. Mycosporine like amino acids (MAAs) are some of these important metabolites, which can be potentially considered as a sunscreen agent in the pharmaceutical and cosmetic industry. Different factors have been reported that can affect the biosynthesis of MAA. OBJECTIVE In this study, the influence of different concentrations of phosphate and nitrate under different environmental conditions on MAA production by Chlorella vulgaris was investigated using an experimental design method, in order to enhance MAAs production in this specious. MATERIALS AND METHODS A 23 full factorial design (FFD) using Design-Expert v7.0.0 software was used to optimize simultaneously all the three factors of nitrate and phosphate concentration and condition of incubation environment on the MAA production by this species of C. vulgaris. Two milliliter of organism stock were grown in 200 mL BG11 medium and after 21 days, the biomasses of all samples were separated. Then, the MAA was extracted from dried biomass using methanol extraction. The extracts were analyzed by reverse-phase high performance liquid chromatography (RP-HPLC). After complete analysis, four samples were then cultured at the optimized conditions and analyzed by liquid chromatohraphy coupled to mass spectrometry (LC/MS). RESULTS The results showed that this microalga could produce compounds with λmax of 330 nm and a retention time of about 2 min. According to the central composite analysis, phosphate at 0.51 g.L-1 and nitrate at 2.5 g.L-1 can be considered as the optimum concentrations, resulting to the preferable conditions concerning the culture in germinator. Based on LC/MSS analysis, the major compound had a m/z of 332 at the optimum condition. CONCLUSION Thus, this species is expected to have the capability of MAA production (maybe Shinorine) or one of its glycosylated derivatives.
Collapse
Affiliation(s)
- Tahereh Hosseinabadi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Gharib
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shayan Salehian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Martínez-Ruiz M, Martínez-González CA, Kim DH, Santiesteban-Romero B, Reyes-Pardo H, Villaseñor-Zepeda KR, Meléndez-Sánchez ER, Ramírez-Gamboa D, Díaz-Zamorano AL, Sosa-Hernández JE, Coronado-Apodaca KG, Gámez-Méndez AM, Iqbal HMN, Parra-Saldivar R. Microalgae Bioactive Compounds to Topical Applications Products-A Review. Molecules 2022; 27:3512. [PMID: 35684447 PMCID: PMC9182589 DOI: 10.3390/molecules27113512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are complex photosynthetic organisms found in marine and freshwater environments that produce valuable metabolites. Microalgae-derived metabolites have gained remarkable attention in different industrial biotechnological processes and pharmaceutical and cosmetic industries due to their multiple properties, including antioxidant, anti-aging, anti-cancer, phycoimmunomodulatory, anti-inflammatory, and antimicrobial activities. These properties are recognized as promising components for state-of-the-art cosmetics and cosmeceutical formulations. Efforts are being made to develop natural, non-toxic, and environmentally friendly products that replace synthetic products. This review summarizes some potential cosmeceutical applications of microalgae-derived biomolecules, their mechanisms of action, and extraction methods.
Collapse
Affiliation(s)
- Manuel Martínez-Ruiz
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Carlos Alberto Martínez-González
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Dong-Hyun Kim
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Berenice Santiesteban-Romero
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Humberto Reyes-Pardo
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Karen Rocio Villaseñor-Zepeda
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Edgar Ricardo Meléndez-Sánchez
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Diana Ramírez-Gamboa
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Ana Laura Díaz-Zamorano
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Juan Eduardo Sosa-Hernández
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Karina G. Coronado-Apodaca
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Ana María Gámez-Méndez
- Basic Sciences Department, Universidad de Monterrey, San Pedro Garza García 66238, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Roberto Parra-Saldivar
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| |
Collapse
|
12
|
Eco-evolutionary impact of ultraviolet radiation (UVR) exposure on microorganisms, with a special focus on our skin microbiome. Microbiol Res 2022; 260:127044. [DOI: 10.1016/j.micres.2022.127044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
|
13
|
Singh SK, Kaur R, Rahman MA, Mishra M, Sundaram S. Evaluation of potent cyanobacteria species for UV-protecting compound synthesis using bicarbonate-based culture system. 3 Biotech 2021; 11:412. [PMID: 34476170 PMCID: PMC8364896 DOI: 10.1007/s13205-021-02945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022] Open
Abstract
The present investigation evaluates the potential of three cyanobacteria species Anabaena cylindrica, Nostoc commune and Synechococcus BDUSM-13 for photo-protecting mycosporine-like amino acids (MAAs) synthesis using bicarbonate-based culture system. Current investigations witnessed noteworthy bicarbonate tolerance of all species (NaHCO3; 0.5, 1 and 2 g L- 1) in terms of their growth rate, chlorophyll content, biomass productivity and carbon fixation ability. Among all strains, Synechococcus BDUSM-13 showed maximum surge in specific growth rate (i.e. 0.72 day-1) at 1 g L-1, productivity (i.e. 0.92 ± 0.06 g day-1 L-1) and chlorophyll content (i.e. 0.09 g L-1) at 2 g day-1 L-1. Synechococcus cells were also has the 0.48 g dw-1 carbon content with highest CO2 fixation rate (i.e. 0.653 g.CO2 mL-1 day-1) at 2 g L-1. Though, they were not able to produce MAAs after long UV-B exposure (i.e. 24 and 48 h). A. cylindrica strain was the most competent species for the bicarbonate-based approach, produced UV-protecting iminomycosporine compound (i.e. shinorine, λ max at 334 ± 2 nm) along with carbon fixation (i.e. 0.49 g CO2 mL-1 day-1) at 2 g L-1 NaHCO3. This suggests the bicarbonate supplementation during cultivation is a promising strategy to increase cellular abundance, biomass productivity and carbon fixation in cyanobacteria. However, UV-B irradiation may cause species-specific differences in the MAAs synthesis to produce UV-protecting compounds.
Collapse
Affiliation(s)
- Shailendra Kumar Singh
- Centre of Biotechnology, Nehru Science Centre, University of Allahabad, Prayagraj, 211002 India
| | - Rupali Kaur
- Centre of Biotechnology, Nehru Science Centre, University of Allahabad, Prayagraj, 211002 India
| | - Md Akhlaqur Rahman
- Department of Biotechnology, S. S. Khanna Girls Degree College, Prayagraj, 211012 India
| | - Manjita Mishra
- Centre of Biotechnology, Nehru Science Centre, University of Allahabad, Prayagraj, 211002 India
| | - Shanthy Sundaram
- Centre of Biotechnology, Nehru Science Centre, University of Allahabad, Prayagraj, 211002 India
| |
Collapse
|
14
|
Kultschar B, Dudley E, Wilson S, Llewellyn CA. Response of Key Metabolites during a UV-A Exposure Time-Series in the Cyanobacterium Chlorogloeopsis fritschii PCC 6912. Microorganisms 2021; 9:910. [PMID: 33923254 PMCID: PMC8145266 DOI: 10.3390/microorganisms9050910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet A (UV-A) is the major component of UV radiation reaching the Earth's surface, causing indirect damage to photosynthetic organisms via the production of reactive oxygen species (ROS). In comparison, UV-B causes both direct damage to biomolecules and indirect damage. UV-B is well studied in cyanobacterial research due to their long evolutionary history and adaptation to high levels of UV, with less work on the effects of UV-A. In this study, the response of key metabolites in Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR, 15 µmol·m-2·s-1) supplemented with UV-A (11 µmol·m-2·s-1) was investigated using gas chromatography- mass spectrometry (GC-MS). Results showed an overall significant increase in metabolite levels up to 24 h of UV-A exposure. Compared with previously reported UV-B (PAR + UV-B) and PAR only results, UV-A showed more similarity compared to PAR only exposure as opposed to supplemented UV-B. The amino acids glutamate, phenylalanine and leucine showed differences in levels between UV (both supplemented UV-A and supplemented UV-B) and PAR only (non-supplemented PAR), hinting to their relevance in UV stress response. The fatty acids, palmitic and stearic acid, showed positive log2 fold-change (FC) in supplemented UV-A and PAR only experiments but negative log2 FC in UV-B, indicating the more harmful effect of UV-B on primary metabolism. Less research has been conducted on UV-A exposure and cyanobacteria, a potential environmental stimuli for the optimisation of metabolites for industrial biotechnology. This study will add to the literature and knowledge on UV-A stress response at the metabolite level in cyanobacteria, especially within the less well-known species C. fritschii.
Collapse
Affiliation(s)
- Bethan Kultschar
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| | - Ed Dudley
- Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| | - Steve Wilson
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK;
| | | |
Collapse
|
15
|
Schipper K, Das P, Al Muraikhi M, AbdulQuadir M, Thaher MI, Al Jabri HMSJ, Wijffels RH, Barbosa MJ. Outdoor scale-up of Leptolyngbya sp.: Effect of light intensity and inoculum volume on photoinhibition and -oxidation. Biotechnol Bioeng 2021; 118:2368-2379. [PMID: 33710627 PMCID: PMC8252766 DOI: 10.1002/bit.27750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022]
Abstract
The effect of light intensity and inoculum volume on the occurrence of photooxidation for Leptolyngbya sp. QUCCCM 56 was investigated, to facilitate the transition from small‐scale laboratory experiments to large‐scale outdoor cultivation. Indoor, the strain was capable of growing at light intensities of up to 5600 µmol photons/m2/s, at inoculation densities as low as 0.1 g/L (10% inoculation volume vol/vol). Levels of chlorophyll and phycocyanin showed a significant decrease within the first 24 h, indicating some level of photooxidation, however, both were able to recover within 72 h. When cultivated under outdoor conditions in Qatar during summer, with average peak light intensities 1981 ± 41 μmol photons/m2/s, the strain had difficulties growing. The culture recovered after an initial adaptation period, and clear morphological differences were observed, such as an increase in trichome length, as well as coiling of multiple trichomes in tightly packed strands. It was hypothesized that the morphological changes were induced by UV‐radiation as an adaptation mechanism for increased self‐shading. Furthermore, the presence of contaminating ciliates could have also affected the outdoor culture. Both UV and contaminants are generally not simulated under laboratory environments, causing a mismatch between indoor optimizations and outdoor realizations.
Collapse
Affiliation(s)
- Kira Schipper
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar.,Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| | - Probir Das
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar
| | - Mariam Al Muraikhi
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar
| | - Mohammed AbdulQuadir
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar
| | | | - René H Wijffels
- Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands.,Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Maria J Barbosa
- Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
16
|
Geraldes V, Pinto E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals (Basel) 2021; 14:63. [PMID: 33466685 PMCID: PMC7828830 DOI: 10.3390/ph14010063] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Mycosporines and mycosporine-like amino acids are ultra-violet-absorbing compounds produced by several organisms such as lichens, fungi, algae and cyanobacteria, especially upon exposure to solar ultraviolet radiation. These compounds have photoprotective and antioxidant functions. Mycosporine-like amino acids have been used as a natural bioactive ingredient in cosmetic products. Several reviews have already been developed on these photoprotective compounds, but they focus on specific features. Herein, an extremely complete database on mycosporines and mycosporine-like amino acids, covering the whole class of these natural sunscreen compounds known to date, is presented. Currently, this database has 74 compounds and provides information about the chemistry, absorption maxima, protonated mass, fragments and molecular structure of these UV-absorbing compounds as well as their presence in organisms. This platform completes the previous reviews and is available online for free and in the public domain. This database is a useful tool for natural product data mining, dereplication studies, research working in the field of UV-absorbing compounds mycosporines and being integrated in mass spectrometry library software.
Collapse
Affiliation(s)
- Vanessa Geraldes
- School of Pharmaceutical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo-SP CEP 05508-000, Brazil;
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| |
Collapse
|
17
|
A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria. Mar Drugs 2021; 19:md19010020. [PMID: 33418911 PMCID: PMC7825088 DOI: 10.3390/md19010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/29/2022] Open
Abstract
Microbial natural products are important for the understanding of microbial interactions, chemical defense and communication, and have also served as an inspirational source for numerous pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of new natural products, however, few reports have appeared wherein a multi-omics approach has been used to study their natural products potential (i.e., reports are often focused on an individual natural product and its biosynthesis). This study focuses on describing the natural product genetic potential as well as the expressed natural product molecules in benthic tropical cyanobacteria. We collected from several sites around the world and sequenced the genomes of 24 tropical filamentous marine cyanobacteria. The informatics program antiSMASH was used to annotate the major classes of gene clusters. BiG-SCAPE phylum-wide analysis revealed the most promising strains for natural product discovery among these cyanobacteria. LCMS/MS-based metabolomics highlighted the most abundant molecules and molecular classes among 10 of these marine cyanobacterial samples. We observed that despite many genes encoding for peptidic natural products, peptides were not as abundant as lipids and lipopeptides in the chemical extracts. Our results highlight a number of highly interesting biosynthetic gene clusters for genome mining among these cyanobacterial samples.
Collapse
|
18
|
Amador-Castro F, Rodriguez-Martinez V, Carrillo-Nieves D. Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141576. [PMID: 33370909 DOI: 10.1016/j.scitotenv.2020.141576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet radiation (UVR) has detrimental effects on human health. It induces oxidative stress, deregulates signaling mechanisms, and produces DNA mutations, factors that ultimately can lead to the development of skin cancer. Therefore, reducing exposure to UVR is of major importance. Among available measures to diminish exposure is the use of sunscreens. However, recent studies indicate that several of the currently used filters have adverse effects on marine ecosystems and human health. This situation leads to the search for new photoprotective compounds that, apart from offering protection, are environmentally friendly. The answer may lie in the same marine ecosystems since molecules such as mycosporine-like amino acids (MAAs) and scytonemin can serve as the defense system of some marine organisms against UVR. This review will discuss the harmful effects of UVR and the mechanisms that microalgae have developed to cope with it. Then it will focus on the biological distribution, characteristics, extraction, and purification methods of MAAs and scytonemin molecules to finally assess its potential as new filters for sunscreen formulation.
Collapse
Affiliation(s)
- Fernando Amador-Castro
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Veronica Rodriguez-Martinez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico.
| |
Collapse
|
19
|
UV-A Irradiation Increases Scytonemin Biosynthesis in Cyanobacteria Inhabiting Halites at Salar Grande, Atacama Desert. Microorganisms 2020; 8:microorganisms8111690. [PMID: 33142998 PMCID: PMC7692114 DOI: 10.3390/microorganisms8111690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 02/04/2023] Open
Abstract
Microbial consortia inhabiting evaporitic salt nodules at the Atacama Desert are dominated by unculturable cyanobacteria from the genus Halothece. Halite nodules provide transparency to photosynthetically active radiation and diminish photochemically damaging UV light. Atacama cyanobacteria synthesize scytonemin, a heterocyclic dimer, lipid soluble, UV-filtering pigment (in vivo absorption maximum at 370 nm) that accumulates at the extracellular sheath. Our goal was to demonstrate if UV-A irradiations modulate scytonemin biosynthesis in ground halites containing uncultured Halothece sp. cyanobacteria. Pulverized halite nodules with endolithic colonization were incubated under continuous UV-A radiation (3.6 W/m2) for 96 h, at 67% relative humidity, mimicking their natural habitat. Scytonemin content and relative transcription levels of scyB gene (a key gene in the biosynthesis of scytonemin) were evaluated by spectrophotometry and quantitative RT-PCR, respectively. After 48 h under these experimental conditions, the ratio scytonemin/chlorophyll a and the transcription of scyB gene increased to a maximal 1.7-fold value. Therefore, endolithic Halothece cyanobacteria in halites are metabolically active and UV radiation is an environmental stressor with a positive influence on scyB gene transcription and scytonemin biosynthesis. Endolithobiontic cyanobacteria in Atacama show a resilient evolutive and adaptive strategy to survive in one of the most extreme environments on Earth.
Collapse
|
20
|
Li Y, Naman CB, Alexander KL, Guan H, Gerwick WH. The Chemistry, Biochemistry and Pharmacology of Marine Natural Products from Leptolyngbya, a Chemically Endowed Genus of Cyanobacteria. Mar Drugs 2020; 18:E508. [PMID: 33036172 PMCID: PMC7600079 DOI: 10.3390/md18100508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022] Open
Abstract
Leptolyngbya, a well-known genus of cyanobacteria, is found in various ecological habitats including marine, fresh water, swamps, and rice fields. Species of this genus are associated with many ecological phenomena such as nitrogen fixation, primary productivity through photosynthesis and algal blooms. As a result, there have been a number of investigations of the ecology, natural product chemistry, and biological characteristics of members of this genus. In general, the secondary metabolites of cyanobacteria are considered to be rich sources for drug discovery and development. In this review, the secondary metabolites reported in marine Leptolyngbya with their associated biological activities or interesting biosynthetic pathways are reviewed, and new insights and perspectives on their metabolic capacities are gained.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
| | - C. Benjamin Naman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Kelsey L. Alexander
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| |
Collapse
|
21
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Geraldes V, de Medeiros LS, Jacinavicius FR, Long PF, Pinto E. Development and validation of a rapid LC-MS/MS method for the quantification of mycosporines and mycosporine-like amino acids (MAAs) from cyanobacteria. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Zhang Y, Ma Y, Zhang R, Zhang B, Zhai X, Li W, Xu L, Jiang Q, Duan J, Hou B. Metagenomic Resolution of Functional Diversity in Copper Surface-Associated Marine Biofilms. Front Microbiol 2019; 10:2863. [PMID: 31921043 PMCID: PMC6917582 DOI: 10.3389/fmicb.2019.02863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 01/16/2023] Open
Abstract
We used metagenomic sequencing combined with morphological and chemical analyses to investigate microbial taxa and functions related to copper-resistance and microbiologically influenced corrosion in mature copper-associated biofilms in coastal seawater for 44 months. Facultative anaerobic microbes such as Woeseia sp. were found to be the dominant groups on the copper surface. Genes related to stress response and possible heavy metal transport systems, especially RNA polymerase sigma factors (rpoE) and putative ATP-binding cassette (ABC) transport system permease protein (ABC.CD.P) were observed to be highly enriched in copper-associated biofilms, while genes encoding DNA-methyltransferase and RNA polymerase subunit were highly enriched in aluminum-associated biofilms and seawater planktonic cells, respectively. Moreover, copper-associated biofilms harbored abundant copper-resistance genes including cus, cop and pco, as well as abundant genes related to extracellular polymeric substances, indicating the presence of diverse copper-resistance patterns. The proportion of dsr in copper-associated biofilms, key genes related to sulfide production, was as low as that in aluminum biofilm and seawater, which ruled out the possibility of microbial sulfide-induced copper-corrosion under field conditions. These results may fill knowledge gaps about the in situ microbial functions of marine biofilms and their effects on toxic-metal corrosion.
Collapse
Affiliation(s)
- Yimeng Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yan Ma
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources, Hanover, Germany
| | - Binbin Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wangqiang Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Liting Xu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Quantong Jiang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
24
|
Pozo-Antonio JS, Sanmartín P. Exposure to artificial daylight or UV irradiation (A, B or C) prior to chemical cleaning: an effective combination for removing phototrophs from granite. BIOFOULING 2018; 34:851-869. [PMID: 30392382 DOI: 10.1080/08927014.2018.1512103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/24/2018] [Accepted: 08/09/2018] [Indexed: 05/22/2023]
Abstract
This study evaluated whether exposing samples of granite colonized by a natural biofilm to artificial daylight or UV-A/B/C irradiation for 48 h enhanced removal of the biofilm with a chemical product previously approved for conservation of monuments by the European Biocide Directive. Rodas granite, which is commonly found in stone-built heritage monuments in Galicia (NW Spain), was naturally colonized by a sub-aerial biofilm. The efficacy of the cleaning method was evaluated relative to uncolonized surfaces and colonized control samples without previous irradiation, treated by dry-brushing or with benzalkonium chloride. The effect of UV irradiation in the combined treatment was evident, as comparable cleaning levels were not reached in the controls. Although the biofilm was not totally removed by any of the treatments, UV-B irradiation followed by benzalkonium chloride was potentially useful for cleaning stone, with results comparable to those achieved by UV-C irradiation, which is known to have germicidal effects.
Collapse
Affiliation(s)
- J Santiago Pozo-Antonio
- a Departamento de Enxeñaría de Recursos Naturais e Medio Ambiente , Escola de Enxeñaría de Minas e Enerxía, Universidade de Vigo , Vigo , Spain
| | - Patricia Sanmartín
- b Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| |
Collapse
|