1
|
Muigano MN, Mauti GO, Anami SE, Onguso JM. Advances and challenges in polyhydroxyalkanoates (PHA) production using Halomonas species: A review. Int J Biol Macromol 2025; 309:142850. [PMID: 40188920 DOI: 10.1016/j.ijbiomac.2025.142850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 05/10/2025]
Abstract
Plastic waste pollution is one of the major threats to sustainable development. Biodegradable polymers and biopolymers such as polyhydroxyalkanoates (PHAs) offer suitable alternatives for replacing synthetic plastics. PHAs are produced by diverse bacteria species and archaea as storage compounds for utilization as carbon and energy sources. Halomonas species have emerged as attractive microbial cell factories for biosynthesis of PHAs due to their metabolic versality, ability to valorize diverse feedstock materials, and tolerance to high salinity and pH that allows fermentation in contamination-resistant conditions. In recent years, there has been great attention to the use of Halomonas species in PHA biosynthesis and genetic engineering efforts for enhanced production. This article provides a discussion of the current state of knowledge on production of polyhydroxyalkanoates by Halomonas species. It includes an overview of PHA biosynthesis mechanisms, fermentation strategies, production with cheap substrates, exploitation of open and unsterile conditions, co-production of PHAs and other products, and advances genetic engineering efforts.
Collapse
Affiliation(s)
- Martin N Muigano
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
| | | | - Sylvester E Anami
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Justus M Onguso
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
2
|
Wang Z, Du C, Yan R, Li S, Zheng G, Ding D. Sustainable polyhydroxybutyrate (PHB) production from biowastes by Halomonas sp. WZQ-1 under non-sterile conditions. Int J Biol Macromol 2025; 311:143643. [PMID: 40306522 DOI: 10.1016/j.ijbiomac.2025.143643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Polyhydroxyalkanoates (PHA) are promising candidates for replacing petroleum-derived plastics; however, their high production costs limit their commercialisation. In this study, we successfully isolated an efficient PHA-producing strain from a salt lake, which was subsequently identified as Halomonas sp. WZQ-1. Notably, Halomonas sp. WZQ-1 could serve as a promising cell-factory platform for polyhydroxybutyrate (PHB) production, achieving a comparatively high PHB productivity (7.64 ± 0.4 g L-1) under moderate salt stress (60 g L-1 NaCl). We further realised semi-continuous PHB production in a bench-scale fermenter at a steady state by irregularly replenishing the organic substrate. The maximum PHB concentration reached 12.13 g L-1. Finally, we realised the non-sterile conversion of typical biowastes (e.g. pomelo and cantaloupe residues) to PHB using Halomonas sp. WZQ-1. Encouragingly, 4.36 g L-1 PHB was directly obtained from the hydrolysate of pomelo residues with a characteristic melting temperature of 174.0 °C. Life cycle assessment was employed to systematically evaluate the environmental sustainability and potential challenges of biowaste-driven PHB biorefineries. Overall, our findings could serve as a pivotal step toward the commercialisation of PHB and provide a valuable reference for PHB biorefineries.
Collapse
Affiliation(s)
- Ziqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyu Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruyu Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuying Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanyu Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Kalia VC, Singh RV, Gong C, Lee JK. Toward Sustainable Polyhydroxyalkanoates: A Next-Gen Biotechnology Approach. Polymers (Basel) 2025; 17:853. [PMID: 40219244 PMCID: PMC11991626 DOI: 10.3390/polym17070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers synthesized by microorganisms and serve as sustainable alternatives to petroleum-based plastics. While traditional PHA production relies on refined carbon sources and pure cultures, high costs and scalability challenges limit commercial viability. Extremophiles, particularly halophiles, have emerged as promising candidates for cost-effective, large-scale production of PHAs. Their ability to thrive in extreme environments reduces contamination risks, minimizes the need for sterilization, and lowers operational costs. Advancements in metabolic engineering, synthetic biology, and CRISPR-based genome editing have enhanced PHA yields by optimizing metabolic flux and cell morphology. Additionally, utilizing alternative feedstocks such as biowaste, syngas, methane, and CO₂ improves economic feasibility. Next-generation industrial biotechnology integrates extremophilic microbes with AI-driven fermentation and eco-friendly downstream processing to enhance scalability. Industrial-scale production of PHAs using Halomonas spp. and other extremophiles demonstrates significant progress toward commercialization, paving the way for sustainable biopolymer applications in reducing plastic pollution.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (V.C.K.); (R.V.S.)
| | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (V.C.K.); (R.V.S.)
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China;
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (V.C.K.); (R.V.S.)
| |
Collapse
|
4
|
Woo SG, Averesch NJH, Berliner AJ, Deutzmann JS, Pane VE, Chatterjee S, Criddle CS. Isolation and characterization of a Halomonas species for non-axenic growth-associated production of bio-polyesters from sustainable feedstocks. Appl Environ Microbiol 2024; 90:e0060324. [PMID: 39058034 PMCID: PMC11338360 DOI: 10.1128/aem.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Biodegradable plastics are urgently needed to replace petroleum-derived polymeric materials and prevent their accumulation in the environment. To this end, we isolated and characterized a halophilic and alkaliphilic bacterium from the Great Salt Lake in Utah. The isolate was identified as a Halomonas species and designated "CUBES01." Full-genome sequencing and genomic reconstruction revealed the unique genetic traits and metabolic capabilities of the strain, including the common polyhydroxyalkanoate (PHA) biosynthesis pathway. Fluorescence staining identified intracellular polyester granules that accumulated predominantly during the strain's exponential growth, a feature rarely found among natural PHA producers. CUBES01 was found to metabolize a range of renewable carbon feedstocks, including glucosamine and acetyl-glucosamine, as well as sucrose, glucose, fructose, and further glycerol, propionate, and acetate. Depending on the substrate, the strain accumulated up to ~60% of its biomass (dry wt/wt) in poly(3-hydroxybutyrate), while reaching a doubling time of 1.7 h at 30°C and an optimum osmolarity of 1 M sodium chloride and a pH of 8.8. The physiological preferences of the strain may not only enable long-term aseptic cultivation but also facilitate the release of intracellular products through osmolysis. The development of a minimal medium also allowed the estimation of maximum polyhydroxybutyrate production rates, which were projected to exceed 5 g/h. Finally, also, the genetic tractability of the strain was assessed in conjugation experiments: two orthogonal plasmid vectors were stable in the heterologous host, thereby opening the possibility of genetic engineering through the introduction of foreign genes. IMPORTANCE The urgent need for renewable replacements for synthetic materials may be addressed through microbial biotechnology. To simplify the large-scale implementation of such bio-processes, robust cell factories that can utilize sustainable and widely available feedstocks are pivotal. To this end, non-axenic growth-associated production could reduce operational costs and enhance biomass productivity, thereby improving commercial competitiveness. Another major cost factor is downstream processing, especially in the case of intracellular products, such as bio-polyesters. Simplified cell-lysis strategies could also further improve economic viability.
Collapse
Affiliation(s)
- Sung-Geun Woo
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Nils J. H. Averesch
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Aaron J. Berliner
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of
Bioengineering, University of
California, Berkeley,
California, USA
| | - Joerg S. Deutzmann
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Vince E. Pane
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of
Chemistry, Stanford University,
Stanford, California,
USA
| | - Sulogna Chatterjee
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Craig S. Criddle
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| |
Collapse
|
5
|
Wen Q, Wang Z, Liu B, Liu S, Huang H, Chen Z. Enrichment performance and salt tolerance of polyhydroxyalkanoates (PHAs) producing mixed cultures under different saline environments. ENVIRONMENTAL RESEARCH 2024; 251:118722. [PMID: 38499223 DOI: 10.1016/j.envres.2024.118722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
The key to the resource recycling of saline wastes in form of polyhydroxyalkanoates (PHA) is to enrich mixed cultures with salt tolerance and PHA synthesis ability. However, the comparison of saline sludge from different sources and the salt tolerance mechanisms of salt-tolerant PHA producers need to be clarified. In this study, three kinds of activated sludge from different salinity environments were selected as the inoculum to enrich salt-tolerant PHA producers under aerobic dynamic feeding (ADF) mode with butyric acid dominated mixed volatile fatty acid as the substrate. The maximum PHA content (PHAm) reached 0.62 ± 0.01, 0.62 ± 0.02, and 0.55 ± 0.03 g PHA/g VSS at salinity of 0.5%, 0.8%, and 1.8%, respectively. Microbial community analysis indicated that Thauera, Paracoccus, and Prosthecobacter were dominant salt-tolerant PHA producers at low salinity, Thauera, NS9_marine, and SM1A02 were dominant salt-tolerant PHA producers at high salinity. High salinity and ADF mode had synergistic effects on selection and enrichment of salt-tolerant PHA producers. Combined correlation network with redundancy analysis indicated that trehalose synthesis genes and betaine related genes had positive correlation with PHAm, while extracellular polymeric substances (EPS) content had negative correlation with PHAm. The compatible solutes accumulation and EPS secretion were the main salt tolerance mechanisms of the PHA producers. Therefore, adding compatible solutes is an effective strategy to improve PHA synthesis in saline environment.
Collapse
Affiliation(s)
- Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zifan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Baozhen Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Shaojiao Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haolong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
6
|
Wang J, Huang J, Liu S. The production, recovery, and valorization of polyhydroxybutyrate (PHB) based on circular bioeconomy. Biotechnol Adv 2024; 72:108340. [PMID: 38537879 DOI: 10.1016/j.biotechadv.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| |
Collapse
|
7
|
Yin J, Yang J, Yu X, Chen T, He S. Enhanced poly(3-hydroxybutyrateco-3-hydroxyvalerate) production from high-concentration propionate by a novel halophile Halomonas sp. YJ01: Detoxification of the 2-methylcitrate cycle. BIORESOURCE TECHNOLOGY 2023; 388:129738. [PMID: 37714496 DOI: 10.1016/j.biortech.2023.129738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
As a carbon substrate, propionate can be used to synthesize poly(3-hydroxybutyrateco-3-hydroxyvalerate) [PHBV] biopolymer, but high concentrations can inhibit PHBV production. Therefore, novel PHBV producers that can utilize high propionate concentrations are needed. Here, a novel halophile, Halomonas sp. YJ01 was applied to PHBV production via a propionate-dependent pathway, and optimal culture growth conditions were determined. The maximum poly(3-hydroxybutyrate) [PHB] content and yield in the presence of glucose were 89.5 wt% and 5.7 g/L, respectively. This strain utilizes propionate and volatile fatty acids (VFAs) for PHBV accumulation. Multiple genes related to polyhydroxyalkanoate (PHA) synthesis were identified using whole-genome annotation. The PHBV yield and 3HV fraction obtained by strain YJ01 utilizing 15 g/L propionate were 0.86 g/L and 29 mol%, respectively, but in cultures with glucose-propionate, it decreased its copolymer dry weight. This indicates that propionyl-CoA was converted to pyruvate through the 2-methylcitrate cycle (2MCC), which reduced propionate detoxification for the strain.
Collapse
Affiliation(s)
- Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jincan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaoqin Yu
- Zhejiang Best Energy and Environment Co., Ltd, Hangzhou 310000, China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shanying He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
8
|
Park Y, Jeon JM, Park JK, Yang YH, Choi SS, Yoon JJ. Optimization of polyhydroxyalkanoate production in Halomonas sp. YLGW01 using mixed volatile fatty acids: a study on mixture analysis and fed-batch strategy. Microb Cell Fact 2023; 22:171. [PMID: 37661274 PMCID: PMC10476351 DOI: 10.1186/s12934-023-02188-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) is one of the most promising materials for replacing petroleum-based plastics, and it can be produced from various renewable biomass sources. In this study, PHA production was conducted using Halomonas sp. YLGW01 utilizing mixed volatile fatty acids (VFAs) as carbon sources. The ratio and concentration of carbon and nitrogen sources were optimized through mixture analysis and organic nitrogen source screening, respectively. It was found that the highest cell dry weight (CDW) of 3.15 g/L and PHA production of 1.63 g/L were achieved when the ratio of acetate to lactate in the mixed VFAs was 0.45:0.55. Furthermore, supplementation of organic nitrogen sources such as soytone resulted in a ninefold increase in CDW (reaching 2.32 g/L) and a 22-fold increase in PHA production (reaching 1.60 g/L) compared to using inorganic nitrogen sources. Subsequently, DO-stat, VFAs consumption rate stat, and pH-stat fed-batch methods were applied to investigate and evaluate PHA productivity. The results showed that when pH-stat-based VFAs feeding was employed, a CDW of 7 g/L and PHA production of 5.1 g/L were achieved within 68 h, with a PHA content of 73%. Overall, the pH-stat fed-batch strategy proved to be effective in enhancing PHA production by Halomonas sp. YLGW01 utilizing VFAs.
Collapse
Affiliation(s)
- Yerin Park
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungnam, 31056, Republic of Korea
- Department of Food and Nutrition, Myongji University, Yongin-si, 17058, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungnam, 31056, Republic of Korea
| | - Jea-Kyung Park
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungnam, 31056, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Shin Sik Choi
- Department of Food and Nutrition, Myongji University, Yongin-si, 17058, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungnam, 31056, Republic of Korea.
| |
Collapse
|
9
|
Leandro T, Oliveira MC, da Fonseca MMR, Cesário MT. Co-Production of Poly(3-hydroxybutyrate) and Gluconic Acid from Glucose by Halomonas elongata. Bioengineering (Basel) 2023; 10:643. [PMID: 37370574 DOI: 10.3390/bioengineering10060643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biopolyesters regarded as an attractive alternative to petroleum-derived plastics. Nitrogen limitation and phosphate limitation in glucose cultivations were evaluated for poly(3-hydroxybutyrate) (P(3HB)) production by Halomonas elongata 1H9T, a moderate halophilic strain. Co-production of P(3HB) and gluconic acid was observed in fed-batch glucose cultivations under nitrogen limiting conditions. A maximum P(3HB) accumulation of 53.0% (w/w) and a maximum co-production of 133 g/L of gluconic acid were attained. Fed-batch glucose cultivation under phosphate limiting conditions resulted in a P(3HB) accumulation of only 33.3% (w/w) and no gluconic acid production. As gluconic acid is a valuable organic acid with extensive applications in several industries, this work presents an interesting approach for the future development of an industrial process aiming at the co-production of an intracellular biopolymer, P(3HB), and a value-added extracellular product, gluconic acid.
Collapse
Affiliation(s)
- Tânia Leandro
- IBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Manuela R da Fonseca
- IBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - M Teresa Cesário
- IBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
10
|
Biswas J, Jana SK, Mandal S. Biotechnological impacts of Halomonas: a promising cell factory for industrially relevant biomolecules. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36253947 DOI: 10.1080/02648725.2022.2131961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
Extremophiles are the most fascinating life forms for their special adaptations and ability to offer unique extremozymes or bioactive molecules. Halophiles, the natural inhabitants of hypersaline environments, are one among them. Halomonas are the common genus of halophilic bacteria. To support growth in unusual environments, Halomonas produces various hydrolytic enzymes, compatible solutes, biopolymers like extracellular polysaccharides (EPS) and polyhydroxy alkaloates (PHA), antibiotics, biosurfactants, pigments, etc. Many of such molecules are being produced in large-scale bioreactors for commercial use. However, the prospect of the remaining bioactive molecules with industrial relevance is far from their application. Furthermore, the genetic engineering of the respective gene clusters could open up a new path to bio-prospect these molecules by overproducing their products through heterologous expression. The present survey on Halomonas highlights their ecological diversity, application potential of the their various industrially relevant biomolecules and impact of these biomolecules on respective fields.
Collapse
Affiliation(s)
- Jhuma Biswas
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, India
| | - Santosh Kumar Jana
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, India
| |
Collapse
|
11
|
Coupling Magnetic Field and Salinity Upshock To Improve Polyhydroxyalkanoate Productivity by Haloferax mediterranei Feeding on Molasses Wastewater. Appl Environ Microbiol 2022; 88:e0030522. [PMID: 35695568 PMCID: PMC9275214 DOI: 10.1128/aem.00305-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Low polyhydroxyalkanoate (PHA) volumetric productivity from wastewater limits low-cost PHA production. To resolve this problem, an external magnetic field (MF) coupled with upshock salinity was applied to PHA production by Haloferax mediterranei (family Halobacteriaceae). Elevating the fermentation salinity over the optimal growth salinity (200 g/L) increased the PHA cell content while inhibiting cell proliferation, decreasing volumetric productivity. When a MF of 50 mT in 300 g/L salinity was applied, H. mediterranei proliferation and PHA cell content were promoted, leading to a 7.95% increase in PHA volumetric productivity in synthetic molasses wastewater and a 13.82% increase in glucose feeding compared with those in 200 g/L salinity. Under the MF, osmotic pressure regulation was activated by accumulating K+ and increasing betaine synthesis. The maximum betaine content increased by 74.33% in 300 g/L salinity with a 50-mT MF compared with that in 200 g/L salinity. When a 50-mT MF in 300 g/L salinity was applied, the malondialdehyde (MDA) content decreased by 32.66% and the activity of superoxide dismutase (SOD) increased by 46.89%, which reduced the oxidative damage. This study provides a new solution to enhance PHA volumetric productivity by MF and an insight into the magnetic effects of H. mediterranei. IMPORTANCE The obstacle to replacing petroplastics with PHA is its high production cost. To increase the fermentation economy, a novel strategy of coupling a MF with salinity upshock was applied, which enhanced the PHA volumetric productivity of H. mediterranei in fermenting molasses wastewater. The magnetic effect of H. mediterranei was found at a MF of 50 mT, which improved the salt tolerance of H. mediterranei and reduced the oxidative damage induced by the elevated salinity, thereby promoting proliferation and PHA cell content. This is the first time a technical method for enhancing PHA volumetric productivity by means of a MF has been proposed. Such a strategy can advance the utilization of H. mediterranei for the industrial production of PHA using organic wastewater.
Collapse
|
12
|
Hammami K, Souissi Y, Souii A, Ouertani A, El-Hidri D, Jabberi M, Chouchane H, Mosbah A, Masmoudi AS, Cherif A, Neifar M. Extremophilic Bacterium Halomonas desertis G11 as a Cell Factory for Poly-3-Hydroxybutyrate-co-3-Hydroxyvalerate Copolymer's Production. Front Bioeng Biotechnol 2022; 10:878843. [PMID: 35677302 PMCID: PMC9168272 DOI: 10.3389/fbioe.2022.878843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bio-based polyesters, which are used in various applications including packaging, medical and coating materials. In this study, an extremophilic hydrocarbonoclastic bacterium, previously isolated from saline sediment in the Tunisian desert, has been investigated for PHA production. The accumulation of intracellular PHA granules in Halomonas desertis G11 was detected by Nile blue A staining of the colonies. To achieve maximum PHA yield by the strain G11, the culture conditions were optimized through response surface methodology (RSM) employing a Box-Behnken Design (BBD) with three independent variables, namely, substrate concentration (1-5%), inoculum size (1-5%) and incubation time (5-15 days). Under optimized conditions, G11 strain produced 1.5 g/L (68% of DCW) of PHA using glycerol as a substrate. Application of NMR (1H and 13C) and FTIR spectroscopies showed that H. desertis accumulated PHA is a poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV). The genome analysis revealed the presence of typical structural genes involved in PHBV metabolism including phaA, phaB, phaC, phaP, phaZ, and phaR, coding for acetyl-CoA acetyltransferase, acetoacetyl-CoA reductase, class I polyhydroxyalkanoates synthases, phasin, polyhydroxyalkanoates depolymerase and polyhydroxyalkanoates synthesis repressor, respectively. Glycerol can be metabolized to 1) acetyl-CoA through the glycolysis pathway and subsequently converted to the 3HB monomer, and 2) to propionyl-CoA via the threonine biosynthetic pathway and subsequently converted to the 3HV monomer. In silico analysis of PhaC1 from H. desertis G11 indicated that this enzyme belongs to Class I PHA synthase family with a "lipase box"-like sequence (SYCVG). All these characteristics make the extremophilic bacterium H. desertis G11 a promising cell factory for the conversion of bio-renewable glycerol to high-value PHBV.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Awatef Ouertani
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Darine El-Hidri
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Marwa Jabberi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Amor Mosbah
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
13
|
Scale-Up Studies for Polyhydroxyalkanoate and Halocin Production by <i>Halomonas</i> Sp. as Potential Biomedical Materials. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-yqf2wv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyhydroxyalkanoates (PHA) are the biomaterials isolated naturally from bacterial strains. These are present in granules and accumulated intracellularly for storage and energy uptake in stressed conditions. This work was based on the extraction of polyhydroxyalkanoates from haloarchaeal strains isolated from samples of a salt mine and Halocin activity screening of these isolates. For the screening of polyhydroxyalkanoates, Nile Blue and Sudan Black Staining were performed. After confirmation and theoretical determination, polyhydroxyalkanoates extraction was done by sodium hypochlorite digestion and solvent extraction by chloroform method in combination. Polyhydroxyalkanoates production was calculated along with the determination of biomass. Halocin activity of these strains was also screened at different intervals. Isolated strains were identified by 16S RNA gene sequencing. Polyhydroxyalkanoates polymer was produced in form of biofilms and brittle crystals. Halocin activity was exhibited by four strains, among which confirmed halocin activity was shown by strain K7. The remarkable results showed that polyhydroxyalkanoates can replace synthetic plastics which are not environment friendly as they cause environmental pollution – a major threat to Earth rising gradually. Therefore, by switching to the use of biodegradable bioplastics from the use of synthetic plastics, it would be beneficial to the ecosphere.
Collapse
|
14
|
Moungprayoon A, Lunprom S, Reungsang A, Salakkam A. High Cell Density Cultivation of Paracoccus sp. on Sugarcane Juice for Poly(3-hydroxybutyrate) Production. Front Bioeng Biotechnol 2022; 10:878688. [PMID: 35646885 PMCID: PMC9133739 DOI: 10.3389/fbioe.2022.878688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
High cell density cultivation is a promising approach to reduce capital and operating costs of poly (3-hydroxybutyrate) (PHB) production. To achieve high cell concentration, it is necessary that the cultivation conditions are adjusted and controlled to support the best growth of the PHB producer. In the present study, carbon to nitrogen (C/N) ratio of a sugarcane juice (SJ)-based medium, initial sugar concentration, and dissolved oxygen (DO) set point, were optimized for batch cultivation of Paracoccus sp. KKU01. A maximum biomass concentration of 55.5 g/L was attained using the C/N ratio of 10, initial sugar concentration of 100 g/L, and 20% DO set point. Fed-batch cultivation conducted under these optimum conditions, with two feedings of SJ-based medium, gave the final cell concentration of 87.9 g/L, with a PHB content, concentration, and yield of 36.2%, 32.1 g/L, and 0.13 g/g-sugar, respectively. A medium-based economic analysis showed that the economic yield of PHB on nutrients was 0.14. These results reveal the possibility of using SJ for high cell density cultivation of Paracoccus sp. KKU01 for PHB production. However, further optimization of the process is necessary to make it more efficient and cost-effective.
Collapse
Affiliation(s)
- Ayyapruk Moungprayoon
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Lunprom
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Apilak Salakkam
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Apilak Salakkam,
| |
Collapse
|
15
|
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 2022; 58:107906. [DOI: 10.1016/j.biotechadv.2022.107906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
|
16
|
Rajesh Banu J, Ginni G, Kavitha S, Yukesh Kannah R, Kumar V, Adish Kumar S, Gunasekaran M, Tyagi VK, Kumar G. Polyhydroxyalkanoates synthesis using acidogenic fermentative effluents. Int J Biol Macromol 2021; 193:2079-2092. [PMID: 34774601 DOI: 10.1016/j.ijbiomac.2021.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHA) are natural polyesters synthesized by microbes which consume excess amount of carbon and less amount of nutrients. It is biodegradable in nature, and it synthesized from renewable resources. It is considered as a future polymer, which act as an attractive replacement to petrochemical based polymers. The main hindrance to the commercial application of PHA is the high manufacturing cost. This article provides an overview of different cost-effective substrates, their characteristics and composition, major strains involved in economical production of PHA and biosynthetic pathways leading to accumulation of PHA. This review also covers the operational parameters, various fermentative modes including batch, fed-batch, repeated fed-batch and continuous fed-batch systems, along with advanced feeding strategies such as single pulse carbon feeding, feed forward control, intermittent carbon feeding, feast famine conditions to observe their effects for improving PHA synthesis and associated challenges. In addition, it also presents the economic analysis and future perspectives for the commercialization of PHA production process thereby making the process sustainable and lucrative with the possibility of commercial biomanufacturing.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - G Ginni
- Department of Civil Engineering, Amrita College of Engineering and Technology, Amritagiri, Nagercoil, Tamil Nadu, 629901, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India; Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, 620015, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway.
| |
Collapse
|
17
|
Lhamo P, Behera SK, Mahanty B. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Biotechnol J 2021; 16:e2100136. [PMID: 34132046 DOI: 10.1002/biot.202100136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
Microbial polyhydroxyalkanoates (PHAs) produced using renewable resources could be the best alternative for conventional plastics. Despite their incredible potential, commercial production of PHAs remains very low. Nevertheless, sincere attempts have been made by researchers to improve the yield and economic viability of PHA production by utilizing low-cost agricultural or industrial wastes. In this context, the use of efficient microbial culture or consortia, adoption of experimental design to trace ideal growth conditions, nutritional requirements, and intervention of metabolic engineering tools have gained significant attention. This review has been structured to highlight the important microbial sources for PHA production, use of conventional and non-conventional substrates, product optimization using experimental design, metabolic engineering strategies, and global players in the commercialization of PHA in the past two decades. The challenges about PHA recovery and analysis have also been discussed which possess indirect hurdle while expanding the horizon of PHA-based bioplastics. Selection of appropriate microorganism and substrate plays a vital role in improving the productivity and characteristics of PHAs. Experimental design-based bioprocess, use of metabolic engineering tools, and optimal product recovery techniques are invaluable in this dimension. Optimization strategies, which are being explored in isolation, need to be logically integrated for the successful commercialization of microbial PHAs.
Collapse
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Shishir Kumar Behera
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
18
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
19
|
Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose. Bioprocess Biosyst Eng 2020; 44:185-193. [PMID: 32895870 DOI: 10.1007/s00449-020-02434-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic that is comparable with many petroleum-based plastics in terms of mechanical properties and is highly biocompatible. Lignocellulosic biomass conversion into PHB can increase profit and add sustainability. Glucose, xylose and arabinose are the main monomer sugars derived from upstream lignocellulosic biomass processing. The sugar mixture ratios may vary greatly depending on the pretreatment and enzymatic hydrolysis conditions. Paraburkholderia sacchari DSM 17165 is a bacterium strain that can convert all three sugars into PHB. In this study, fed-batch mode was applied to produce PHB on three sugar mixtures (glucose:xylose:arabinose = 4:2:1, 2:2:1, 1:2:1). The highest PHB concentration produced was 67 g/L for 4:2:1 mixture at 41 h corresponding to an accumulation of 77% of cell dry weight as PHB. Corresponding sugar conversion efficiency and productivity were 0.33 g PHB/g sugar consumed and 1.6 g/L/h, respectively. The results provide references for process control to maximize PHB production from real sugar streams derived from corn fibre.
Collapse
|
20
|
Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int J Biol Macromol 2020; 156:691-703. [PMID: 32315680 DOI: 10.1016/j.ijbiomac.2020.04.082] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 11/20/2022]
Abstract
Polyhydroxyalkanoates (PHAs) have been actively studied in academia and industry for their properties comparable to petroleum-derived plastics and high biocompatibility. However, the major limitation for commercialization is their high cost. Feedstock costs, especially carbon costs, account for the majority of the final cost. Finding cheap feedstocks for PHA production and associated process development are critical for a cost-effective PHA production. In this study, waste materials from different sources, particularly lignocellulosic biomass, were proposed as suitable feedstocks for PHA production. Strains involved in the conversion of these feedstocks into PHA were reviewed. Newly isolated strains were emphasized. Related process development, including the factors that affect PHA production, fermentation modes and downstream processing, was elaborated upon.
Collapse
|
21
|
Mitra R, Xu T, Xiang H, Han J. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact 2020; 19:86. [PMID: 32264891 PMCID: PMC7137286 DOI: 10.1186/s12934-020-01342-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
Plastic pollution is a severe threat to our environment which necessitates implementation of bioplastics to realize sustainable development for a green world. Polyhydroxyalkanoates (PHA) represent one of the potential candidates for these bioplastics. However, a major challenge faced by PHA is the high production cost which limits its commercial application. Halophiles are considered to be a promising cell factory for PHA synthesis due to its several unique characteristics including high salinity requirement preventing microbial contamination, high intracellular osmotic pressure allowing easy cell lysis for PHA recovery, and capability to utilize wide spectrum of low-cost substrates. Optimization of fermentation parameters has made it plausible to achieve large-scale production at low cost by using halophiles. Further deeper insights into halophiles have revealed the existence of diversified and even novel PHA synthetic pathways within different halophilic species that greatly affects PHA type. Thus, precise metabolic engineering of halophiles with the help of advanced tools and strategies have led to more efficient microbial cell factory for PHA production. This review is an endeavour to summarize the various research achievements in these areas which will help the readers to understand the current developments as well as the future efforts in PHA research.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
22
|
Biglari N, Orita I, Fukui T, Sudesh K. A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant in batch fill-and-draw fermentation. J Biotechnol 2020; 307:77-86. [DOI: 10.1016/j.jbiotec.2019.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022]
|
23
|
Wang P, Chen XT, Qiu YQ, Liang XF, Cheng MM, Wang YJ, Ren LH. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnol Appl Biochem 2019; 67:307-316. [PMID: 31702835 DOI: 10.1002/bab.1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
In this study, a halotolerant strain was isolated from high salinity leachate and identified as Bacillus cereus NT-3. It can produce a high concentration of polyhydroxyalkanoates (PHAs) with no significant changes when NaCl concentration is up to 50 g/L. FTIR and NMR spectra of PHAs synthesized by Bacillus cereus NT-3 were similar to the standard or previous results. Effluent from acidogenic fermentation of food waste and pure volatile fatty acids (VFAs) mixture was used as carbon source to check the effect of non-VFAs compounds of the effluent on PHAs production. The maximum PHAs production was 0.42 g/L for effluent fermentation, whereas it was 0.34 g/L for pure VFAs fermentation, indicating that bacteria could use actual effluent in a better way. Furthermore, a mathematical model was established for describing kinetic behavior of bacteria using different carbon sources. These results provided a promising approach for PHAs biosynthesis with a low-cost carbon source.
Collapse
Affiliation(s)
- Pan Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xi Teng Chen
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yin Quan Qiu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Municipal Solid Waste and Chemical Management Center, Beijing, China
| | - Xiao Fei Liang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Meng Meng Cheng
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yong Jing Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Lian Hai Ren
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
24
|
A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42768-019-00013-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Halomonas smyrnensis as a cell factory for co-production of PHB and levan. Int J Biol Macromol 2018; 118:1238-1246. [DOI: 10.1016/j.ijbiomac.2018.06.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 11/19/2022]
|