1
|
Bi Y, Han Y, Bi Y, Zhang L, Sun S. Bioconversion of sterol esters to steroid intermediates through Mycobacterium sp. fermentation. World J Microbiol Biotechnol 2025; 41:169. [PMID: 40342031 DOI: 10.1007/s11274-025-04370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Sterol esters are naturally present in the by-product of edible oil processing, which is generally converted to sterols through saponification. Steroid intermediates play a crucial role in the production of pharmaceuticals, and these intermediates are predominantly synthesized via fermentation of sterol. This research explored the direct conversion of sterol esters into steroid intermediates using Mycobacterium sp. as a fermentation agent. The results demonstrated the successful identification of four steroid intermediates: androstenedione, 1,4-androstadienedione, 22-hydroxy-23,24-bisnorchol-4-ene-3-one, and 22-hydroxy-23,24-bisnorchol-1,4-dien-3-one, their individual intermediate concentrations were as follows: 144.2, 176.2, 30.8, 53.6 mg/L, with a total yield of 404.8 mg/L and a conversion rate of 29.5%. The optimized fermentation conditions included soybean oil at 3%, an initial pH of 7.0, a nitrogen source of 4.5 g/L, and hydroxypropyl-β-cyclodextrin of 15.0 g/L. Proteomic analysis revealed that sterol esters conversion pathway mirrors that of sterol, with an additional hydrolysis process. This work significantly expands our understanding of steroid intermediates production and offers valuable insights for the bioproduction industry.
Collapse
Affiliation(s)
- Yingjing Bi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yun Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yanlan Bi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| | - Linshang Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| | - Shangde Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Liu X, He B, Zhang J, Yuan C, Han S, Du G, Shi J, Sun J, Zhang B. Phytosterol conversion into C9 non-hydroxylated derivatives through gene regulation in Mycobacterium fortuitum. Appl Microbiol Biotechnol 2023; 107:7635-7646. [PMID: 37831185 DOI: 10.1007/s00253-023-12812-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Androst-4-ene-3,17-dione (AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) are important drug intermediates that can be biosynthesized from phytosterols. However, the C9 hydroxylation of steroids via 3-ketosteroid 9α-hydroxylase (KSH) limits AD and 4-HBC accumulation. Five active KshAs, the oxidation component of KSH, were identified in Mycobacterium fortuitum ATCC 35855 for the first time. The deletion of kshAs indicated that the five KshA genes were jointly responsible for C9 hydroxylation during phytosterol biotransformation. MFKDΔkshA, the five KshAs deficient strain, blocked C9 hydroxylation and produced 5.37 g/L AD and 0.55 g/L 4-HBC. The dual function reductase Opccr knockout and 17β-hydroxysteroid dehydrogenase Hsd4A enhancement reduced 4-HBC content from 8.75 to 1.72% and increased AD content from 84.13 to 91.34%, with 8.24 g/L AD being accumulated from 15 g/L phytosterol. In contrast, hsd4A and thioesterase fadA5 knockout resulted in the accumulation of 5.36 g/L 4-HBC from 10 g/L phytosterol. We constructed efficient AD (MFKDΔkshAΔopccr_hsd4A) and 4-HBC (MFKDΔkshAΔhsd4AΔfadA5) producers and provided insights for further metabolic engineering of the M. fortuitum ATCC 35855 strain for steroid productions. KEY POINTS: • Five active KshAs were first identified in M. fortuitum ATCC 35855. • Deactivation of all five KshAs blocks the steroid C9 hydroxylation reaction. • AD or 4-HBC production was improved by Hsd4A, FadA5, and Opccr modification.
Collapse
Affiliation(s)
- Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beiru He
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suwan Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Zhang Y, Xiao P, Pan D, Zhou X. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Mycolicibacterium and the Application of Fermentation Biotechnology in C-19 Steroid Production. Int J Mol Sci 2023; 24:ijms24065236. [PMID: 36982310 PMCID: PMC10049677 DOI: 10.3390/ijms24065236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), and 9α-hydroxy-4-androstene-3,17-dione (9-OHAD), which belong to C-19 steroids, are critical steroid-based drug intermediates. The biotransformation of phytosterols into C-19 steroids by Mycolicibacterium cell factories is the core step in the synthesis of steroid-based drugs. The production performance of engineered mycolicibacterial strains has been effectively enhanced by sterol core metabolic modification. In recent years, research on the non-core metabolic pathway of steroids (NCMS) in mycolicibacterial strains has made significant progress. This review discusses the molecular mechanisms and metabolic modifications of NCMS for accelerating sterol uptake, regulating coenzyme I balance, promoting propionyl-CoA metabolism, reducing reactive oxygen species, and regulating energy metabolism. In addition, the recent applications of biotechnology in steroid intermediate production are summarized and compared, and the future development trend of NCMS research is discussed. This review provides powerful theoretical support for metabolic regulation in the biotransformation of phytosterols.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
4
|
Bioconversion of Phytosterols to 9-Hydroxy-3-Oxo-4,17-Pregadiene-20-Carboxylic Acid Methyl Ester by Enoyl-CoA Deficiency and Modifying Multiple Genes in Mycolicibacterium neoaurum. Appl Environ Microbiol 2022; 88:e0130322. [PMID: 36286498 PMCID: PMC9680642 DOI: 10.1128/aem.01303-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C22 steroids are valuable precursors for steroid drug synthesis, but the development of C22 steroids remains unsatisfactory. This study presented a strategy for the one-step bioconversion of phytosterols to a C22 steroid drug precursor, 9-hydroxy-3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (9-OH-PDCE), by 3-ketosteroid-Δ
1
-dehydrogenase and enoyl-CoA hydratase deficiency with overexpression of 17β-hydroxysteroid dehydrogenase acyl-CoA dehydrogenase in
Mycolicibacterium
.
Collapse
|
5
|
Nunes VO, Vanzellotti NDC, Fraga JL, Pessoa FLP, Ferreira TF, Amaral PFF. Biotransformation of Phytosterols into Androstenedione—A Technological Prospecting Study. Molecules 2022; 27:molecules27103164. [PMID: 35630641 PMCID: PMC9147728 DOI: 10.3390/molecules27103164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Androstenedione (AD) is a key intermediate in the body’s steroid metabolism, used as a precursor for several steroid substances, such as testosterone, estradiol, ethinyl estradiol, testolactone, progesterone, cortisone, cortisol, prednisone, and prednisolone. The world market for AD and ADD (androstadienedione) exceeds 1000 tons per year, which stimulates the pharmaceutical industry’s search for newer and cheaper raw materials to produce steroidal compounds. In light of this interest, we aimed to investigate the progress of AD biosynthesis from phytosterols by prospecting scientific articles (Scopus, Web of Science, and Google Scholar databases) and patents (USPTO database). A wide variety of articles and patents involving AD and phytosterol were found in the last few decades, resulting in 108 relevant articles (from January 2000 to December 2021) and 23 patents of interest (from January 1976 to December 2021). The separation of these documents into macro, meso, and micro categories revealed that most studies (articles) are performed in China (54.8%) and in universities (76%), while patents are mostly granted to United States companies. It also highlights the fact that AD production studies are focused on “process improvement” techniques and on possible modifications of the “microorganism” involved in biosynthesis (64 and 62 documents, respectively). The most-reported “process improvement” technique is “chemical addition” (40%), which means that the addition of solvents, surfactants, cofactors, inducers, ionic liquids, etc., can significantly increase AD production. Microbial genetic modifications stand out in the “microorganism” category because this strategy improves AD yield considerably. These documents also revealed the main aspects of AD and ADD biosynthesis: Mycolicibacterium sp. (basonym: Mycobacterium sp.) (40%) and Mycolicibacterium neoaurum (known previously as Mycobacterium neoaurum) (32%) are the most recurrent species studied. Microbial incubation temperatures can vary from 29 °C to 37 °C; incubation can last from 72 h to 14 days; the mixture is agitated at 140 to 220 rpm; vegetable oils, mainly soybean, can be used as the source of a mixture of phytosterols. In general, the results obtained in the present technological prospecting study are fundamental to mapping the possibilities of AD biosynthesis process optimization, as well as to identifying emerging technologies and methodologies in this scenario.
Collapse
Affiliation(s)
- Victor Oliveira Nunes
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Nathália de Castro Vanzellotti
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Jully Lacerda Fraga
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Fernando Luiz Pellegrini Pessoa
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Centro Universitário SENAI CIMATEC, Salvador 41650-010, BA, Brazil
| | - Tatiana Felix Ferreira
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Priscilla Filomena Fonseca Amaral
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Correspondence: ; Tel.: +55-21-3938-7623
| |
Collapse
|
6
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
7
|
The Inhibitory Effect of Cyclodextrin on Oxygen Bioavailability Is a Key Factor for the Metabolic Flux Redistribution Toward Steroid Alcohols in Phytosterol Resting Cells Bioconversion. Appl Biochem Biotechnol 2021; 193:2443-2454. [PMID: 33713271 DOI: 10.1007/s12010-021-03540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
In the present work, we tried to identify the mechanism why by which the steroid alcohols accumulated when hydroxypropyl-β-cyclodextrin (HP-β-CD) was present to enhance the sterol conversion rate. Compared with the bioconversion system without HP-β-CD, the reaction rate was greatly improved in presence of HP-β-CD, but the steroid alcohols largely accumulated concurrently. In a reaction system with an enhanced reaction rate, the higher intracellular NADH/NAD+ level was detected, and the production of steroid alcohols increased also. Mycobacterium neoaurum mutants with higher KshA activity (3-ketosteroid 9α-hydrolase, a monooxygenase hydroxylating the nucleus at C-9 at the expense of NAD(P)H consumption) reduced the steroid alcohol production, and in the meantime, the NADH/NAD+ level was decreased consequently. Further research found that oxygen availability was seriously inhibited by the cyclodextrin in a reaction system. These results indicated that NADH formed in the bioconversion was not properly regenerated via the respiratory chain because of the poor oxygen bioavailability. The inhibitory effect of cyclodextrin on oxygen bioavailability is a key factor for the metabolic flux redistribution toward steroid alcohols in phytosterol resting cells bioconversion.
Collapse
|