1
|
Ost KJ, Student M, Cord-Landwehr S, Moerschbacher BM, Ram AFJ, Dirks-Hofmeister ME. Cell walls of filamentous fungi - challenges and opportunities for biotechnology. Appl Microbiol Biotechnol 2025; 109:125. [PMID: 40411627 PMCID: PMC12103488 DOI: 10.1007/s00253-025-13512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/26/2025]
Abstract
The cell wall of filamentous fungi is essential for growth and development, both of which are crucial for fermentations that play a vital role in the bioeconomy. It typically has an inner rigid core composed of chitin and beta-1,3-/beta-1,6-glucans and a rather gel-like outer layer containing other polysaccharides and glycoproteins varying between and within species. Only a fraction of filamentous fungal species is used for the biotechnological production of enzymes, organic acids, and bioactive compounds such as antibiotics in large amounts on a yearly basis by precision fermentation. Most of these products are secreted into the production medium and must therefore pass through fungal cell walls at high transfer rates. Thus, cell wall mutants have gained interest for industrial enzyme production, although the causal relationship between cell walls and productivity requires further elucidation. Additionally, the extraction of valuable biopolymers like chitin and chitosan from spent fungal biomass, which is predominantly composed of cell walls, represents an underexplored opportunity for circular bioeconomy. Questions persist regarding the effective extraction of these biopolymers from the cell wall and their repurposing in valorization processes. This review aims to address these issues and promote further research on understanding the cell walls in filamentous fungi to optimize their biotechnological use. KEY POINTS: • The highly complex cell walls of filamentous fungi are important for biotechnology. • Cell wall mutants show promising potential to improve industrial enzyme secretion. • Recent studies revealed enhanced avenues for chitin/chitosan from fungal biomass.
Collapse
Affiliation(s)
- Katharina J Ost
- Laboratory for Food Biotechnology, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrück University of Applied Sciences, Oldenburger Landstraße 62, 49090, Osnabrück, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Mounashree Student
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Arthur F J Ram
- Fungal Genetics and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mareike E Dirks-Hofmeister
- Laboratory for Food Biotechnology, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrück University of Applied Sciences, Oldenburger Landstraße 62, 49090, Osnabrück, Germany.
| |
Collapse
|
2
|
Singh A, Pramanik S, Kadi A, Abualsoud BM, Singh M, Ansari MJ, Omri A, Deepak A, Nainwal P, Bellucci S. Chitosan nanoparticles: a versatile frontier in drug delivery and wound healing across multiple routes. Biomed Mater 2025; 20:032008. [PMID: 40315890 DOI: 10.1088/1748-605x/add3e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/02/2025] [Indexed: 05/04/2025]
Abstract
The domain of nanoscience has observed significant advancements over the former two decades. Researchers in nanomedicine field have been rigorously exploring the employment of natural biodegradable polymers for targeted drug delivery (TDD). Chitosan (CS), acquired from the deacetylation of chitin, is a naturally occurring amino polysaccharide, whose features of non-toxicity, prolonged retention time, biocompatibility, increased bioavailability, and biodegradability have hastened extensive study into diverse applications. The presence of amino and hydroxyl groups within CS is crucial for its noteworthy characteristics, comprising mucoadhesion, improvement of permeation, drug's-controlled release,in situgel preparation, and antimicrobial activity. CS nanoparticles (CS NPs) portray a safe and competent class of nanocarrier systems, demonstrating the controlled release of drugs and preciseness in TDD, and are found hopeful for treating wounds. However, safety concerns such as potential toxicity, immune response, and hemocompatibility must be carefully evaluated to ensure their suitability for clinical applications. This article explores the potential of CS NPs as versatile carriers for TDD, reporting essential challenges in both therapeutic domains, and progressing the advancement of innovative treatments. By connecting drug delivery and wound healing, our review addresses a critical convergence, fostering developments that can certainly affect treatment and recovery of patient. The initial part of the review will shed light on the extraction sources and notable attributes of CS. Additionally, we have presented recent research findings on how CS NPs are being utilized for drug delivery via different routes of administration. Further, we have endeavored to represent the latest investigations on the applications of CS NPs in wound healing.
Collapse
Affiliation(s)
- Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak 124021, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Manisha Singh
- Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States of America
| | | | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury ON P3E 2C6, Canada
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
3
|
Varshan GSA, Namasivayam SKR. A Green Chemistry Principle for the Biotransformation of Fungal Biomass Derived Chitosan Into Versatile Nano Scale Materials with High Biocompatibility and Potential Biological Activities—A Review. BIONANOSCIENCE 2024; 14:4145-4166. [DOI: 10.1007/s12668-024-01564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/05/2025]
|
4
|
Davis D, Umesh M, Santhosh AS, Suresh S, Shanmugam S, Kikas T. Extraction of Fungal Chitosan by Leveraging Pineapple Peel Substrate for Sustainable Biopolymer Production. Polymers (Basel) 2024; 16:2455. [PMID: 39274088 PMCID: PMC11397891 DOI: 10.3390/polym16172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/16/2024] Open
Abstract
The cost-effective production of commercially important biopolymers, such as chitosan, has gained momentum in recent decades owing to its versatile material properties. The seasonal variability in the availability of crustacean waste and fish waste, routinely used for chitosan extraction, has triggered a focus on fungal chitosan as a sustainable alternative. This study demonstrates a cost-effective strategy for cultivating an endophytic fungus isolated from Pichavaram mangrove soil in a pineapple peel-based medium for harvesting fungal biomass. Chitosan was extracted using alkali and acid treatment methods from various combinations of media. The highest chitosan yield (139 ± 0.25 mg/L) was obtained from the pineapple peel waste-derived medium supplemented with peptone. The extracted polymer was characterized by FTIR, XRD, DSC, and TGA analysis. The antioxidant activity of the fungal chitosan was evaluated using DPPH assay and showed an IC50 value of 0.22 mg/L. Subsequently, a transparent chitosan film was fabricated using the extracted fungal chitosan, and its biodegradability was assessed using a soil burial test for 50 days. Biodegradation tests revealed that, after 50 days, a degradation rate of 28.92 ± 0.75% (w/w) was recorded. Thus, this study emphasizes a cost-effective strategy for the production of biopolymers with significant antioxidant activity, which may have promising applications in food packaging if additional investigations are carried out in the future.
Collapse
Affiliation(s)
- Delwin Davis
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Adhithya Sankar Santhosh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Sreehari Suresh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Sabarathinam Shanmugam
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| | - Timo Kikas
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| |
Collapse
|
5
|
Lu Z, Chen Z, Liu Y, Hua X, Gao C, Liu J. Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives. J Microbiol Biotechnol 2024; 34:1197-1205. [PMID: 38693049 PMCID: PMC11239417 DOI: 10.4014/jmb.2402.02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
Filamentous fungi are important cell factories for the production of high-value enzymes and chemicals for the food, chemical, and pharmaceutical industries. Under submerged fermentation, filamentous fungi exhibit diverse fungal morphologies that are influenced by environmental factors, which in turn affect the rheological properties and mass transfer of the fermentation system, and ultimately the synthesis of products. In this review, we first summarize the mechanisms of mycelial morphogenesis and then provide an overview of current developments in methods and strategies for morphological regulation, including physicochemical and metabolic engineering approaches. We also anticipate that rapid developments in synthetic biology and genetic manipulation tools will accelerate morphological engineering in the future.
Collapse
Affiliation(s)
- Zhengwu Lu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Zhiqun Chen
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Yunguo Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Xuexue Hua
- Shandong Fufeng Fermentation Co., Ltd., Linyi 276600, P. R. China
| | - Cuijuan Gao
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
6
|
Singh A, Kumar V, Anand S, Phukan D, Pandey N. Mixed organic and inorganic nitrogen sources enhance chitosan yield in novel isolates of Penicillium. Int J Biol Macromol 2024; 256:128115. [PMID: 38000602 DOI: 10.1016/j.ijbiomac.2023.128115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Chitosan, a valuable biopolymer, has traditionally been derived from marine sources. However, exploring fungal alternatives offers a sustainable supply. This research investigates the potential of chitosan production from fungal sources, focusing on the optimization of abiotic factors using two novel Penicillium strains (IITISM-ANK1 and IITISM-ANK2) isolated from dry aged sludge. Box-Behnken model and standard statistical analysis were deployed to develop an equation predicting the effect of carbon and nitrogen sources, pH, and temperature on chitosan production. Batch experiments validate the model's accuracy under optimized conditions. The results indicate that mixed organic and inorganic nitrogen sources in the form of peptone, nitrate, and ammonium salts enhanced chitosan yield in both isolates. At optimal conditions for the chitosan production of IITISM-ANK2 and IITISM-ANK1 were found to be 293.29 mg/L and 325.01 mg/L, with the degree of deacetylation of over 74 % which is a critical parameter for chitosan quality. Thus, these isolates can be used as a potent microbe for industrial chitosan production and contribute to advancing sustainable chitosan production and its potential industrial applications.
Collapse
Affiliation(s)
- Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India.
| | - Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India
| | - Dixita Phukan
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India
| | - Nishant Pandey
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India
| |
Collapse
|
7
|
Zou S, Li X, Huang Y, Zhang B, Tang H, Xue Y, Zheng Y. Properties and biotechnological applications of microbial deacetylase. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12613-1. [PMID: 37326683 DOI: 10.1007/s00253-023-12613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Deacetylases, a class of enzymes that can catalyze the hydrolysis of acetylated substrates to remove the acetyl group, used in producing various products with high qualities, are one of the most influential industrial enzymes. These enzymes are highly specific, non-toxic, sustainable, and eco-friendly biocatalysts. Deacetylases and deacetylated compounds have been widely applicated in pharmaceuticals, medicine, food, and the environment. This review synthetically summarizes deacetylases' sources, characterizations, classifications, and applications. Moreover, the typical structural characteristics of deacetylases from different microbial sources are summarized. We also reviewed the deacetylase-catalyzed reactions for producing various deacetylated compounds, such as chitosan-oligosaccharide (COS), mycothiol, 7-aminocephalosporanic acid (7-ACA), glucosamines, amino acids, and polyamines. It is aimed to expound on the advantages and challenges of deacetylases in industrial applications. Moreover, it also serves perspectives on obtaining promising and innovative biocatalysts for enzymatic deacetylation. KEYPOINTS: • The fundamental properties of microbial deacetylases of various microorganisms are presented. • The biochemical characterizations, structures, and catalyzation mechanisms of microbial deacetylases are summarized. • The applications of microbial deacetylases in food, pharmaceutical, medicine, and the environment were discussed.
Collapse
Affiliation(s)
- Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yinfeng Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bing Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
8
|
Chitosan Production by Fungi: Current State of Knowledge, Future Opportunities and Constraints. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conventionally, the commercial supply of chitin and chitosan relies on shellfish wastes as the extraction sources. However, the fungal sources constitute a valuable option, especially for biomedical and pharmaceutical applications, due to the batch-to-batch unsteady properties of chitin and chitosan from conventional ones. Fungal production of these glycans is not affected by seasonality enables accurate process control and, consequently, more uniform properties of the obtained product. Moreover, liquid and solid production media often are derived from wastes, thus enabling the application of circular economy criteria and improving the process economics. The present review deals with fungal chitosan production processes focusing on waste-oriented and integrated production processes. In doing so, contrary to other reviews that used a genus-specific approach for organizing the available information, the present one bases the discussion on the bioprocess typology. Finally, the main process parameters affecting chitosan production and their interactions are critically discussed.
Collapse
|
9
|
Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl Microbiol Biotechnol 2021; 106:101-115. [PMID: 34889982 DOI: 10.1007/s00253-021-11720-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Biorefinery employing fungi can be a strategy for valorizing low-cost rest materials, by-products and wastes into several valuable bioproducts through the fungal fermentation. Mucoromycota fungi are soil fungi with a highly versatile metabolic system that positions them as powerful microbial cell factories for biorefinery applications. Lipids, pigments, chitin/chitosan, polyphosphates, ethanol, organic acids and enzymes are main Mucoromycota products that can be refined from the fermentation process and applied in nutrition, chemical or biofuel industries. In addition, Mucoromycota biomass can be used as it is for specific purposes, such as feed. Mucoromycota fungi can be employed in developing co-production processes, whereby several intra- and extracellular products are simultaneously formed in a single fermentation process, and, thus, economic viability of the process can be improved. This mini review provides a comprehensive overview over the recent advances in the production of valuable metabolites by Mucoromycota fungi and fermentation strategies which could be potentially applied in the industrial biorefinery settings. KEY POINTS: • Biorefineries utilizing Mucoromycota fungi as production cell factories can provide a wide range of bioproducts. • Mucoromycota fungi are able to perform co-production of various metabolites in a single fermentation process. • Versatile metabolism of Mucoromycota allows valorization of a various low-cost substrates such as wastes and rest materials.
Collapse
|
10
|
Afroz MM, Kashem MNH, Piash KMPS, Islam N. Saccharomyces Cerevisiae as an Untapped Source of Fungal Chitosan for Antimicrobial Action. Appl Biochem Biotechnol 2021; 193:3765-3786. [PMID: 34406627 DOI: 10.1007/s12010-021-03639-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
Despite being widely available, Saccharomyces cerevisiae has not been widely explored for direct extraction of chitosan biopolymer for antimicrobial applications. In our study, S. cerevisiae from Baker's yeast and Aspergillus niger from moldy onion extracts are studied as alternative sources of chitosan; and S cerevisiae chitosan tested for antimicrobial efficacy. The properties of S. cerevisiae chitosan are compared with moldy onion chitosan and shrimp chitosan extracted from shrimp shells. Chitosan extracted from S. cerevisiae is tested for antimicrobial efficacy against Staphylococcus Aureus. The maximum yields of fungal chitosan are 20.85 ± 0.35 mg/g dry S. cerevisiae biomass at 4th day using a culture broth containing sodium acetate, and 16.15 ± 0.95 mg/g dry A. niger biomass at 12th day. The degree of deacetylation (DD%) of the extracted fungal chitosan samples from S. cerevisiae and A. niger is found to be 63.4%, and 61.2% respectively, using Fourier Transform Infrared Spectroscopy. At a concentration of 2 g/L, S. cerevisiae chitosan shows the maximum inhibition zone diameter of 15.48 ± 0.07 mm. Baker's yeast S cerevisiae biomass and A. niger from moldy onions has not been previously explored as a source of extractible fungal chitosan. This study gives insight that S. cerevisiae and A. niger from agricultural or industrial wastes could be a potential biomass source for production of the chitosan biopolymer. The S. cerevisiae chitosan displayed effective antimicrobial properties against S aureus, indicating the viablitiy of S cerevisae as a resource for extraction of high-quality chitosan.
Collapse
Affiliation(s)
- Md Masirul Afroz
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Chemical Engineering, University of Wyoming, Laramie, WY, USA
| | - Md Nayeem Hasan Kashem
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | | | - Nafisa Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
| |
Collapse
|
11
|
Dual Extraction of Crustacean and Fungal Chitosan from a Single Mucor circinelloides Fermentation. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mucor circinelloides is a fungus that has been reported to produce ethanol, oil, protein, phosphate and glucosamine, depending on the available nutrients and cultivation conditions. Due to its ability to produce extracellular proteases, it is able to ferment polypeptides and amino acids broken down from various protein sources. In this study, we attempted to culture the Mucor circinelloides on waste substrates to deproteinize prawn shells for the extraction of chitin and subsequently extract chitosan from its fungal cell wall in a concurrent fermentation. The physio-chemical properties of the extracted crustacean chitin and fungal chitosan were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Elemental Analysis (EA). We found that Mucor circinelloides grown on okara and coffee waste behaved as an excellent protease producer and successfully extracted chitin from prawn shells with a degree of deacetylation of 69.94% and 68.82%, respectively, comparable to commercial chitin (70.46%). The fungal chitosan extracted from the fermentation of Mucor circinelloides on red grape pomace substrate showed a degree of deacetylation of 61.05%, comparable to commercial chitosan (64.00%). Our results suggested feasibility of extracting chitosan from seafood waste-streams using cost-effective microbial fermentation.
Collapse
|