1
|
Khazaal MT, Faraag AHI, Hamada MA, El-Hendawy HH. Characterization and Statistical Optimization of Enterobatin Synthesized by Escherichia coli OQ866153. Biochem Genet 2024; 62:3920-3945. [PMID: 38245887 PMCID: PMC11427530 DOI: 10.1007/s10528-023-10626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
Microorganisms produce siderophores, which are secondary metabolites with a high affinity for iron. Siderophores have received significant attention due to their diverse applications in ecological and clinical research. In this study, siderophores production by Escherichia coli OQ866153 was optimized using two-stage statistical approach involving Plackett-Burman design (PBD) and response surface methodology (RSM) using central composite design (CCD). Out of 23 variables, succinate, tryptophan, Na2HPO4, CaCl2, agitation, and KH2PO4 were found to have the most significant effect on siderophores production in the first optimization stage with the highest SU% of 43.67%. In the second stage, RSM using CCD was utilized, and the optimal conditions were determined to be 0.3 g/l succinate, 0 g/l tryptophan, 6 g/l Na2HPO4, 0.1 g/l CaCl2, 150 RPM agitation, and 0.6 g/l KH2PO4, resulting in a maximum siderophore units (SU%) of 89.13%. The model was significant, as indicated by the model f-value of 314.14 (p-value = 0.0004) and coefficient of determination R2 of 0.9950. During validation experiments, the obtained maximum SU% was increased up to 87.1472%, which was two times as the value obtained under ordinary conditions (46.62%). The produced siderophores were purified and characterized using 1H, 13C NMR, IR spectroscopy. The obtained results indicated that the compound was enterobactin and entABCDEF genes were further detected in Escherichia coli OQ866153 extracted DNA. To our knowledge, this is the first report of statistical optimization for enterobactin synthesis by an E. coli strain isolated from a clinical source in Egypt.
Collapse
Affiliation(s)
- Mohamed T Khazaal
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Cairo, 11795, Egypt
| | - Ahmed H I Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Cairo, 11795, Egypt
| | - Marwa A Hamada
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Cairo, 11795, Egypt
| | - Hoda H El-Hendawy
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
2
|
Epihov DZ, Banwart SA, McGrath SP, Martin DP, Steeley IL, Cobbold V, Kantola IB, Masters MD, DeLucia EH, Beerling DJ. Iron Chelation in Soil: Scalable Biotechnology for Accelerating Carbon Dioxide Removal by Enhanced Rock Weathering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11970-11987. [PMID: 38913808 PMCID: PMC11238546 DOI: 10.1021/acs.est.3c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field trials revealed that microbial communities on basalt grains significantly upregulate siderophore biosynthesis gene expression relative to microbiomes of the surrounding soil. Separate in vitro laboratory incubation studies showed that micromolar solutions of siderophores and high-affinity synthetic chelator (ethylenediamine-N,N'-bis-2-hydroxyphenylacetic acid, EDDHA) accelerate EW to increase CDR rates. Building on these findings, we develop a potential biotechnology pathway for accelerating EW using the synthetic Fe-chelator EDDHA that is commonly used in agronomy to alleviate the Fe deficiency in high pH soils. Incubation of EW field trial soils with potassium-EDDHA solutions increased potential CDR rates by up to 2.5-fold by promoting the abiotic dissolution of basalt and upregulating microbial siderophore production to further accelerate weathering reactions. Moreover, EDDHA may alleviate potential Fe limitation of crops due to rising soil pH with EW over time. Initial cost-benefit analysis suggests potassium-EDDHA could lower EW-CDR costs by up to U.S. $77 t CO2 ha-1 to improve EW's competitiveness relative to other CDR strategies.
Collapse
Affiliation(s)
- Dimitar Z Epihov
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Steven A Banwart
- Global Food and Environment Institute, University of Leeds, Leeds LS2 9JT, U.K
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Steve P McGrath
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, U.K
| | - David P Martin
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Isabella L Steeley
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Vicky Cobbold
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Ilsa B Kantola
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael D Masters
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Evan H DeLucia
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Beerling
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
3
|
Gomes AFR, Almeida MC, Sousa E, Resende DISP. Siderophores and metallophores: Metal complexation weapons to fight environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173044. [PMID: 38723971 DOI: 10.1016/j.scitotenv.2024.173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Siderophores are small molecules of organic nature, released by bacteria to chelate iron from the surrounding environment and subsequently incorporate it into the cytoplasm. In addition to iron, these secondary metabolites can complex with a wide variety of metals, which is why they are commonly studied in the environment. Heavy metals can be very toxic when present in large amounts on the planet, affecting public health and all living organisms. The pollution caused by these toxic metals is increasing, and therefore it is urgent to find practical, sustainable, and economical solutions for remediation. One of the strategies is siderophore-assisted bioremediation, an innovative and advantageous alternative for various environmental applications. This research highlights the various uses of siderophores and metallophores in the environment, underscoring their significance to ecosystems. The study delves into the utilization of siderophores and metallophores in both marine and terrestrial settings (e.g. bioremediation, biocontrol of pathogens, and plant growth promotion), such as bioremediation, biocontrol of pathogens, and plant growth promotion, providing context for the different instances outlined in the existing literature and highlighting their relevance in each field. The study delves into the structures and types of siderophores focusing on their singular characteristics for each application and methodologies used. Focusing on recent developments over the last two decades, the opportunities and challenges associated with siderophores and metallophores applications in the environment were mapped to arm researchers in the fight against environmental pollution.
Collapse
Affiliation(s)
- Ana F R Gomes
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Mariana C Almeida
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Yang X, Liu C, Liang C, Wang T, Tian J. The Phosphorus-Iron Nexus: Decoding the Nutrients Interaction in Soil and Plant. Int J Mol Sci 2024; 25:6992. [PMID: 39000100 PMCID: PMC11241702 DOI: 10.3390/ijms25136992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.
Collapse
Affiliation(s)
| | | | | | - Tianqi Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.L.); (C.L.); (J.T.)
| | | |
Collapse
|
5
|
Zhang F, Liu J, Jiang L, Zheng Y, Yu L, Du L. Production of the siderophore lysochelin in rich media through maltose-promoted high-density growth of Lysobacter sp. 3655. Front Microbiol 2024; 15:1433983. [PMID: 38989020 PMCID: PMC11233812 DOI: 10.3389/fmicb.2024.1433983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Siderophores are produced by bacteria in iron-restricted conditions. However, we found maltose could induce the biosynthesis of the siderophore lysochelin in Lysobacter sp. 3655 in rich media that are not compatible with siderophore production. Maltose markedly promoted cell growth, with over 300% increase in cell density (OD600) when LB medium was added with maltose (LBM). While lysochelin was not detectable when OD600 in LBM was below 5.0, the siderophore was clearly produced when OD600 reached 7.5 and dramatically increased when OD600 was 15.0. Coincidently, the transcription of lysochelin biosynthesis genes was remarkably enhanced following the increase of OD600. Conversely, the iron concentration in the cell culture dropped to 1.2 μM when OD600 reached 15.0, which was 6-fold lower than that in the starting medium. Moreover, mutants of the maltose-utilizing genes (orf2677 and orf2678) or quorum-sensing related gene orf644 significantly lowered the lysochelin yield. Transcriptomics analysis showed that the iron-utilizing/up-taking genes were up-regulated under high cell density. Accordingly, the transcription of lysochelin biosynthetic genes and the yield of lysochelin were stimulated when the iron-utilizing/up-taking genes were deleted. Finally, lysochelin biosynthesis was positively regulated by a TetR regulator (ORF3043). The lysochelin yield in orf3043 mutant decreased to 50% of that in the wild type and then restored in the complementary strain. Together, this study revealed a previously unrecognized mechanism for lysochelin biosynthetic regulation, by which the siderophore could still be massively produced in Lysobacter even grown in a rich culture medium. This finding could find new applications in large-scale production of siderophores in bacteria.
Collapse
Affiliation(s)
- Fang Zhang
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Jia Liu
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Lin Jiang
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yongbiao Zheng
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Lingjun Yu
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
Gomes AF, Sousa E, Resende DISP. A Practical Toolkit for the Detection, Isolation, Quantification, and Characterization of Siderophores and Metallophores in Microorganisms. ACS OMEGA 2024; 9:26863-26877. [PMID: 38947835 PMCID: PMC11209696 DOI: 10.1021/acsomega.4c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Siderophores are well-recognized low-molecular-weight compounds produced by numerous microorganisms to acquire iron from the surrounding environments. These secondary metabolites can form complexes with other metals besides iron, forming soluble metallophores; because of that, they are widely investigated in either the medicinal or environmental field. One of the bottlenecks of siderophore research is related to the identification of new siderophores from microbial sources. Herein we have compiled a comprehensive range of standard and updated methodologies that have been developed over the past few years to provide a comprehensive toolbox in this area to current researchers.
Collapse
Affiliation(s)
- Ana F.
R. Gomes
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Xie B, Wei X, Wan C, Zhao W, Song R, Xin S, Song K. Exploring the Biological Pathways of Siderophores and Their Multidisciplinary Applications: A Comprehensive Review. Molecules 2024; 29:2318. [PMID: 38792179 PMCID: PMC11123847 DOI: 10.3390/molecules29102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Siderophores are a class of small molecules renowned for their high iron binding capacity, essential for all life forms requiring iron. This article provides a detailed review of the diverse classifications, and biosynthetic pathways of siderophores, with a particular emphasis on siderophores synthesized via nonribosomal peptide synthetase (NRPS) and non-NRPS pathways. We further explore the secretion mechanisms of siderophores in microbes and plants, and their role in regulating bioavailable iron levels. Beyond biological functions, the applications of siderophores in medicine, agriculture, and environmental sciences are extensively discussed. These applications include biological pest control, disease treatment, ecological pollution remediation, and heavy metal ion removal. Through a comprehensive analysis of the chemical properties and biological activities of siderophores, this paper demonstrates their wide prospects in scientific research and practical applications, while also highlighting current research gaps and potential future directions.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuquan Xin
- School of Life Science, Changchun Normal University, Changchun 130032, China; (B.X.); (X.W.); (C.W.); (W.Z.); (R.S.)
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (B.X.); (X.W.); (C.W.); (W.Z.); (R.S.)
| |
Collapse
|
8
|
Fekete-Kertész I, Berkl Z, Buda K, Fenyvesi É, Szente L, Molnár M. Quorum quenching effect of cyclodextrins on the pyocyanin and pyoverdine production of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2024; 108:271. [PMID: 38517512 PMCID: PMC10959793 DOI: 10.1007/s00253-024-13104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
Various virulence determinants in Pseudomonas aeruginosa are regulated by the quorum sensing (QS) network producing and releasing signalling molecules. Two of these virulence determinants are the pyocyanin and pyoverdine, which interfere with multiple cellular functions during infection. The application of QS-inhibiting agents, such as cyclodextrins (CDs), appears to be a promising approach. Further to method development, this research tested in large-volume test systems the effect of α- and β-CD (ACD, BCD) at 1, 5, and 10 mM concentrations on the production of pyocyanin in the P. aeruginosa model system. The concentration and time-dependent quorum quenching effect of native CDs and their derivatives on pyoverdine production was tested in a small-volume high-throughput system. In the large-volume system, both ACD and BCD significantly inhibited pyocyanin production, but ACD to a greater extent. 10 mM ACD resulted in 58% inhibition, while BCD only ~40%. Similarly, ACD was more effective in the inhibition of pyoverdine production; nevertheless, the results of RMANOVA demonstrated the significant efficiency of both ACD and BCD, as well as their derivatives. Both the contact time and the cyclodextrin treatments significantly influenced pyoverdine production. In this case, the inhibitory effect of ACD after 48 h at 12.5 mM was 57%, while the inhibitory effect of BCD and its derivatives was lower than 40%. The high-level significant inhibition of both pyocyanin and pyoverdine production by ACD was detectable. Consequently, the potential value of CDs as QS inhibitors and the antivirulence strategy should be considered. KEYPOINTS: • Applicability of a simplified method for quantification of pyocyanin production was demonstrated. • The cyclodextrins significantly affected the pyocyanin and pyoverdine production. • The native ACD exhibited the highest attenuation in pyoverdine production.
Collapse
Affiliation(s)
- Ildikó Fekete-Kertész
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Zsófia Berkl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Kata Buda
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos u. 7., Budapest, H-1097, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos u. 7., Budapest, H-1097, Hungary
| | - Mónika Molnár
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary.
| |
Collapse
|
9
|
Sarvepalli M, Velidandi A, Korrapati N. Optimization of Siderophore Production in Three Marine Bacterial Isolates along with Their Heavy-Metal Chelation and Seed Germination Potential Determination. Microorganisms 2023; 11:2873. [PMID: 38138017 PMCID: PMC10746010 DOI: 10.3390/microorganisms11122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Siderophores are low-molecular-weight and high-affinity molecules produced by bacteria under iron-limited conditions. Due to the low iron (III) (Fe+3) levels in surface waters in the marine environment, microbes produce a variety of siderophores. In the current study, halophilic bacteria Bacillus taeanensis SMI_1, Enterobacter sp., AABM_9, and Pseudomonas mendocina AMPPS_5 were isolated from marine surface water of Kalinga beach, Bay of Bengal (Visakhapatnam, Andhra Pradesh, India) and were investigated for siderophore production using the Chrome Azurol S (CAS) assay. The effect of various production parameters was also studied. The optimum production of siderophores for SMI_1 was 93.57% siderophore units (SU) (after 48 h of incubation at 30 °C, pH 8, sucrose as carbon source, sodium nitrate as nitrogen source, 0.4% succinic acid), and for AABM_9, it was 87.18 %SU (after 36 h of incubation period at 30 °C, pH 8, in the presence of sucrose, ammonium sulfate, 0.4% succinic acid). The maximum production of siderophores for AMPPS_5 was 91.17 %SU (after 36 h of incubation at 35 °C, pH 8.5, glucose, ammonium sulfate, 0.4% citric acid). The bacterial isolates SMI_1, AABM_9, and AMPPS_5 showed siderophore production at low Fe+3 concentrations of 0.10 µM, 0.01 µM, and 0.01 µM, respectively. The SMI_1 (73.09 %SU) and AMPPS_5 (68.26 %SU) isolates showed siderophore production in the presence of Zn+2 (10 µM), whereas AABM_9 (50.4 %SU) exhibited siderophore production in the presence of Cu+2 (10 µM). Additionally, these bacterial isolates showed better heavy-metal chelation ability and rapid development in seed germination experiments. Based on these results, the isolates of marine-derived bacteria effectively produced the maximum amount of siderophores, which could be employed in a variety of industrial and environmental applications.
Collapse
Affiliation(s)
| | | | - Narasimhulu Korrapati
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India; (M.S.); (A.V.)
| |
Collapse
|
10
|
A Four-Step Platform to Optimize Growth Conditions for High-Yield Production of Siderophores in Cyanobacteria. Metabolites 2023; 13:metabo13020154. [PMID: 36837773 PMCID: PMC9967094 DOI: 10.3390/metabo13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In response to Iron deprivation and in specific environmental conditions, the cyanobacteria Anabaena flos aquae produce siderophores, iron-chelating molecules that in virtue of their interesting environmental and clinical applications, are recently gaining the interest of the pharmaceutical industry. Yields of siderophore recovery from in vitro producing cyanobacterial cultures are, unfortunately, very low and reach most of the times only analytical quantities. We here propose a four-step experimental pipeline for a rapid and inexpensive identification and optimization of growth parameters influencing, at the transcriptional level, siderophore production in Anabaena flos aquae. The four-steps pipeline consists of: (1) identification of the promoter region of the operon of interest in the genome of Anabaena flos aquae; (2) cloning of the promoter in a recombinant DNA vector, upstream the cDNA coding for the Green Fluorescent Protein (GFP) followed by its stable transformation in Escherichia Coli; (3) identification of the environmental parameters affecting expression of the gene in Escherichia coli and their application to the cultivation of the Anabaena strain; (4) identification of siderophores by the combined use of high-resolution tandem mass spectrometry and molecular networking. This multidisciplinary, sustainable, and green pipeline is amenable to automation and is virtually applicable to any cyanobacteria, or more in general, to any microorganisms.
Collapse
|
11
|
Bacteria Associated with the Roots of Common Bean ( Phaseolus vulgaris L.) at Different Development Stages: Diversity and Plant Growth Promotion. Microorganisms 2022; 11:microorganisms11010057. [PMID: 36677349 PMCID: PMC9861878 DOI: 10.3390/microorganisms11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Current agricultural methodologies are vulnerable to erratic climate and are dependent on cost-intensive fertilization to ensure high yields. Sustainable practices should be pursued to ensure food security. Phaseolus vulgaris L. is one of the most produced legumes worldwide and may be an alternative to reduce the environmental impact of meat production as a reliable source of high-quality protein. Plant growth-promoting rhizobacteria (PGPR) are emerging as a sustainable option to increase agricultural production. To understand the dynamics between plants and microorganisms, the culturable microbiota of bean roots was isolated and identified at distinct stages of plant development (early and late vegetative growth, flowering, and pod) and root compartments (rhizoplane, endosphere, and nodules). Diversity and abundance of bacteria associated with root compartments differed throughout the plant life cycle. Bacterial plant growth promotion (PGP) and protection abilities (indole-3-acetic acid production, siderophore synthesis, and antifungal activity) were assessed and associated with plant phenology, demonstrating that among the bacteria associated with plant roots, several strains had an active role in the response to plant biological needs at each stage. Several strains stood out for their ability to display one or more PGP traits, being excellent candidates for efficient stage-specific biostimulants for application in precision agriculture.
Collapse
|
12
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022. [PMID: 35672469 DOI: 10.1007/s00253-022-11995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
13
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
14
|
Al-Karablieh N, Al-Shomali I, Al-Elaumi L, Hasan K. Pseudomonas fluorescens NK4 siderophore promotes plant growth and biocontrol in cucumber. J Appl Microbiol 2022; 133:1414-1421. [PMID: 35639018 DOI: 10.1111/jam.15645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
AIMS To test the effect of zinc oxide nanoparticle (ZnO-NP) supplementation for enhancing the efficacy of Pseudomonas fluorescens NK4 siderophore as a biocontrol agent against Pseudomonas viridiflava NK2 and a plant growth promoter. METHODS AND RESULTS Cucumber seedlings were treated with a suspension of P. fluorescens NK4 and its siderophore generated in siderophore-inducing medium (SIM), SIM supplemented with ZnO-NP (<100 nm), and SIM supplemented with Zn2+ ions from Zn(NO3 )2 . Supplementing SIM with ZnO-NP increased siderophore secretion in P. fluorescens NK4, and irrigation of cucumber seedlings with a filtrate containing the ZnO-NP-supplemented siderophore increased survival, improved vegetative and root growth, and thus increased yield similar to the effects of dipping seedlings in a P. fluorescens NK4 suspension. Both P. fluorescens NK4 and its ZnO-NP-supplemented siderophore inhibited P. viridiflava NK2 population growth in planta. CONCLUSIONS The siderophore of P. fluorescens NK4 produced by ZnO-NP supplementation can be employed as a bio-control agent and bio-fertilizer. SIGNIFICANCE AND IMPACT OF THE STUDY ZnO-NPs can boost the synthesis of siderophores, which can then be employed as bio-fertilizers to boost iron bioavailability in iron-deficient soils.
Collapse
Affiliation(s)
- Nehaya Al-Karablieh
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Ibrahim Al-Shomali
- Synchronized Knowledge Yield for Scientific Research, Amman 11942, Jordan
| | - Lina Al-Elaumi
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Khaled Hasan
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
15
|
Rizvi A, Ahmed B, Khan MS, El-Beltagi HS, Umar S, Lee J. Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules 2022; 27:molecules27041407. [PMID: 35209196 PMCID: PMC8880754 DOI: 10.3390/molecules27041407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
- Correspondence: (B.A.); (H.S.E.-B.)
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma St., Cairo 12613, Egypt
- Correspondence: (B.A.); (H.S.E.-B.)
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| |
Collapse
|
16
|
Adaptive remodelling of blue pigmenting Pseudomonas fluorescens pf59 proteome in response to different environmental conditions. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Mahajan SG, Nandre VS, Kodam KM, Kulkarni MV. Desferrioxamine E produced by an indigenous salt tolerant Pseudomonas stutzeri stimulates iron uptake of Triticum aestivum L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|