1
|
Liu YN, Liu Z, Liu J, Hu Y, Cao B. Unlocking the potential of Shewanella in metabolic engineering: Current status, challenges, and opportunities. Metab Eng 2025; 89:1-11. [PMID: 39952391 DOI: 10.1016/j.ymben.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Shewanella species are facultative anaerobes with distinctive electrochemical properties, making them valuable for applications in energy conversion and environmental bioremediation. Due to their well-characterized electron transfer mechanisms and ease of genetic manipulation, Shewanella spp. have emerged as a promising chassis for metabolic engineering. In this review, we provide a comprehensive overview of the advancements in Shewanella-based metabolic engineering. We begin by discussing the physiological characteristics of Shewanella, with a particular focus on its extracellular electron transfer (EET) capability. Next, we outline the use of Shewanella as a metabolic engineering chassis, presenting a general framework for strain construction based on the Design-Build-Test-Learn (DBTL) cycle and summarizing key advancements in the engineering of Shewanella's metabolic modules. Finally, we offer a perspective on the future development of Shewanella chassis, highlighting the need for deeper mechanistic insights, rational strain design, and interdisciplinary collaboration to drive further progress.
Collapse
Affiliation(s)
- Yi-Nan Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Zhourui Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Jian Liu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
2
|
Nikolaidou A, Mougkogiannis P, Adamatzky A. Electroactive composite biofilms integrating Kombucha, Chlorella and synthetic proteinoid Proto-Brains. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240238. [PMID: 39076784 PMCID: PMC11285679 DOI: 10.1098/rsos.240238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
In this study, we present electroactive biofilms made from a combination of Kombucha zoogleal mats and thermal proteinoids. These biofilms have potential applications in unconventional computing and robotic skin. Proteinoids are synthesized by thermally polymerizing amino acids, resulting in the formation of synthetic protocells that display electrical signalling similar to neurons. By incorporating proteinoids into Kombucha zoogleal cellulose mats, hydrogel biofilms can be created that have the ability to efficiently transfer charges, perform sensory transduction and undergo processing. We conducted a study on the memfractance and memristance behaviours of composite biofilms, showcasing their capacity to carry out unconventional computing operations. The porous nanostructure and electroactivity of the biofilm create a biocompatible interface that can be used to record and stimulate neuronal networks. In addition to in vitro neuronal interfaces, these soft electroactive biofilms show potential as components for bioinspired robotics, smart wearables, unconventional computing devices and adaptive biorobotic systems. Kombucha-proteinoids composite films are a highly customizable material that can be synthesized to suit specific needs. These films belong to a unique category of 'living' materials, as they have the ability to support cellular systems and improve bioelectronic functionality. This makes them an exciting prospect in various applications. Ongoing efforts are currently being directed towards enhancing the compositional tuning of conductivity, signal processing and integration within hybrid bioelectronic circuits.
Collapse
Affiliation(s)
- Anna Nikolaidou
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
- School of Architecture and Environment, University of the West of England, Bristol, UK
| | | | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
| |
Collapse
|
3
|
Ho CL, Emran MY, Ihara S, Huang W, Wakai S, Li WP, Okamoto A. Osmium-grafted magnetic nanobeads improve microbial current generation via culture-free and quick enrichment of electrogenic bacteria. CHEMICAL ENGINEERING JOURNAL 2023; 466:142936. [DOI: 10.1016/j.cej.2023.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Radouani F, Sanchez-Cid C, Silbande A, Laure A, Ruiz-Valencia A, Robert F, Vogel TM, Salvin P. Evolution and interaction of microbial communities in mangrove microbial fuel cells and first description of Shewanella fodinae as electroactive bacterium. Bioelectrochemistry 2023; 153:108460. [PMID: 37224603 DOI: 10.1016/j.bioelechem.2023.108460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Understanding exoelectrogenic bacteria mechanisms and their interactions in complex biofilm is critical for the development of microbial fuel cells (MFCs). In this article, assumptions concerning the benefits of the complex sediment microbial community for electricity production were explored with both the complex microbial community and isolates identified as Shewanella. Analysis of the microbial community revealed a strong influence of the sediment community on anodes and electrolytes compared to that of only water. Moreover, while Pelobacteraceae-related genera were dominant in our MFCs instead of Desulfuromonas and Geobacter as usually reported, the electroactive Shewanella algae and Shewanella fodinae were isolated and cultivated from the anodic biofilm. S. fodinae, described for the first time as an electroactive bacterium to the best of our knowledge, led to a maximal current density of 3.6 A/m2 set as 0.3 V/SCE in a three-electrode set-up fed with lactate. S. algae, in a complex medium containing several available substrates, showed several preferential oxidative behaviors including a diauxic behavior. In pure culture and under our conditions, S. fodinae and S. algae were not able to use acetate as a sole electron donor. However, their presence in our acetate-fed MFCs and the adaptive behavior of S. algae hint a syntrophic interaction between the bacteria to optimize the use of the substrate in a complex environment.
Collapse
Affiliation(s)
- Fatima Radouani
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Adèle Silbande
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Adeline Laure
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Azariel Ruiz-Valencia
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Florent Robert
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR 5557, UMR INRAe 1418, VetAgro Sup, Écologie Microbienne, équipe BEER, F-69622 Villeurbanne, France
| | - Paule Salvin
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France.
| |
Collapse
|
5
|
Exploration of Bioinformatics on Microbial Fuel Cell Technology: Trends, Challenges, and Future Prospects. J CHEM-NY 2023. [DOI: 10.1155/2023/6902054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microbial fuel cells (MFCs) are a cost-effective and environmentally friendly alternative energy method. MFC technology has gained much interest in recent decades owing to its effectiveness in remediating wastewater and generating bioelectricity. The microbial fuel cell generates energy mainlybecause of oxidation-reduction reactions. In this reaction, electrons were transferred between two reactants. Bioinformatics is expanding across a wide range of microbial fuel cell technology. Electroactive species in the microbial community were evaluated using bioinformatics methodologies in whole genome sequencing, RNA sequencing, transcriptomics, metagenomics, and phylogenetics. Technology advancements in microbial fuel cells primarily produce power from organic and inorganic waste from various sources. Reduced chemical oxygen demand and waste degradation are two added advantages for microbial fuel cells. From plants, bacteria, and algae, microbial fuel cells were developed. Due to the rapid advancement of sequencing techniques, bioinformatics approaches are currently widely used in the technology of microbial fuel cells. In addition, they play an important role in determining the composition of electroactive species in microorganisms. The metabolic pathway is also possible to determine with bioinformatics resources. A computational technique that reveals the nature of the mediators and the substrate was also used to predict the electrochemical properties. Computational strategies were used to tackle significant challenges in experimental procedures, such as optimization and understanding microbiological systems. The main focus of this review is on utilizing bioinformatics techniques to improve microbial fuel cell technology.
Collapse
|
6
|
Sun H, Tang Q, Li Y, Liang ZH, Li FH, Li WW, Yu HQ. Radionuclide Reduction by Combinatorial Optimization of Microbial Extracellular Electron Transfer with a Physiologically Adapted Regulatory Platform. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:674-684. [PMID: 36576943 DOI: 10.1021/acs.est.2c07697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microbial extracellular electron transfer (EET) is the basis for many microbial processes involved in element geochemical recycling, bioenergy harvesting, and bioremediation, including the technique for remediating U(VI)-contaminated environments. However, the low EET rate hinders its full potential from being fulfilled. The main challenge for engineering microbial EET is the difficulty in optimizing cell resource allocation for EET investment and basic metabolism and the optimal coordination of the different EET pathways. Here, we report a novel combinatorial optimization strategy with a physiologically adapted regulatory platform. Through exploring the physiologically adapted regulatory elements, a 271.97-fold strength range, autonomous, and dynamic regulatory platform was established for Shewanella oneidensis, a prominent electrochemically active bacterium. Both direct and mediated EET pathways are modularly reconfigured and tuned at various intensities with the regulatory platform, which were further assembled combinatorically. The optimal combinations exhibit up to 16.12-, 4.51-, and 8.40-fold improvements over the control in the maximum current density (1009.2 mA/m2) of microbial electrolysis cells and the voltage output (413.8 mV) and power density (229.1 mW/m2) of microbial fuel cells. In addition, the optimal strains exhibited up to 6.53-fold improvement in the radionuclide U(VI) removal efficiency. This work provides an effective and feasible approach to boost microbial EET performance for environmental applications.
Collapse
|
7
|
Yin Y, Liu C, Zhao G, Chen Y. Versatile mechanisms and enhanced strategies of pollutants removal mediated by Shewanella oneidensis: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129703. [PMID: 35963088 DOI: 10.1016/j.jhazmat.2022.129703] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The removal of environmental pollutants is important for a sustainable ecosystem and human health. Shewanella oneidensis (S. oneidensis) has diverse electron transfer pathways and can use a variety of contaminants as electron acceptors or electron donors. This paper reviews S. oneidensis's function in removing environmental pollutants, including heavy metals, inorganic non-metallic ions (INMIs), and toxic organic pollutants. S. oneidensis can mineralize o-xylene (OX), phenanthrene (PHE), and pyridine (Py) as electron donors, and also reduce azo dyes, nitro aromatic compounds (NACs), heavy metals, and iodate by extracellular electron transfer (EET). For azo dyes, NACs, Cr(VI), nitrite, nitrate, thiosulfate, and sulfite that can cross the membrane, S. oneidensis transfers electrons to intracellular reductases to catalyze their reduction. However, most organic pollutants cannot be directly degraded by S. oneidensis, but S. oneidensis can remove these pollutants by self-synthesizing catalysts or photocatalysts, constructing bio-photocatalytic systems, driving Fenton reactions, forming microbial consortia, and genetic engineering. However, the industrial-scale application of S. oneidensis is insufficient. Future research on the metabolism of S. oneidensis and interfacial reactions with other materials needs to be deepened, and large-scale reactors should be developed that can be used for practical engineering applications.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Borja-Maldonado F, López Zavala MÁ. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells. Heliyon 2022; 8:e09849. [PMID: 35855980 PMCID: PMC9287189 DOI: 10.1016/j.heliyon.2022.e09849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 06/28/2022] [Indexed: 10/25/2022] Open
Abstract
Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.
Collapse
Affiliation(s)
- Fátima Borja-Maldonado
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| | - Miguel Ángel López Zavala
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| |
Collapse
|
9
|
Zhou E, Li F, Zhang D, Xu D, Li Z, Jia R, Jin Y, Song H, Li H, Wang Q, Wang J, Li X, Gu T, Homborg AM, Mol JMC, Smith JA, Wang F, Lovley DR. Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. WATER RESEARCH 2022; 219:118553. [PMID: 35561622 DOI: 10.1016/j.watres.2022.118553] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Shewanella oneidensis MR-1 is an attractive model microbe for elucidating the biofilm-metal interactions that contribute to the billions of dollars in corrosion damage to industrial applications each year. Multiple mechanisms for S. oneidensis-enhanced corrosion have been proposed, but none of these mechanisms have previously been rigorously investigated with methods that rule out alternative routes for electron transfer. We found that S. oneidensis grown under aerobic conditions formed thick biofilms (∼50 µm) on stainless steel coupons, accelerating corrosion over sterile controls. H2 and flavins were ruled out as intermediary electron carriers because stainless steel did not reduce riboflavin and previous studies have demonstrated stainless does not generate H2. Strain ∆mtrCBA, in which the genes for the most abundant porin-cytochrome conduit in S. oneidensis were deleted, corroded stainless steel substantially less than wild-type in aerobic cultures. Wild-type biofilms readily reduced nitrate with stainless steel as the sole electron donor under anaerobic conditions, but strain ∆mtrCBA did not. These results demonstrate that S. oneidensis can directly consume electrons from iron-containing metals and illustrate how direct metal-to-microbe electron transfer can be an important route for corrosion, even in aerobic environments.
Collapse
Affiliation(s)
- Enze Zhou
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China; Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Dawei Zhang
- Corrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083, P. R., China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China.
| | - Zhong Li
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Ru Jia
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio, 45701, USA
| | - Yuting Jin
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Huabing Li
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Jianjun Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Xiaogang Li
- Corrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083, P. R., China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio, 45701, USA
| | - Axel M Homborg
- Netherlands Defence Academy, P.O. Box 505, 1780AM, Den Helder, the Netherlands
| | - Johannes M C Mol
- Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628CD Delft, the Netherlands
| | - Jessica A Smith
- Department of Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT, 06050, USA
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| |
Collapse
|
10
|
Shi P, Wu R, Wang J, Ma C, Li Z, Zhu Z. Biomass sugar-powered enzymatic fuel cells based on a synthetic enzymatic pathway. Bioelectrochemistry 2022; 144:108008. [PMID: 34902664 DOI: 10.1016/j.bioelechem.2021.108008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022]
Abstract
Biomass stores a tremendous amount of chemical energy and is considered as an abundant and sustainable alternative to fossil fuels. However, the use of biomass to produce mW-level electricity for portable devices suffers from its structural complexity and therefore low energy conversion efficiency. In this study, we design an enzymatic pathway that could co-utilize and completely oxidize glucose and xylose from biomass hydrolysate to achieve high energy density in EFC. Faraday efficiency of 92% and maximum power density of 0.14 mW cm-2 are achieved in this EFC. After the systematically optimization of enzyme loading and temperature as well as the removal of enzyme inhibitor from biomass hydrolysate by activated charcoal, the biomass sugar-powered EFC could reach a maximum power density of 0.5 mW cm-2 and remain 60% of the initial value after 10 days. These results offer a feasible way to extract the energy stored in biomass as much as possible without the side effects of biomass hydrolysate on EFC.
Collapse
Affiliation(s)
- Peikang Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zehua Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
11
|
Effect of β-cyclodextrin/polydopamine composite modified anode on the performance of microbial fuel cell. Bioprocess Biosyst Eng 2022; 45:855-864. [PMID: 35230555 DOI: 10.1007/s00449-022-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
The relatively weak microbial adhesion is a bottleneck in improving the power generation performance of microbial fuel cell (MFC). Anode modification is a simple and effective method to solve this problem. A new type of β-cyclodextrin/polydopamine modified carbon felt anode was prepared, and the effects of β-cyclodextrin/polydopamine modified anode on the main performance indexes such as power density and chemical oxygen demand (COD) removal rate of MFC were evaluated. The maximum power density and the output electric energy during the test period of MFC using the modified anode were 102 mW/m2 and 84.96 J, which were 364% and 295.3% higher than those of MFC with conventional carbon felt anode, respectively; and the COD removal rate was 124.4% higher than that of MFC with unmodified anode. Modifying the anode with β-cyclodextrin-polyacyclic composite materials is an effective method to improve the overall performance of MFC.
Collapse
|
12
|
Segundo RF, De La Cruz-Noriega M, Milly Otiniano N, Benites SM, Esparza M, Nazario-Naveda R. Use of Onion Waste as Fuel for the Generation of Bioelectricity. Molecules 2022; 27:625. [PMID: 35163889 PMCID: PMC8838531 DOI: 10.3390/molecules27030625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The enormous environmental problems that arise from organic waste have increased due to the significant population increase worldwide. Microbial fuel cells provide a novel solution for the use of waste as fuel for electricity generation. In this investigation, onion waste was used, and managed to generate maximum peaks of 4.459 ± 0.0608 mA and 0.991 ± 0.02 V of current and voltage, respectively. The conductivity values increased rapidly to 179,987 ± 2859 mS/cm, while the optimal pH in which the most significant current was generated was 6968 ± 0.286, and the ° Brix values decreased rapidly due to the degradation of organic matter. The microbial fuel cells showed a low internal resistance (154,389 ± 5228 Ω), with a power density of 595.69 ± 15.05 mW/cm2 at a current density of 6.02 A/cm2; these values are higher than those reported by other authors in the literature. The diffractogram spectra of the onion debris from FTIR show a decrease in the most intense peaks, compared to the initial ones with the final ones. It was possible to identify the species Pseudomona eruginosa, Acinetobacter bereziniae, Stenotrophomonas maltophilia, and Yarrowia lipolytica adhered to the anode electrode at the end of the monitoring using the molecular technique.
Collapse
Affiliation(s)
- Rojas-Flores Segundo
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.)
| | - Magaly De La Cruz-Noriega
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.)
| | - Nélida Milly Otiniano
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.)
| | - Santiago M. Benites
- Vicerrectorado de Investigación, Universidad Autónoma del Perú, Lima 15842, Peru;
| | - Mario Esparza
- Laboratorio Generbim (Genetica, Reproduccion y Biologia Molecular), Escuela de Medicina Humana, Facultad de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo 13001, Peru;
| | - Renny Nazario-Naveda
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo 13007, Peru;
| |
Collapse
|
13
|
Lang Y, Yu Y, Zou H, Ye J, Zhang S, Chen J. Flavin mononucleotide-stimulated microbial fuel cell for efficient gaseous toluene abatement. CHEMOSPHERE 2022; 287:132247. [PMID: 34826930 DOI: 10.1016/j.chemosphere.2021.132247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Chemical park is regarded as a major contributor of VOCs emissions in China. Currently, a green and safe technology, microbial fuel cells (MFCs), is being developed for the VOCs abatement. Noting that effective electron transfer is critical to the MFC performance. In this work, flavin mononucleotide (FMN) was dosed as an electron shuttle to improve the removal of the typical toxic VOCs, toluene. The experimental results revealed that the performance of toluene removal and power generation were accelerated with the dosage of 0.2-2 μM FMN. With the addition of 1 μM FMN, the removal efficiency, the maximum output voltage and the coulombic efficiency of MFC were increased by 18.4%, 64.4% and 56.3%, respectively. However, a further increase in FMN concentration to 2 μM caused a reduction in the removal efficiency and coulombic efficiency. The images of scanning electron microscopy and confocal laser scanning microscopy showed that the presence of FMN greatly promoted the microbial growth and its activity. Furthermore, microbial community analysis also implied that the moderate dosage of FMN (0.2-1 μM) was beneficial for the growth of the typical exoelectrogens, Geobacter sp., and thus the coulombic efficiency was increased. In addition, an electron transfer pathway involving in cytochrome b, OMCs, cytochrome c, and MtrA was proposed based on the cyclic voltammetry analysis. This work will provide a fundamental theoretical support for its application of toxic VOCs abatement from the chemical park.
Collapse
Affiliation(s)
- Yue Lang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanan Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jiexu Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jianmeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
14
|
Dilip Kumar S, Yasasve M, Karthigadevi G, Aashabharathi M, Subbaiya R, Karmegam N, Govarthanan M. Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: Trends and applications - A review. CHEMOSPHERE 2022; 287:132439. [PMID: 34606889 DOI: 10.1016/j.chemosphere.2021.132439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 05/27/2023]
Abstract
The rising global population and their food habits result in food wastage and cause an obstacle in its treatment and disposal. Due to the rapid shift in the lifestyle of the human population and urbanization, almost one-third of the food produced is wasted from various sectors like domestic sources, agricultural sectors, and industrial sectors. These food resources squandered are rich in organic biomolecules which can cause complications upon direct disposal in the environment. Conventional disposal methods like composting, landfills and incineration demand high costs besides causing severe environmental and health issues. To overcome these demerits of the conventional methods and to avoid the loss of rich organic food resources, there is an immediate need for a sustainable and eco-friendly solution for the valorization of the food wastes. Microbial fuel cells (MFCs) are gaining attention, due to their ideal approach in the production of electricity and parallel treatment of organic food wastes. The MFCs are significant as an innovative approach using microorganisms and oxidizing the organic food wastes into bio-electricity. In this review, the recent advancements and practices of the MFCs in the field of food waste treatment and management along with electricity production are discussed. The major outcome of this work highlights the setting up of MFC for the treatment of higher volumes of food waste residues and enhancing the bioelectricity production in an optimal condition. For further improvements in the food waste treatments using MFCs, greater understanding and more research needs are to be focused on the commercialization, different operational modes, operational types, and low-cost fabrication coupled with careful examination of scale-up factors.
Collapse
Affiliation(s)
- Shanmugam Dilip Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur Village, Chennai-Bangaluru High Road, Sriperumbudur, 602 117, Tamil Nadu, India
| | - Madhavan Yasasve
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur Village, Chennai-Bangaluru High Road, Sriperumbudur, 602 117, Tamil Nadu, India
| | - Guruviah Karthigadevi
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur Village, Chennai-Bangaluru High Road, Sriperumbudur, 602 117, Tamil Nadu, India
| | - Manimaran Aashabharathi
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chembarambakam, Chennai, 600 123, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box, 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
15
|
Zhou J, Hong SH. Establishing Efficient Bisphenol A Degradation by Engineering Shewanella oneidensis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiacheng Zhou
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
16
|
Chen H, Yu Y, Yu Y, Ye J, Zhang S, Chen J. Exogenous electron transfer mediator enhancing gaseous toluene degradation in a microbial fuel cell: Performance and electron transfer mechanism. CHEMOSPHERE 2021; 282:131028. [PMID: 34116314 DOI: 10.1016/j.chemosphere.2021.131028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Effective electron transfer (ET) between microorganisms and electrodes is essential for the toluene degradation and power generation in a microbial fuel cell (MFC). In this work, the neutral red, with excellent electrochemical reversibility and compatible redox potential as NADH/NAD+, was selected as electron mediator to boost the performance of the MFC. Experimental results revealed that, with the 0.5 μM neutral red, the removal efficiency and coulombic efficiency of the gaseous toluene powered MFC was increased by ~19% and ~400%, respectively. However, further increase in neutral red concentration resulted in a decreased in removal efficiency and coulombic efficiency, which was attributed by the toxicity of neutral red to the microbes. The microbial community analysis indicated that, with the dosage of the neutral red, the dominated bacteria shifted from Geobacter to Ignavibacteriales, resulting in a high coulombic efficiency. With the further increase in the neutral red, the amount of Ignavibacteriales gradually decreased and thus the coulombic efficiency declined at a high neutral red concentration. Based on the cyclic voltammetry analysis, an electron transport pathway involving neutral red, cytochromes, and OMCs in neutral red mediated MFC was proposed. Overall, the dosage of neutral not only enhanced the electron transfer but also induced the growth of the exoelectrogens, and thus significantly improve the MFC performance.
Collapse
Affiliation(s)
- Han Chen
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Yanan Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yu Yu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
17
|
Bai X, Lin T, Liang N, Li BZ, Song H, Yuan YJ. Engineering synthetic microbial consortium for efficient conversion of lactate from glucose and xylose to generate electricity. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|