1
|
Alobaidi S. Therapeutic Potential of Gum Arabic ( Acacia senegal) in Chronic Kidney Disease Management: A Narrative Review. J Clin Med 2024; 13:5778. [PMID: 39407837 PMCID: PMC11477033 DOI: 10.3390/jcm13195778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic kidney disease (CKD) poses significant health challenges globally, particularly in regions like the Middle East. This review evaluates the potential efficacy and safety of Gum Arabic (Acacia senegal), a traditional remedy, in managing CKD. A comprehensive literature review was conducted using databases including PubMed and Scopus, focusing on the biochemical, physiological, and therapeutic impacts of Gum Arabic on renal health. Gum Arabic has demonstrated antioxidative and anti-inflammatory properties that may benefit renal function, as shown in animal studies. Clinical trials suggest improvements in renal biomarkers, though these are limited by scope and methodology. While promising, the clinical application of Gum Arabic requires cautious interpretation due to gaps in understanding its mechanisms of action. Gum Arabic shows potential as an adjunct treatment for CKD, reflecting both traditional use and preliminary scientific evidence. Future research should focus on its long-term efficacy, safety, and underlying biochemical pathways to better guide its therapeutic use.
Collapse
Affiliation(s)
- Sami Alobaidi
- Department of Internal Medicine, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|
2
|
Chen Z, Kang S, Ren X, Cheng Y, Li W, Zhao L. Large-scale fate profiling of butralin between cultivated and processed garlics for multi-risk estimations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162369. [PMID: 36828059 DOI: 10.1016/j.scitotenv.2023.162369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Elaborating on the fate profiling and risk magnitude of butralin during large-scale applications was conducive to agroecosystems sustainability and dietary rationality. Occurrence, dissipation and concentration variation of butralin were elucidated from garlic cultivation to household processing by tracing UHPLC-MS/MS within 2 min, with regard to original depositions, half-lives, and terminal magnitude in typical origins of garlic. The processing factors (Pfs) of butralin were further clarified among washing, stir-frying and pickling of garlic crops, and pickling was the most effective way for butralin removal with a Pf of 0.092. A probabilistic model with Pfs was further introduced for the comprehensive risk estimations, by reduction factors of 3.1-10.9 from raw garlic crops to processed products. The short-term risks of butralin from green garlic were greater than those between garlic shoot and garlic, with the %ARfDs of 0.030 %-6.323 % from 50th to 99.9th percentiles. The long-term risks were inversely correlated to the age of the population, whose location in rural (%ADIs, 0.256 %-0.768 %) suffered more serious exposures than in urban (%ADIs, 0.231 %-0.699 %). High potential risk amplification should be continuously emphasized given the increasing applications and persistent fate of butralin, especially for vulnerable rural children.
Collapse
Affiliation(s)
- Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shanshan Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Youpu Cheng
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300380, PR China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
3
|
Al-Jubori Y, Ahmed NTB, Albusaidi R, Madden J, Das S, Sirasanagandla SR. The Efficacy of Gum Arabic in Managing Diseases: A Systematic Review of Evidence-Based Clinical Trials. Biomolecules 2023; 13:biom13010138. [PMID: 36671523 PMCID: PMC9855968 DOI: 10.3390/biom13010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Gum arabic (GA) is a natural product commonly used as a household remedy for treating various diseases in the Sub-Saharan Africa region. Despite its claimed benefits, there has been a lack of research on the findings of current clinical trials (CTs) that investigated its efficacy in the treatment of various medical diseases. The aim of this systematic review was to study CTs which focused on GA and its possible use in the management of various medical diseases. A search of the extant literature was performed in the PubMed, Scopus, and Cochrane databases to retrieve CTs focusing on evidence-based clinical indications. The databases were searched using the keywords ("Gum Arabic" OR "Acacia senegal" OR "Acacia seyal" OR "Gum Acacia" OR "Acacia Arabica") AND ("Clinical Trial" OR "Randomized Controlled Trial" OR "Randomized Clinical Trial"). While performing the systematic review, data were obtained on the following parameters: title, authors, date of publication, study design, study aim, sample size, type of intervention used, targeted medical diseases, and main findings. Twenty-nine papers were included in this systematic review. The results showed that ingestion of GA altered lipid profiles, renal profiles, plaque, gingival scores, biochemical parameters, blood pressure, inflammatory markers, and adiposity. GA exhibited anti-inflammatory, prebiotic, and antibacterial properties. GA has been successfully used to treat sickle cell anemia, rheumatoid arthritis, metabolic disorders, periodontitis, gastrointestinal conditions, and kidney diseases. Herein, we discuss GA with respect to the underlying mechanisms involved in each medical disease, thereby justifying GA's future role as a therapeutic agent.
Collapse
Affiliation(s)
- Yamamh Al-Jubori
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - Rawan Albusaidi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - James Madden
- GKT School of Medicine, King’s College London, Great Maze Pond, London SE1 1UL, UK
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: ; Tel.: +968-24141176
| |
Collapse
|
4
|
Giglio A, Vommaro ML. Dinitroaniline herbicides: a comprehensive review of toxicity and side effects on animal non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76687-76711. [PMID: 36175724 PMCID: PMC9581837 DOI: 10.1007/s11356-022-23169-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/18/2022] [Indexed: 05/23/2023]
Abstract
The widespread use of herbicides has increased concern about the hazards and risks to animals living in terrestrial and aquatic ecosystems. A comprehensive understanding of their effective action at different levels of biological organization is critical for establishing guidelines to protect ecosystems and human health. Dinitroanilines are broad-spectrum pre-emergence herbicides currently used for weed control in the conventional agriculture. They are considered extremely safe agrochemicals because they act specifically on tubulin proteins and inhibit shoot and root growth of plants. However, there is a lack of toxicity information regarding the potential risk of exposure to non-target organisms. The aim of the present review is to focus on side effects of the most commonly used active ingredients, e.g. pendimethalin, oryzalin, trifluralin and benfluralin, on animal non-target cells of invertebrates and vertebrates. Acute toxicity varies from slightly to high in terrestrial and aquatic species (i.e. nematodes, earthworms, snails, insects, crustaceans, fish and mammals) depending on the species-specific ability of tested organisms to adsorb and discharge toxicants. Cytotoxicity, genotoxicity and activation of oxidative stress pathways as well as alterations of physiological, metabolic, morphological, developmental and behavioural traits, reviewed here, indicate that exposure to sublethal concentrations of active ingredients poses a clear hazard to animals and humans. Further research is required to evaluate the molecular mechanisms of action of these herbicides in the animal cell and on biological functions at multiple levels, from organisms to communities, including the effects of commercial formulations.
Collapse
Affiliation(s)
- Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy.
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy
| |
Collapse
|
5
|
Xu X, Guo X, Song S, Wu A, Xu C, Kuang H, Liu L. Gold-based strip sensor for the rapid and sensitive detection of butralin in tomatoes and peppers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1255-1264. [PMID: 35439101 DOI: 10.1080/19440049.2022.2063391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Butralin is a widely used dinitroaniline herbicide. Butralin residues in vegetables or fruits represent a threat to human health. In this study, we developed a rapid and sensitive gold-based lateral flow immunoassay (LFIA) for butralin detection in tomato and green pepper samples based on a screened monoclonal antibody (mAb) against butralin. The mAb possessed a half-maximal inhibitory concentration (IC50) of 12.7 ng/mL, with no cross-reactivity toward other dinitroaniline herbicides. The established LFIA strip had a visible limit of detection (LOD) of 50 ng/g and a cut-off value of 2000 ng/g in tomato and green pepper samples. According to the calibration curves for quantitative analysis, the calculated LODs of the LFIA strip were 4.7 ng/g and 4.3 ng/g in tomato and green pepper, respectively. The results were obtained within 10 min. The average recoveries ranged between 95.4% and 109.6% with a coefficient of variation (CV) of 4.3% to 7.1% in tomato samples and between 94.8% and 109.1% with a CV of 3.9% to 6.1% in green pepper samples. These data suggested that our proposed LFIA is a sensitive, specific, and reliable method for the rapid detection of butralin in real samples.
Collapse
Affiliation(s)
- Xinxin Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xin Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Aihong Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|