1
|
Li MY, Peng H. Revolutionizing Sports with Nanotechnology: Better Protection and Stronger Support. ACS Biomater Sci Eng 2025; 11:135-155. [PMID: 39710931 DOI: 10.1021/acsbiomaterials.4c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Modern sports activities have increasingly benefited from the development of nanotechnology, which is extensively applied in various sports events and associated activities and facilities. Nanotechnology deals with materials with nanoscale size, providing unique properties and functions compared with their bulk counterparts. Nanotechnology can not only provide better training feedback by tracking the athlete's physiological signals as well as performance details but also protect humans with nanomaterial-functionalized sports fabrics, equipment, and medicine. Nanotechnology has significantly advanced sports in various aspects, thereby leading to a rising research interest in this interdisciplinary field. This article highlights several representative nanotechnologies applied in sports such as nanomaterials in wearable sensors, personal heat management devices, functional sports fabrics, and sports medicine and discusses the principles, current challenges, as well as future opportunities.
Collapse
Affiliation(s)
- Mu-Yang Li
- School of Physical Education, Shaoguan University, 512005 Shaoguan, Guangdong, China
| | - Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
| |
Collapse
|
2
|
Hassan MG, Hawwa MT, Baraka DM, El-Shora HM, Hamed AA. Biogenic selenium nanoparticles and selenium/chitosan-Nanoconjugate biosynthesized by Streptomyces parvulus MAR4 with antimicrobial and anticancer potential. BMC Microbiol 2024; 24:21. [PMID: 38216871 PMCID: PMC10785380 DOI: 10.1186/s12866-023-03171-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND As antibiotics and chemotherapeutics are no longer as efficient as they once were, multidrug resistant (MDR) pathogens and cancer are presently considered as two of the most dangerous threats to human life. In this study, Selenium nanoparticles (SeNPs) biosynthesized by Streptomyces parvulus MAR4, nano-chitosan (NCh), and their nanoconjugate (Se/Ch-nanoconjugate) were suggested to be efficacious antimicrobial and anticancer agents. RESULTS SeNPs biosynthesized by Streptomyces parvulus MAR4 and NCh were successfully achieved and conjugated. The biosynthesized SeNPs were spherical with a mean diameter of 94.2 nm and high stability. Yet, Se/Ch-nanoconjugate was semispherical with a 74.9 nm mean diameter and much higher stability. The SeNPs, NCh, and Se/Ch-nanoconjugate showed significant antimicrobial activity against various microbial pathogens with strong inhibitory effect on their tested metabolic key enzymes [phosphoglucose isomerase (PGI), pyruvate dehydrogenase (PDH), glucose-6-phosphate dehydrogenase (G6PDH) and nitrate reductase (NR)]; Se/Ch-nanoconjugate was the most powerful agent. Furthermore, SeNPs revealed strong cytotoxicity against HepG2 (IC50 = 13.04 μg/ml) and moderate toxicity against Caki-1 (HTB-46) tumor cell lines (IC50 = 21.35 μg/ml) but low cytotoxicity against WI-38 normal cell line (IC50 = 85.69 μg/ml). Nevertheless, Se/Ch-nanoconjugate displayed substantial cytotoxicity against HepG2 and Caki-1 (HTB-46) with IC50 values of 11.82 and 7.83 μg/ml, respectively. Consequently, Se/Ch-nanoconjugate may be more easily absorbed by both tumor cell lines. However, it exhibited very low cytotoxicity on WI-38 with IC50 of 153.3 μg/ml. Therefore, Se/Ch-nanoconjugate presented the most anticancer activity. CONCLUSION The biosynthesized SeNPs and Se/Ch-nanoconjugate are convincingly recommended to be used in biomedical applications as versatile and potent antimicrobial and anticancer agents ensuring notable levels of biosafety, environmental compatibility, and efficacy.
Collapse
Affiliation(s)
- Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, P. O. Box 13511, Banha, Qalyubia, Egypt
| | - Mariam T Hawwa
- Botany and Microbiology Department, Faculty of Science, Benha University, P. O. Box 13511, Banha, Qalyubia, Egypt
| | - Dina M Baraka
- Botany and Microbiology Department, Faculty of Science, Benha University, P. O. Box 13511, Banha, Qalyubia, Egypt
| | - Hamed M El-Shora
- Botany Department, Faculty of Science, Mansoura University, P. O. Box 35516, Mansoura, Dakahliaو, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, P. O. Box 12622, Giza, Dokki, Egypt.
| |
Collapse
|
3
|
Said A, Abu-Elghait M, Atta HM, Salem SS. Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Lawsonia inermis Against Common Pathogens from Urinary Tract Infection. Appl Biochem Biotechnol 2024; 196:85-98. [PMID: 37099124 PMCID: PMC10794286 DOI: 10.1007/s12010-023-04482-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
New and creative methodologies for the fabrication of silver nanoparticles (Ag-NPs), which are exploited in a wide range of consumer items, are of significant interest. Hence, this research emphasizes the biological approach of Ag-NPs through Egyptian henna leaves (Lawsonia inermis Linn.) extracts and analysis of the prepared Ag-NPs. Plant extract components were identified by gas chromatography mass spectrometry (GC-mass). The analyses of prepared Ag-NPs were carried out through UV-visible (UV-Vis), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) analysis. UV-Vis reveals that Ag-NPs have a maximum peak at 460 nm in visible light. Structural characterization recorded peaks that corresponded to Bragg's diffractions for silver nano-crystal, with average crystallite sizes varying from 28 to 60 nm. Antibacterial activities of Ag-NPs were examined, and it is observed that all microorganisms are very sensitive to biologically synthesized Ag-NPs.
Collapse
Affiliation(s)
- Ahmed Said
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Hossam M Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
4
|
Awaad A, Olama ZA, El-Subruiti GM, Ali SM. The dual activity of CaONPs as a cancer treatment substance and at the same time resistance to harmful microbes. Sci Rep 2023; 13:22940. [PMID: 38135693 PMCID: PMC10746744 DOI: 10.1038/s41598-023-49637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Nanotechnology holds significant promise for the development of novel and necessary products that enhance human health. Pharmacology and nanotechnology have contributed to developing advanced and highly effective drugs for cancer treatment and combating microbial infections. The microbiological effectiveness against the variety of examined microorganisms was assessed using the time killer curve, scanning electron microscopy (SEM), MIC techniques, and the agar well diffusion method. SEM was utilized to enhance the analysis of the mechanisms underlying the bio-interface interaction and intracellular localization of calcium oxide nanoparticles (CaONPs). The MTT test was used to examine the cytotoxicity of CaONP anticancer activity in various cancer cells, including colon, breast, and hepatic cells. The efficacy of CaONPs as an anticancer medication was elucidated by analyzing the gene expression of both treated and untreated cancer cells. MIC and MBC of CaONPs against Escherichia coli and Staphylococcus epidermidis were 150, 150, 150, and 200 µg/ml, respectively. The MIC and MFC of CaONPs against Candida albicans were 200 µg/ml and 250 µg/ml, respectively. The IC50 values of various CaONPs vary depending on the type of cancer cells. The gene expression analysis of breast cancer cells undergoing treatment revealed the identification of several cancer-controlling genes, namely BAX, BCL2, P53, TERT, KRAS1, KRAS2, and RB1. The study demonstrated the notable antibacterial efficacy of CaONPs, highlighting their potential as cancer therapies.
Collapse
Affiliation(s)
- Amr Awaad
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Zakia A Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Safaa M Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
5
|
Shehabeldine AM, Al-Askar AA, AbdElgawad H, Hagras FA, Ramadan AA, Kamel MR, Ahmed MA, Atia KH, Hashem AH. Wound Dressing Scaffold with High Anti-biofilm Performance Based on Ciprofloxacin-Loaded Chitosan-Hydrolyzed Starch Nanocomposite: In Vitro and In Vivo Study. Appl Biochem Biotechnol 2023; 195:6421-6439. [PMID: 37450215 DOI: 10.1007/s12010-023-04665-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Today, the search for solutions to reduce wound infection and restore wound receptivity also reduces its side effects which are a difficult problem in medical science research. The greatest options for this purpose are hydrogel dressings since they are compatible with tissue and have an antibacterial effect on wound healing. Chronic wounds represent a significant burden on people and healthcare systems worldwide. Bacteria often enter such skin wounds, causing irritation and complicating the healing process. In addition, bacteria cause infection, which inhibits rejuvenation and the production of collagen. This study is aimed at developing novel chitosan (CS)-hydrolyzed starch nanocomposite (HS/Ch-NC) loaded with ciprofloxacin to enhance its skin retention and wound healing efficacy and anti-biofilm efficacy. Drug-loading on the (HS/Ch-NC) and encapsulation efficiency was 55.2% and 97.2%, respectively. The activity of HS-NC loaded with ciprofloxacin as anti-biofilm activity by 72% and 63% against Enterobacter aerogenes and Pseudomonas aeruginosa, respectively. The obtained (HS/Ch-NC) loaded with ciprofloxacin is a promising candidate for the development of improved bandage materials, as cell viability and proliferation was assessed using an SRB assay with half-maximal inhibitory concentrations (IC50) at 119.1 µg/ml. In vitro scratch wound healing assay revealed significant (p ≤ 0.05) acceleration in wound closure at 24 h enhanced by 56.04% 24-h and 100% 72-h post-exposure to (HS/Ch-NC) loaded ciprofloxacin, compared to the negative control. In vivo skin retention study revealed that (HS/Ch-NC)-loaded ciprofloxacin showed 3.65-fold higher retention, respectively, than ciprofloxacin. Thus, our study assumes that ciprofloxacin-loaded HS-NC is a potential delivery system for enhancing ciprofloxacin skin retention and wound healing activity.
Collapse
Affiliation(s)
- Amr M Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Fatouh A Hagras
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr A Ramadan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed R Kamel
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed A Ahmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Kareem H Atia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
6
|
Asif N, Amir M, Fatma T. Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng 2023; 46:1377-1398. [PMID: 37294320 PMCID: PMC10251335 DOI: 10.1007/s00449-023-02886-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) have become the widely used metal oxide nanoparticles and drawn the interest of global researchers due to their biocompatibility, low toxicity, sustainability and cost-effective properties. Due to their unique optical and chemical properties, it emerges as a potential candidate in the fields of optical, electrical, food packaging and biomedical applications. Biological methods using green or natural routes are more environmentally friendly, simple and less use of hazardous techniques than chemical and/or physical methods in the long run. In addition, ZnONPs are less harmful and biodegradable while having the ability to greatly boost pharmacophore bioactivity. They play an important role in cell apoptosis because they enhance the generation of reactive oxygen species (ROS) and release zinc ions (Zn2+), causing cell death. Furthermore, these ZnONPs work well in conjunction with components that aid in wound healing and biosensing to track minute amounts of biomarkers connected to a variety of illnesses. Overall, the present review discusses the synthesis and most recent developments of ZnONPs from green sources including leaves, stems, bark, roots, fruits, flowers, bacteria, fungi, algae and protein, as well as put lights on their biomedical applications such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, antiviral, wound healing, and drug delivery, and modes of action associated. Finally, the future perspectives of biosynthesized ZnONPs in research and biomedical applications are discussed.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
7
|
Staneva D, Atanasova D, Angelova D, Grozdanov P, Nikolova I, Grabchev I. Antimicrobial Properties of Chitosan-Modified Cotton Fabric Treated with Aldehydes and Zinc Oxide Particles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5090. [PMID: 37512364 PMCID: PMC10386457 DOI: 10.3390/ma16145090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Chitosan is a natural biopolymer with a proven ability to impart textile materials with antimicrobial properties when loaded onto them. The mechanism of its bacteriological activity depends on the contact between the positive and negative charges of the amino groups located on the surface of the microbes. Unfortunately, the type of microorganisms and pH influence this action-shortcomings that can be avoided by chitosan modification and by loading its film with substances possessing antimicrobial properties. In this study, chitosan was modified with benzaldehyde and crosslinked with glutaraldehyde to form a film on the surface of cotton fabric (CB). Also, another material was obtained by including zinc oxide particles (CBZ) synthesized in situ into the chitosan coating. The performed analyses (contact angle measurement, optical and scanning electron microscopy, FTIR, XRD, and thermal analysis) evidenced the modification of the cotton fabric and the alteration of the film properties after zinc oxide inclusion. A comparison of the antimicrobial properties of the new CB with materials prepared with chitosan without benzaldehyde from our previous study verified the influence of the hydrophobicity and surface roughness of the fabric surface on the enhancement of antimicrobial activity. The microbial growth inhibition increased in the following order: fungal strain Candida lipolytica >Gram-positive bacteria Bacillus cereus >Gram-negative bacteria Pseudomonas aeruginosa. The samples containing zinc oxide particles completely inhibited the growth of all three model strains. The virucidal activity of the CB was higher against human adenovirus serotype 5 (HAdV-5) than against human respiratory syncytial virus (HRSV-S2) after 60 min of exposure. The CBZ displayed higher virucidal activity with a Δlog of 0.9 against both viruses.
Collapse
Affiliation(s)
- Desislava Staneva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Daniela Atanasova
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Daniela Angelova
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Petar Grozdanov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1756 Sofia, Bulgaria
| | - Ivanka Nikolova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1756 Sofia, Bulgaria
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407 Sofia, Bulgaria
| |
Collapse
|
8
|
Hashem AH, Rizk SH, Abdel-Maksoud MA, Al-Qahtani WH, AbdElgawad H, El-Sayyad GS. Unveiling anticancer, antimicrobial, and antioxidant activities of novel synthesized bimetallic boron oxide-zinc oxide nanoparticles. RSC Adv 2023; 13:20856-20867. [PMID: 37448639 PMCID: PMC10336335 DOI: 10.1039/d3ra03413e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Bimetallic nanoparticles have received much attention recently due to their multifunctional applications, and synergistic potential at low concentrations. In the current study, bimetallic boron oxide-zinc oxide nanoparticles (B2O3-ZnO NPs) were synthesized by an eco-friendly, and cost-effective method through the utilization of gum arabic in the presence of gamma irradiation. Characterization of the synthesized bimetallic B2O3-ZnO NPs revealed the successful synthesis of bimetallic NPs on the nano-scale, and good distribution, in addition to formation of a stable colloidal nano-solution. Furthermore, the bimetallic B2O3-ZnO NPs were assessed for anticancer, antimicrobial and antioxidant activities. The evaluation of the cytotoxicity of bimetallic B2O3-ZnO NPs on Vero and Wi38 normal cell lines illustrated that bimetallic B2O3-ZnO NPs are safe in use where IC50 was 384.5 and 569.2 μg ml-1, respectively. The bimetallic B2O3-ZnO NPs had anticancer activity against Caco 2 where IC50 was 80.1 μg ml-1. Furthermore, B2O3-ZnO NPs exhibited promising antibacterial activity against E. coli, P. aeruginosa, B. subtilis and S. aureus, where MICs were 125, 62.5, 125 and 62.5 μg ml-1 respectively. Likewise, B2O3-ZnO NPs had potential antifungal activity against C. albicans as unicellular fungi (MIC was 62.5 μg ml-1). Moreover, B2O3-ZnO NPs displayed antioxidant activity (IC50 was 102.6 μg ml-1). In conclusion, novel bimetallic B2O3-ZnO NPs were successfully synthesized using gum arabic under gamma radiation, where they displayed anticancer, antimicrobial and antioxidant activities.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Samar H Rizk
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University Sixth of October City Giza Egypt
- Department of Biochemistry, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food and Agricultural Sciences, King Saud University P.O. Box 270677 Riyadh 11352 Saudi Arabia
| | - Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp 2020 Antwerp Belgium
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University Sixth of October City Giza Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| |
Collapse
|
9
|
Almawash S. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs. Saudi Pharm J 2023; 31:1167-1180. [PMID: 37273269 PMCID: PMC10236373 DOI: 10.1016/j.jsps.2023.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Solid-lipid nanoparticles (SLNs) are an innovative group of nanosystems used to deliver medicine to their respective targets with better efficiency and bioavailability in contrast to classical formulations. SLNs are less noxious, have fewer adverse effects, have more biocompatibility, and have easy biodegradability. Lipophilic, hydrophilic and hydrophobic drugs can be loaded into SLNs, to enhance their physical and chemical stability in critical environments. Certain antifungal agents used in different treatments are poorly soluble medications, biologicals, proteins etc. incorporated in SLNs to enhance their therapeutic outcome, increase their bioavailability and target specificity. SLNs-based antifungal agents are currently helpful against vicious drug-resistant fungal infections. This review covers the importance of SLNs in drug delivery of classical antifungal drugs, historical background, preparation, physicochemical characteristic, structure and sizes of SLNs, composition, drug entrapment efficacy, clinical evaluations and uses, challenges, antifungal drug resistance, strategies to overcome limitations, novel antifungal agents currently in clinical trials with special emphasis on fungal infections.
Collapse
|
10
|
Hussain F, Memon N, Khatri Z. Facile Process for the Development of Antiviral Cotton Fabrics with Nano-Embossed Copper Oxide. ACS OMEGA 2023; 8:18617-18625. [PMID: 37273634 PMCID: PMC10233694 DOI: 10.1021/acsomega.3c00492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
Metallic or metal oxide-based nanoparticles have the potential to inactivate viruses. Among various metals, copper has shown edge over others. One of the rapidly evolving areas is to combine nanoscience for production of self-sanitizing antiviral surfaces. In this study, we designed antiviral-coated fabrics to combat the spread of viruses. Copper oxide nanoparticles were sonochemically synthesized and subsequently deposited using the dip-coat process to modify the surface of fabric. The morphology and structure of uncoated and coated fabrics were examined by scanning electron microscopy, X-ray diffraction, FTIR, and elemental analysis. The findings show that small, agglomerated rugby ball structures made of copper oxide (CuO) nanoparticles (16 ± 1.6 nm, according to the Scherrer equation) develop on the surface of fabric, resulting in nano-embossing and a hydrophobic (contact angle > 140°) surface. The CuO-coated fabric yielded the maximum zone of inhibition for antibacterial activity. The virucidal activity (against human adenovirus-B) of CuO nanoparticle-fabricated fabric against adenovirus shows decreased 99.99% according to the ISO 18184 testing standard. With the dip and dry approach, any textile industry can use the simple coating procedure without having to change its textile operations. This fabric can be widely used in the face mask, clothing, bedding, and aprons, and the coating remains efficient over more than 25 washes.
Collapse
Affiliation(s)
- Fayyaz
Salih Hussain
- National Center
of Excellence in Analytical Chemistry, University
of Sindh, Jamshoro 76080, Sindh, Pakistan
| | - Najma Memon
- National Center
of Excellence in Analytical Chemistry, University
of Sindh, Jamshoro 76080, Sindh, Pakistan
| | - Zeeshan Khatri
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan
| |
Collapse
|
11
|
Saied M, Hasanin M, Abdelghany TM, Amin BH, Hashem AH. Anticandidal activity of nanocomposite based on nanochitosan, nanostarch and mycosynthesized copper oxide nanoparticles against multidrug-resistant Candida. Int J Biol Macromol 2023; 242:124709. [PMID: 37141971 DOI: 10.1016/j.ijbiomac.2023.124709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
Recently, antimicrobial resistance has increased globally particularly Candida infections. Most of antifungal drugs used for treating candidiasis became resistant to most of Candida species. In the current study, a nanocomposite based on mycosynthesized copper oxide nanoparticles (CuONPs), nanostarch, nanochitosan was prepared. Results illustrated that twenty-four Candida isolates were isolated from clinical samples. Furthermore, three Candida strains were selected as the most resistant among others toward commercial antifungal drugs; these selected strains were identified genetically as C. glabrata MTMA 19, C. glabrata MTMA 21 and C. tropicalis MTMA 24. Characterization of the prepared nanocomposite was carried out using physiochemical analysis included Ultraviolet-visible spectroscopy (Uv-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX) and Transmission Electron Microscopy (TEM). Moreover, the nanocomposite exhibited promising anticandidal activity against C. glabrata MTMA 19, C. glabrata MTMA 21 and C. tropicalis MTMA 24, where the inhibition zones were 15.3, 27 and 28 mm, respectively. Ultrastructure changes observed in nanocomposite-treated C. tropicalis demonstrated disruption of the cell wall which led to cell death. In conclusion, our results confirmed that the novel biosynthesized nanocomposite based on mycosynthesized CuONPs, nanostarch and nanochitosan is a promising anticandidal agent to fight multidrug-resistant Candida.
Collapse
Affiliation(s)
- Mohamed Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Tarek M Abdelghany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Basma H Amin
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Amr H Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
12
|
Hasanin M, Abdel Kader AH, Abd El‐Sayed ES, Kamel S. Green Chitosan‐Flaxseed Gum Film Loaded with ZnO for Packaging Applications. STARCH-STARKE 2023; 75. [DOI: 10.1002/star.202200132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 09/02/2023]
Abstract
AbstractThe possibility of manufacturing edible packaging materials with tailored properties and low cost has attracted much interest. This work presents a new material for edible packaging made from flaxseed gum (FSG) and chitosan (Ch) loaded with zinc oxide nanoparticles (ZnO‐NPs). ZnO‐NPs are synthesized in situ during the preparation of the edible film. The Ch/FSG/ZnO‐NPs films are prepared by casting Ch in different ratios of FSG (12.5%, 25%, 37.5%, and 50%). The resulting films are evaluated for their physicochemical, mechanical, and barrier properties to determine their suitability for coating or packaging food or bioproducts. By studying the antimicrobial activities of the ZnO‐NPs loaded films, we can see that ZnO‐NP's concentration highly affects these activities. In addition, the FSG improves mechanical properties. Films developed by incorporating ZnO‐NPs are proposed to be appropriate for low‐moisture food and pharmaceutical products, which can reduce environmental problems associated with synthetic packaging. Consequently, Ch/FSG composite films have the potential to replace conventional packaging.
Collapse
Affiliation(s)
- Mohamed Hasanin
- Cellulose and Paper Department National Research Centre Cairo 12622 Egypt
| | | | | | - Samir Kamel
- Cellulose and Paper Department National Research Centre Cairo 12622 Egypt
| |
Collapse
|
13
|
Das P, Devi N, Gaur N, Goswami S, Dutta D, Dubey R, Puzari A. Acrylonitrile adducts: design, synthesis and biological evaluation as antimicrobial, haemolytic and thrombolytic agent. Sci Rep 2023; 13:6209. [PMID: 37069316 PMCID: PMC10110592 DOI: 10.1038/s41598-023-33605-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/15/2023] [Indexed: 04/19/2023] Open
Abstract
In this work, five acrylonitrile adducts were screened for antibacterial activity against Gram-positive Bacillus subtilis, Microbial Type Culture Collection and Gene Bank (MTCC 1305) and Gram-negative Escherichia coli (MTCC 443). Synthesis was followed by aza-Michael addition reaction, where the acrylonitrile accepts an electron pair from the respective amines and results in the formation of n-alkyliminobis-propionitrile and n-alkyliminopropionitrile under microwave irradiation. Characterization of the compounds were performed using Fourier Transform Infrared (FTIR), Proton Nuclear Magnetic Resonance (1H NMR) and Electrospray Ionisation Mass Spectrometry (ESI-MS). The particle size characterization was done by Dynamic Light Scattering (DLS) technique. The antibacterial study showed higher inhibition rate for both Gram-positive and Gram-negative bacteria. The antibacterial ability was found to be dose dependent. The minimum inhibitory concentration against both bacteria were found to be 1, 3, 0.4, 1, 3 µl/ml for E. coli and 6, 6, 0.9, 0.5, 5 µl/ml for B. subtilis. Time-kill kinetics evaluation showed that the adducts possess bacteriostatic action. Further it was evaluated for high-throughput in vitro assays to determine the compatibility of the adducts for drug delivery. The haemolytic and thrombolytic activity was analysed against normal mouse erythrocytes. The haemolytic activity showed prominent results, and thereby projecting this acrylonitrile adducts as potent antimicrobial and haemolytic agent.
Collapse
Affiliation(s)
- Parineeta Das
- Department of Chemistry, National Institute of Technology Nagaland, Chumoukedima, Nagaland, 797103, India
| | - Nirmala Devi
- Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nisha Gaur
- Defence Research Laboratory, Post Bag No. 2, Tezpur, Assam, 784001, India
| | - Swagata Goswami
- Defence Research Laboratory, Post Bag No. 2, Tezpur, Assam, 784001, India
| | - Dhiraj Dutta
- Defence Research Laboratory, Post Bag No. 2, Tezpur, Assam, 784001, India
| | - Rama Dubey
- Defence Research Laboratory, Post Bag No. 2, Tezpur, Assam, 784001, India
| | - Amrit Puzari
- Department of Chemistry, National Institute of Technology Nagaland, Chumoukedima, Nagaland, 797103, India.
| |
Collapse
|
14
|
Bhatia P, Singh VA, Rani R, Nath M, Tomar S. Cellular uptake of metal oxide-based nanocomposites and targeting of chikungunya virus replication protein nsP3. J Trace Elem Med Biol 2023; 78:127176. [PMID: 37075567 DOI: 10.1016/j.jtemb.2023.127176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Emergence of new pathogenic viruses along with adaptive potential of RNA viruses has become a major public health concern. Therefore, it is increasingly crucial to investigate and assess the antiviral potential of nanocomposites, which is constantly advancing area of medical biology. In this study, two types of nanocomposites: Ag/NiO and Ag2O/NiO/ZnO with varying molar ratios of silver and silver oxide, respectively have been synthesised and characterised. Three metal/metal oxide (Ag/NiO) composites having different amounts of Ag nanoparticles (NPs) anchored on NiO octahedrons are AN-5 % (5 % Ag), AN-10 % (10 % Ag) and AN-15 % (15 % Ag)) and three ternary metal oxide nanocomposites (Ag2O/NiO/ZnO) i.e., A/N/Z-1, A/N/Z-2, and A/N/Z-3 with different molar ratios of silver oxide (10 %, 20 % and 30 %, respectively) were evaluated for their antiviral potential. Cellular uptake of nanocomposites was confirmed by ICP-MS. Intriguingly, molecular docking of metal oxides in the active site of nsP3 validated the binding of nanocomposites to chikungunya virus replication protein nsP3. In vitro antiviral potential of nanocomposites was tested by performing plaque reduction assay, cytopathic effect (CPE) analysis and qRT-PCR. The nanocomposites showed significant reduction in virus titre. Half-maximal inhibitory concentration (IC50) for A/N/Z-3 and AN-5 % were determined to be 2.828 and 3.277 µg/mL, respectively. CPE observation and qRT-PCR results were consistent with the data obtained from plaque reduction assay for A/N/Z-3 and AN-5 %. These results have opened new avenues for development of nanocomposites based antiviral therapies.
Collapse
Affiliation(s)
- Pooja Bhatia
- Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Vedita Anand Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mala Nath
- Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, India.
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
15
|
Hasanin MS, Nassar M, Hassan YR, Piszczyk Ł, Saeb MR, Kot-Wasik A. Sustainable multifunctional zinc oxide quantum dots-aided double-layers security paper sheets. Heliyon 2023; 9:e14695. [PMID: 37025775 PMCID: PMC10070520 DOI: 10.1016/j.heliyon.2023.e14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Fluorescence is well-known nowadays as one of the most efficient anti-counterfeiting techniques. Zinc oxide quantum dots (ZnOQds) are exceptionally fluorescence when exposed to ultraviolet (UV) light, which makes them a candidate for anti-counterfeiting printing. The resulting anti-counterfeiting papers are sustainable and resistance against organic dyes. In this work, ZnOQds were prepared via a green method and characterized under UV-visible spectroscopy, along with microscopic observations by transmission electron microscopy (TEM) and crystallography by X-ray diffraction (XRD). Formation of ZnOQds nanocrystals with an average partials size of 7.3 nm was approved. Additionally, double-layers sheets were prepared at two loading concentrations of ZnOQds, namely 0.5 and 1 (wt./v) and underwent characterization using a topographical surface study via field emission scanning electron microscopy (FE-SEM). Hybrid sheets were mechanically more stable compared to single-layer paper and likewise polymer film. Moreover, aging simulation approved a high stability for hybrid sheets. Particularly, the photoluminescence emission affirmed anti-aging character of hybrid paper for more than 25 years. The hybrid sheets also showed a broad range of antimicrobial activity.
Collapse
Affiliation(s)
- Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, 12622, Cairo, Egypt
- Corresponding author.
| | - Mona Nassar
- Packaging Materials Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Youssef R. Hassan
- Packaging Materials Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Agata Kot-Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk, 80-233, Poland
- Corresponding author.
| |
Collapse
|
16
|
Saeedi M, Moghbeli MR, Vahidi O. Chitosan/glycyrrhizic acid hydrogel: Preparation, characterization, and its potential for controlled release of gallic acid. Int J Biol Macromol 2023; 231:123197. [PMID: 36639089 DOI: 10.1016/j.ijbiomac.2023.123197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In the present work, chitosan (CHT) as a biodegradable polymer was crosslinked using various amounts of glycyrrhizic acid (GLA) as a novel crosslinking agent to prepare biocompatible hydrogels. The prepared hydrogels were used for the controlled release of gallic acid (GA) in transdermal therapy application. FTIR, XRD, and SEM were used to characterize the prepared gels. The results indicated that the carboxylic acid groups of GLA react with the amine groups of the CHT in the presence of activating coupling reagents to form covalent amide linkage between the polymer chains of CHT and construct CHT cross-linked hydrogel (CCH) network structure. The prepared CCH samples were characterized and used for the controlled release of a drug, i.e. (GA). For this purpose, the swelling kinetic, loading and encapsulation efficiency, in vitro drug release, drug release kinetics, cell viability assay, and anti-bacterial activity of the samples were evaluated. The swelling ratio of CCH samples were in the range of 455-37 % depending on the pH of environment. Swelling kinetic results showed an aggregate to the non-linear second-order kinetic model. Drug release results were fitted by kinetic models while the Korsmeyer-Peppas model was fitted better. The CCH samples exhibited high biocompatibility for 5 mg/ml hydrogel concentration. In addition, the CHT and CCH sample without the GA did not show anti-bacterial properties for 1200 and 150 μg/ml concentrations, respectively. The CCH sample containing the GA exhibited enough anti-bacterial activity on the S. aureus bacteria strain at 150 μg/ml concentration. In contrast, the CCH sample containing the GA has a light anti-bacterial effect on the E. coli bacteria strain. The calculated mesh size of hydrogel networks, drug size, and kinetics models revealed that the CCH samples could release GA based on a diffusion mechanism. In conclusion, the designed CCH samples have enough ability for controlled drug release in transdermal applications.
Collapse
Affiliation(s)
- Mostafa Saeedi
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| | - Mohammad Reza Moghbeli
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran.
| | - Omid Vahidi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| |
Collapse
|
17
|
Szadkowski B, Piotrowska M, Rybiński P, Marzec A. Natural bioactive formulations for biodegradable cotton eco-fabrics with antimicrobial and fire-shielding properties. Int J Biol Macromol 2023; 237:124143. [PMID: 36972831 DOI: 10.1016/j.ijbiomac.2023.124143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
In this study, eco-friendly cotton fabrics with antimicrobial and flame-retardant properties were produced using newly developed bioactive formulations. The new natural formulations combine the biocidal properties of the biopolymer (chitosan (CS)) and essential oil (thyme oil) (EO) with the flame-retardant properties of mineral fillers (silica (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), and hydrotalcite (LDH)). The modified cotton eco-fabrics were analyzed in terms of morphology (optical and scanning electron microscopy (SEM)), color (spectrophotometric measurements), thermal stability (thermogravimetric analysis (TGA)), biodegradability, flammability (micro-combustion calorimetry (MCC)), and antimicrobial characteristics. The antimicrobial activity of the designed eco-fabrics was determined against different kinds of microorganism (S. aureus, E. coli, P. fluorescens, B. subtilis, A. niger, C. albicans). The antibacterial effects and flammability of the materials were found to depend strongly on the compositions of the bioactive formulation. The best results were obtained for the samples of fabric coated with the formulations containing LDH and TiO2 filler. These samples showed the highest decreases in flammability, with heat release rate (HRR) values of 168 (W/g) and 139 (W/g), respectively, compared to the reference (233 W/g). The samples also showed very good inhibition of growth against of all the studied bacteria.
Collapse
Affiliation(s)
- Bolesław Szadkowski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| | - Małgorzata Piotrowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Przemysław Rybiński
- Institute of Chemistry, The Jan Kochanowski University, Zeromskiego 5, 25-369 Kielce, Poland
| | - Anna Marzec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| |
Collapse
|
18
|
Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Appl Biochem Biotechnol 2023; 195:467-485. [PMID: 36087233 PMCID: PMC9832084 DOI: 10.1007/s12010-022-04120-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/14/2023]
Abstract
Mycosynthesis of nanoparticle (NP) production is a potential ecofriendly technology for large scale production. In the present study, copper oxide nanoparticles (CuONPs) have been synthesized from the live cell filtrate of the fungus Penicillium chrysogenum. The created CuONPs were characterized via several techniques, namely Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the biosynthesized CuONPs were performed against biofilm forming Klebsiella oxytoca ATCC 51,983, Escherichia coli ATCC 35,218, Staphylococcus aureus ATCC 25,923, and Bacillus cereus ATCC 11,778. The anti-bacterial activity result was shown with the zone of inhibition determined to be 14 ± 0.31 mm, 16 ± 0.53 mm, 11 ± 0.57 mm, and 10 ± 0.57 mm respectively. Klebsiella oxytoca and Escherichia coli were more susceptible to CuONPs with minimal inhibitory concentration (MIC) values 6.25 and 3.12 µg/mL, respectively, while for Staphylococcus aureus and Bacillus cereus, MIC value was 12.5 and 25 μg/mL, respectively. The minimum biofilm inhibition concentration (MBIC) result was more evident, that the CuONPs have excellent anti-biofilm activity at sub-MIC levels reducing biofilm formation by 49% and 59% against Klebsiella oxytoca and Escherichia coli, while the results indicated that the MBIC of CuONPs on Bacillus cereus and Staphylococcus aureus was higher than 200 μg/mL and 256 μg/mL, respectively, suggesting that these CuONPs could not inhibit mature formatted biofilm of Bacillus cereus and Staphylococcus aureus in vitro. Overall, all the results were clearly confirmed that the CuONPs have excellent anti-biofilm ability against Klebsiella oxytoca and Escherichia coli. The prepared CuONPs offer a smart approach for biomedical therapy of resistant microorganisms because of its promoted antimicrobial action, but only for specified purposes.
Collapse
|
19
|
Hu S, Li Y, Yue F, Chen Y, Qi H. Bio-inspired synthesis of amino acids modified sulfated cellulose nanofibrils into multivalent viral inhibitors via the Mannich reaction. Carbohydr Polym 2023; 299:120202. [PMID: 36876813 DOI: 10.1016/j.carbpol.2022.120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Virus cross-infection via surfaces poses a serious threat to public health. Inspired by natural sulfated polysaccharides and antiviral peptides, we prepared multivalent virus blocking nanomaterials by introducing amino acids to sulfated cellulose nanofibrils (SCNFs) via the Mannich reaction. The antiviral activity of the resulting amino acid-modified sulfated nanocellulose was significantly improved. Specifically, 1 h treatment with arginine modified SCNFs at a concentration of 0.1 g/mL led to a complete inactivation of the phage-X174 (reduction by more than three orders of magnitude). Atomic force microscope showed that amino acid-modified sulfated nanofibrils can bind phage-X174 to form linear clusters, thus preventing the virus from infecting the host. When we coated wrapping paper and the inside of a face-mask with our amino acid-modified SCNFs, phage-X174 was completely deactivated on the coated surfaces, demonstrating the potential of our approach for use in the packaging and personal protective equipment industries. This work provides an environmentally friendly and cost-efficient approach to fabricating multivalent nanomaterials for antiviral applications.
Collapse
Affiliation(s)
- Songnan Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Yuehu Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Yian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
20
|
Textile Functionalization Using LTA and FAU Zeolitic Materials. Polymers (Basel) 2022; 15:polym15010099. [PMID: 36616448 PMCID: PMC9824165 DOI: 10.3390/polym15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
COVID-19 has drawn worldwide attention to the need for personal protective equipment. Face masks can be transformed from passive filters into active protection. For this purpose, it is sufficient to apply materials with oligodynamic effect to the fabric of the masks, which makes it possible to destroy infectious agents that have fallen on the mask with aerosol droplets from the air stream. Zeolites themselves are not oligodynamic materials, but can serve as carriers for nanoparticles of metals and/or compounds of silver, zinc, copper, and other materials with biocidal properties. Such a method, when the particles are immobilized on the surface of the substrate, will increase the lifetime of the active oligodynamic material. In this work, we present the functionalization of textile materials with zeolites to obtain active personal protective equipment with an extended service life. This is done with the aim to extend the synthesis of zeolitic materials to polymeric fabrics beyond cotton. The samples were characterized using XRD, SEM, and UV-Vis spectroscopy. Data of physicochemical studies of the obtained hybrid materials (fabrics with crystals grown on fibers) will be presented, with a focus on the effect of fabrics in the growth process of zeolites.
Collapse
|
21
|
Mahdy NK, El-Sayed M, Al-Mofty SED, Mohamed A, Karaly AH, El-Naggar ME, Nageh H, Sarhan WA, El-Said Azzazy HM. Toward Scaling up the Production of Metal Oxide Nanoparticles for Application on Washable Antimicrobial Cotton Fabrics. ACS OMEGA 2022; 7:38942-38956. [PMID: 36340154 PMCID: PMC9631402 DOI: 10.1021/acsomega.2c04692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 05/03/2023]
Abstract
To examine the utilization of metal oxide nanoparticles (NPs) in different commercial products, this work focuses on the determination of cost-effective and scalable synthesis protocols. The solvothermal protocol is well-known as a scalable method but has recently been shown to lack economic feasibility. The mechanochemical method has recently been recognized to be a more economic and environmentally friendly substitute for the solvothermal method. In this study, zinc oxide nanoparticles (ZnO NPs) and copper oxide nanoparticles (CuO NPs) were synthesized using two (aqueous and organic) solvothermal (wet) methods and two (manual and automated) mechanochemical (dry) methods. The four methods were evaluated and compared. The automated mechanochemical method generated a significantly higher yield of ZnO NPs (82%) and CuO NPs (84%) using the least energy and time. However, the prepared ZnO NPs displayed higher cytotoxicity against Vero E6 cells when compared to that of CuO NPs. Because of their low cytotoxicity, CuO NPs synthesized via the automated mechanochemical method were selected for application onto cotton fabrics. Lower cytotoxicity was observed for CuO NPs treated fabrics with an IC50 of 562 mg/mL and ZnO treated fabrics with an IC50 at 23.93 mg/mL when the treated fabrics were tested against L929 fibroblast cells. Additionally, the cotton fabrics retained bactericidal and virucidal effects after four washes. Thus, the current study recommends the automated mechanochemical method as a cost-effective scalable approach for the synthesis of CuO NPs. The application of CuO NPs onto cotton fabrics generated washable antimicrobial face masks.
Collapse
Affiliation(s)
- Noha Khalil Mahdy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo11835, Egypt
| | - Mousa El-Sayed
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo11835, Egypt
| | - Saif El-Din Al-Mofty
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo11835, Egypt
| | - Abdalla Mohamed
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo11835, Egypt
| | - Ali H. Karaly
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo11835, Egypt
| | - Mehrez E. El-Naggar
- Institute
of Textile Research and Technology, National
Research Centre, El behouth
Street, Dokki, Giza12622, Egypt
| | - Hassan Nageh
- Nanotechnology
Research Center (NTRC), The British University
in Egypt, El-Shorouk City,
Suez Desert Road, P.O. Box 43, Cairo11837, Egypt
| | - Wessam A. Sarhan
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo11835, Egypt
| |
Collapse
|
22
|
Amoxicillin Encapsulation on Alginate/Magnetite Composite and Its Antimicrobial Properties Against Gram-Negative and Positive Microbes. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
23
|
da Silva Bruni AR, de Souza Alves Friedrichsen J, de Jesus GAM, da Silva Alves E, da Costa JCM, Souza PR, de Oliveira Santos Junior O, Bonafé EG. Characterization and application of active films based on commercial polysaccharides incorporating ZnONPs. Int J Biol Macromol 2022; 224:1322-1336. [DOI: 10.1016/j.ijbiomac.2022.10.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
24
|
Saied E, Hashem AH, Ali OM, Selim S, Almuhayawi MS, Elbahnasawy MA. Photocatalytic and Antimicrobial Activities of Biosynthesized Silver Nanoparticles Using Cytobacillus firmus. Life (Basel) 2022; 12:life12091331. [PMID: 36143368 PMCID: PMC9500943 DOI: 10.3390/life12091331] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
The toxicity of the ecosystem has increased recently as a result of the increased industrial wastewater loaded with organic contaminants, including methylene blue (MB), which exerts serious damage to the environment. Thus, the present work aims to green the synthesis of silver nanoparticles (Ag-NPs) and to evaluate their degradability of notorious MB dye, as well as their antimicrobial activities. Ag-NPs were synthesized by Cytobacillus firmus extract fully characterized by UV-vis, TEM, DLS, XRD, and FTIR. Ag-NPs showed good antibacterial and antifungal activities against Escherichia coli ATCC 25922, Enterococcus feacalis ATCC 29212, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, and Candida albicans ATCC 90028. Moreover, Ag-NPs exhibited a high biodegradability level (98%) of MB dye after 8 h of co-incubation in the presence of sunlight. Additionally, the phytotoxicity of treated MB dye-contaminated water sample showed good germination of Vicia faba as compared with non-treated MB dye-contaminated solution. In conclusion, the herein biosynthesized Ag-NPs demonstrated its feasibility of the purification of contaminated water from microbes and methylene blue dye and the probability of reusing purified water for agricultural purposes.
Collapse
Affiliation(s)
- Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (A.H.H.); (M.A.E.)
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mostafa A. Elbahnasawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (A.H.H.); (M.A.E.)
| |
Collapse
|
25
|
Functional Finishing of Barkcloth for Antimicrobial Properties Using Zinc Oxide Nanoparticles. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-p0075p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Barkcloth a naturally occurring cellulosic non-woven fabric has recently obtained attention within the scientific community for end use applications in various industries for instance automobile, household furnishing and construction owing to its robust mechanical, thermal and sound absorption properties. In this work, barkcloth was treated with different concentrations of zinc oxide nanoparticles which were deposited with the pad-dry-cure procedure. The Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were chosen for the evaluation of the anti-microbial efficacy of Zinc oxide Nanoparticles (ZNPs). The coated barkcloth samples with ZNPs concentration 0.6 g/L optimally performed against the two most common resistant bacteria i.e. the gram +ve and gram –ve bacteria, with the gram negative E-coli bacteria demonstrating a high susceptibility to the ZNPs than gram positive S-aureus.
Collapse
|
26
|
ZnO nanorods-grafted durable antibacterial and hydrophobic cotton fabrics by a new grafting protocol. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. J Fungi (Basel) 2022; 8:jof8060612. [PMID: 35736095 PMCID: PMC9225580 DOI: 10.3390/jof8060612] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study is to create chitosan-stabilized silver nanoparticles (Chi/Ag-NPs) and determine whether they were cytotoxic and also to determine their characteristic antibacterial, antibiofilm, and wound healing activities. Recently, the development of an efficient and environmentally friendly method for synthesizing metal nanoparticles based on polysaccharides has attracted a lot of interest in the field of nanotechnology. Colloidal Chi/Ag-NPs are prepared by chemical reduction of silver ions in the presence of Chi, giving Chi/Ag-NPs. Physiochemical properties are determined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analyses. TEM pictures indicate that the generated Chi/Ag-NPs are nearly spherical in shape with a thin chitosan covering around the Ag core and had sizes in the range of 9–65 nm. In vitro antibacterial activity was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa by a resazurin-mediated microtiter plate assay. The highest activity was observed with the lowest concentration of Chi/Ag-NPs, which was 12.5 µg/mL for both bacterial strains. Additionally, Chi/Ag-NPs showed promising antifungal features against Candida albicans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger, where inhibition zones were 22, 29, 20, and 17 mm, respectively. Likewise, Chi/Ag-NPs revealed potential antioxidant activity is 92, 90, and 75% at concentrations of 4000, 2000, and 1000 µg/mL, where the IC50 of Chi/Ag-NPs was 261 µg/mL. Wound healing results illustrated that fibroblasts advanced toward the opening to close the scratch wound by roughly 50.5% after a 24-h exposure to Chi/Ag-NPs, greatly accelerating the wound healing process. In conclusion, a nanocomposite based on AgNPs and chitosan was successfully prepared and exhibited antibacterial, antibiofilm, antifungal, antioxidant, and wound healing activities that can be used in the medical field.
Collapse
|
28
|
Hashem AH, Shehabeldine AM, Ali OM, Salem SS. Synthesis of Chitosan-Based Gold Nanoparticles: Antimicrobial and Wound-Healing Activities. Polymers (Basel) 2022; 14:2293. [PMID: 35683965 PMCID: PMC9182795 DOI: 10.3390/polym14112293] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
The global spread of multidrug-resistant bacteria has become a significant hazard to public health, and more effective antibacterial agents are required. Therefore, this study describes the preparation, characterization, and evaluation of gold nanoparticles modified with chitosan (Chi/AuNPs) as a reducing and stabilizing agent with efficient antimicrobial effects. In recent years, the development of an efficient and ecofriendly method for synthesizing metal nanoparticles has attracted a lot of interest in the field of nanotechnology. Colloidal gold nanoparticles (AuNPs) were prepared by the chemical reduction of gold ions in the presence of chitosan (Chi), giving Chi/AuNPs. The characterization of Chi/AuNPs was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). Chi/AuNPs appeared spherical and monodispersed, with a diameter ranging between 20 to 120 nm. The synergistic effects of AuNPs and Chi led to the disruption of bacterial membranes. The maximum inhibitory impact was seen against P. aeruginosa at 500 µg/mL, with a zone of inhibition diameter of 26 ± 1.8 mm, whereas the least inhibitory effect was reported for S. aureus, with a zone of inhibition diameter of 16 ± 2.1 mm at the highest dose tested. Moreover, Chi/AuNPs exhibited antifungal activity toward Candida albicans when the MIC was 62.5 µg/mL. Cell viability and proliferation of the developed nanocomposite were evaluated using a sulphorhodamine B (SRB) assay with a half inhibitory concentration (IC50) of 111.1 µg/mL. Moreover, the in vitro wound-healing model revealed that the Chi/AuNP dressing provides a relatively rapid and efficacious wound-healing ability, making the obtained nanocomposite a promising candidate for the development of improved bandage materials.
Collapse
Affiliation(s)
- Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
29
|
Aguda O, Lateef A. Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21 st century. Heliyon 2022; 8:e09761. [PMID: 35789866 PMCID: PMC9249839 DOI: 10.1016/j.heliyon.2022.e09761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
The textile industry can benefit from nanotechnology as new properties are conferred on functionalized nanotextiles beyond what a fabric can traditionally offer. These properties include extermination of microorganisms by nanotextiles to curtail their growth and dissemination in the environment and in healthcare facilities. The emergence and thriving of multi-drug resistance (MDR) phenomenon among microbes are threats at achieving good health and well-being (goal 3) of sustainable development goals (SDG) of UN. In addition, MDR strains emerge at a higher rate than the frequency of discovery and production of potent antimicrobial drugs. Therefore, there is need for innovative approach to tackle MDR. Among recent innovations is functionalization of textiles with metal nanoparticles to kill microorganisms. This paper explores strategies in nanotextile production to combat emerging diseases in the 21st century. We discussed different nanotextiles with proven antimicrobial activities, and their applications as air filters, sportswear, personal wears, nose masks, health care and medical fabrics. This compendium highlights frontiers of applications of antimicrobial nanotextiles that can extend multidisciplinary research endeavours towards achieving good health and well-being. Until now, there exists no review on exploitation of nanotextiles to combat MDR pathogens as included in this report.
Collapse
Affiliation(s)
- O.N. Aguda
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, PMB 4000, Ogbomoso, Nigeria
| | - A. Lateef
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, PMB 4000, Ogbomoso, Nigeria
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| |
Collapse
|
30
|
Affiliation(s)
- Mohamed S. Hasanin
- Cellulose & Paper Dept. National Research Centre El‐Buhouth St. Dokki 12622 Egypt
| |
Collapse
|
31
|
Ji N, Dong C, Jiang J. Evaluation of antioxidant, cytotoxicity, and anti-ovarian cancer properties of the Fe3O4@CS-Starch/Cu bio-nanocomposite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2160. [PMID: 35329610 PMCID: PMC8951444 DOI: 10.3390/ma15062160] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Jalal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 400087 Oradea, Romania
| |
Collapse
|
33
|
Salem SS, Ali OM, Reyad AM, Abd-Elsalam KA, Hashem AH. Pseudomonas indica-Mediated Silver Nanoparticles: Antifungal and Antioxidant Biogenic Tool for Suppressing Mucormycosis Fungi. J Fungi (Basel) 2022; 8:jof8020126. [PMID: 35205879 PMCID: PMC8874487 DOI: 10.3390/jof8020126] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mucormycosis is considered one of the most dangerous invasive fungal diseases. In this study, a facile, green and eco-friendly method was used to biosynthesize silver nanoparticles (AgNPs) using Pseudomonas indica S. Azhar, to combat fungi causing mucormycosis. The biosynthesis of AgNPs was validated by a progressive shift in the color of P. indica filtrate from colorless to brown, as well as the identification of a distinctive absorption peak at 420 nm using UV-vis spectroscopy. Fourier-transform infrared spectroscopy (FTIR) results indicated the existence of bioactive chemicals that are responsible for AgNP production. AgNPs with particle sizes ranging from 2.4 to 53.5 nm were discovered using transmission electron microscopy (TEM). Pattern peaks corresponding to the 111, 200, 220, 311, and 222 planes, which corresponded to face-centered cubic forms of metallic silver, were also discovered using X-ray diffraction (XRD). Moreover, antifungal activity measurements of biosynthesized AgNPs against Rhizopus Microsporus, Mucor racemosus, and Syncephalastrum racemosum were carried out. Results of antifungal activity analysis revealed that the biosynthesized AgNPs exhibited outstanding antifungal activity against all tested fungi at a concentration of 400 µg/mL, where minimum inhibitory concentrations (MIC) were 50, 50, and 100 µg/mL toward R. microsporus, S. racemosum, and M. racemosus respectively. In addition, the biosynthesized AgNPs revealed antioxidant activity, where IC50 was 31 µg/mL when compared to ascorbic acid (0.79 µg/mL). Furthermore, the biosynthesized AgNPs showed no cytotoxicity on the Vero normal cell line. In conclusion, the biosynthesized AgNPs in this study can be used as effective antifungals with safe use, particularly for fungi causing mucormycosis.
Collapse
Affiliation(s)
- Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif 21944, Saudi Arabia
- Correspondence: (O.M.A.); (K.A.A.-E.); (A.H.H.)
| | - Ahmed M. Reyad
- Biology Department, Faculty of Science, Jazan University, Jazan 82817, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Centre, Giza 12619, Egypt
- Correspondence: (O.M.A.); (K.A.A.-E.); (A.H.H.)
| | - Amr H. Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
- Correspondence: (O.M.A.); (K.A.A.-E.); (A.H.H.)
| |
Collapse
|
34
|
Hashem AH, Salem SS. Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnol J 2021; 17:e2100432. [PMID: 34747563 DOI: 10.1002/biot.202100432] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND/GOAL/AIM Plant extract is affordable and does not require any particular conditions; rapid production of nanoparticles using plants offers more advantages than other approaches. Selenium nanoparticles (SeNPs) have received much attention in the last decade due to SeNPs diverse and different applications. Herein, this study aimed to biosynthesize SeNPs using aqueous extract of Urtica dioica leaf through green and ecofriendly method. Moreover to fully characterize SeNPs using different techniques, and to evaluate it for antimicrobial activity as well as anticancer activity. MAIN METHODS AND MAJOR RESULTS SeNPs were biosynthesis using aqueous leaf extract of U. dioica (stinging nettle). The biosynthesized SeNPs were characterized using UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive electron spectroscopy (EDX), transmission electron microscopy (TEM), and thermal-gravimetric analysis (TGA). Antimicrobial and anticancer activities of biosynthesized SeNPs were assessed. Results illustrated that SeNPs exhibited promising antibacterial activity against Gram-positive and Gram-negative bacteria, as well as unicellular and multi-cellular fungi. Moreover, minimal-inhibitory concentration (MIC) of SeNPs against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus were 250, 31.25, and 500 μg mL-1 , respectively, while were 62.5, 15.62, 31.25, and 7.81 μg mL-1 against Candida albicans, Aspergillus fumigatus, Aspergillus niger, and Aspergillus flavus, respectively. The cytotoxicity of SeNPs was performed on Vero normal-cell line CCL-81, where IC50 was 173.2 μg mL-1 . CONCLUSIONS AND IMPLICATIONS For the first time, aqueous stinging nettle leaf extract was utilized to biosynthesize SeNPs in a green method. SeNPs have outstanding antimicrobial-activity against pathogenic bacterial and fungal strains. Moreover, SeNPs have promising anticancer activity against HepG2 cancerous cell line without cytotoxicity on Vero normal cell line. Finally, the biosynthesized SeNPs via aqueous extract of stinging nettle leaf exhibited potential antibacterial, antifungal, and anticancer action, making them useful in the medical field.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|