1
|
Sciurba L, Indelicato S, Gaglio R, Barbera M, Marra FP, Bongiorno D, Davino S, Piazzese D, Settanni L, Avellone G. Analysis of Olive Oil Mill Wastewater from Conventionally Farmed Olives: Chemical and Microbiological Safety and Polyphenolic Profile for Possible Use in Food Product Functionalization. Foods 2025; 14:449. [PMID: 39942041 PMCID: PMC11817457 DOI: 10.3390/foods14030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/31/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to perform an in-depth investigation of olive oil mill wastewater (OOMW). Two OOMW samples (OOMW-A and OOMW-B) from conventionally farmed olives were collected from two different olive oil mills in Palermo province (Italy). Multiresidual analysis indicated that both OOMW samples were unsuitable for food production due to pesticide residues. Specifically, OOMW-A contained 4 active compounds totaling 5.7 μg/L, while OOMW-B had 16 analytes with a total content of 65.8 μg/L. However, polyphenol analysis in the OOMW revealed 23 compounds with high concentrations of hydroxytyrosol, secoiridoid derivatives, phenolic acids, flavones, and total polyphenol content ranging from 377.5 μg/mL (for OOMW-B) to 391.8 μg/mL (for OOMW-A). The microbiological analysis of OOMW samples revealed only detectable viable bacteria (102 CFU/mL) of the lactic acid bacteria (LAB) group. Two distinct LAB strains, Lactiplantibacillus plantarum OMW1 and Leuconostoc mesenteroides OMW23, were identified. These strains demonstrated notable acidification capabilities and produced antibacterial compounds. In conclusion, despite the high polyphenolic content and microbiological suitability of OOMW, the presence of micro-contaminants hinders their use in food production. Thus, further studies are underway to investigate OOMW from organically farmed olives for bakery product functionalization, employing the two selected LAB strains resistant to olive polyphenols as leavening agents.
Collapse
Affiliation(s)
- Lino Sciurba
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5. 90128 Palermo, Italy; (L.S.); (R.G.); (F.P.M.); (S.D.); (L.S.)
| | - Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (S.I.); (D.B.); (G.A.)
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5. 90128 Palermo, Italy; (L.S.); (R.G.); (F.P.M.); (S.D.); (L.S.)
| | - Marcella Barbera
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi, 90123 Palermo, Italy
| | - Francesco Paolo Marra
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5. 90128 Palermo, Italy; (L.S.); (R.G.); (F.P.M.); (S.D.); (L.S.)
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (S.I.); (D.B.); (G.A.)
| | - Salvatore Davino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5. 90128 Palermo, Italy; (L.S.); (R.G.); (F.P.M.); (S.D.); (L.S.)
| | - Daniela Piazzese
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi, 90123 Palermo, Italy
- Centre for Sustainability and Ecological Transition (CSTE), University of Palermo, Piazza Marina, 90133 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5. 90128 Palermo, Italy; (L.S.); (R.G.); (F.P.M.); (S.D.); (L.S.)
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (S.I.); (D.B.); (G.A.)
| |
Collapse
|
2
|
Wang A, Liu Y, Yan Y, Jiang Y, Shi S, Wang J, Qiao K, Yang L, Wang S, Li S, Gui W. Chlorpyrifos Influences Tadpole Development by Disrupting Thyroid Hormone Signaling Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:142-151. [PMID: 39718545 DOI: 10.1021/acs.est.4c07890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide with serious toxicological effects on aquatic animals. Although extensively studied for neurotoxicity and endocrine disruption, its stage-specific effects on amphibian metamorphosis and receptor-level interactions remain unclear. This study investigated the effects of CPF on Xenopus laevis metamorphosis at environmentally relevant concentrations (1.8 and 18 μg/L) across key developmental stages, with end points including premetamorphic progression, thyroid hormone (TH)-responsive gene expression, and levels of triiodothyronine (T3) and thyroxine (T4). Additionally, molecular docking, surface plasmon resonance (SPR), and luciferase reporter gene assays were employed to elucidate CPF's interaction with the thyroid hormone receptor alpha (TRα). CPF accelerated premetamorphic development and upregulated TH-responsive genes but delayed later-stage metamorphosis. After 21 days of exposure to 18 μg/L CPF, T3 and T4 levels were reduced by 28% and 39.4%, respectively, compared to controls. Cotreatment with T3 and CPF slowed tadpole development, indicating that CPF affects thyroid signaling in a stage-dependent manner. CPF competed with T3 for TRα binding and stimulated TRα-mediated luciferase activity when administered alone, but this activity decreased when CPF was coexposed to T3. These findings suggest that CPF functions as a partial agonist of TRα, disrupting thyroid signaling and adversely affecting amphibian development.
Collapse
Affiliation(s)
- Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuanyuan Liu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yujia Yan
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Jiang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shiyao Shi
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jie Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Long Yang
- Guizhou Institute of Subtropical Crops, Guizhou 562400, P. R. China
| | - Shuting Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou Health Supervision Institution, Zhejiang 310016, P. R. China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Chen Y, Zhang C, Li W, Lan R, Chen R, Hu J, Yang C, Wang P, Tang B, Wang S. Residues of chlorpyrifos in the environment induce resistance in Aedes albopictus by affecting its olfactory system and neurotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172425. [PMID: 38643874 DOI: 10.1016/j.scitotenv.2024.172425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Aedes albopictus, a virus-vector pest, is primarily controlled through the use of insecticides. In this study, we investigated the mechanisms of resistance in Ae. albopictus in terms of chlorpyrifos neurotoxicity to Ae. albopictus and its effects on the olfactory system. We assessed Ca2+-Mg2+-ATP levels, choline acetyltransferase (ChAT), Monoamine oxidase (MAO), odorant-binding proteins (OBPs), and olfactory receptor (OR7) gene expression in Ae. albopictus using various assays including Y-shaped tube experiments and DanioVision analysis to evaluate macromotor behavior. Our findings revealed that cumulative exposure to chlorpyrifos reduced the activity of neurotoxic Ca2+-Mg2+-ATPase and ChAT enzymes in Ae. albopictus to varying degrees, suppressed MAO-B enzyme expression, altered OBPs and OR7 expression patterns, as well as affected evasive response, physical mobility, and cumulative locomotor time under chlorpyrifos stress conditions for Ae. albopictus individuals. Consequently, these changes led to decreased feeding ability, reproductive capacity, and avoidance behavior towards natural enemies in Ae. albopictus populations exposed to chlorpyrifos stressors over time. To adapt to unfavorable living environments, Ae. albopictus may develop certain tolerance mechanisms against organophosphorus pesticides. This study provides valuable insights for guiding rational insecticide usage or dosage adjustments targeting the nervous system of Ae. albopictus.
Collapse
Affiliation(s)
- Yanrong Chen
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Chen Zhang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Wen Li
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Ruoyun Lan
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Rufei Chen
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Jingchao Hu
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Chenyu Yang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Ping Wang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Bin Tang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Shigui Wang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| |
Collapse
|
4
|
Swain BB, Mishra S, Samal S, Adak T, Mohapatra PK, Ayyamperumal R. Chlorpyrifos enrichment enhances tolerance of Anabaena sp. PCC 7119 to dimethoate. ENVIRONMENTAL RESEARCH 2024; 249:118310. [PMID: 38331154 DOI: 10.1016/j.envres.2024.118310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 μM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 μs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.
Collapse
Affiliation(s)
| | | | - Subhashree Samal
- Department of Botany, Ravenshaw University, Cuttack, 753003, India.
| | - Totan Adak
- Crop Protection Division, ICAR- National Rice Research Institute, Cuttack, 753006, India.
| | | | - Ramamoorthy Ayyamperumal
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China; SIMATS Saveetha University, Chennai, Tamilnadu, 600077, India.
| |
Collapse
|
5
|
Bosu S, Rajamohan N, Al Salti S, Rajasimman M, Das P. Biodegradation of chlorpyrifos pollution from contaminated environment - A review on operating variables and mechanism. ENVIRONMENTAL RESEARCH 2024; 248:118212. [PMID: 38272293 DOI: 10.1016/j.envres.2024.118212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/12/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Chlorpyrifos (CPF) is a highly toxic phosphate-rich organic pesticide (OP), identified as an emerging contaminant and used extensively in agricultural production. CPF persistence in the environment and its potential health hazards has become increasingly concerning worldwide in recent years due to exponential rise in food demand. Biodegradation of chlorpyrifos by microbial cultures is a promising approach to reclaiming contaminated soil and aquatic environments. The purpose of this review is to summarize the current understanding of microbiological aspects of xenobiotic chlorpyrifos biodegradation, including microbial diversity, metabolic pathways, and factors that modulate it. In both aerobic and anaerobic environments, CPF is biochemically broken down by a broad spectrum of bacteria and fungi. Hydrolysis, dehalogenation, and oxidation of chlorpyrifos are all enzymatic reactions that lead to its degradation. Biodegradation rate and efficiency are strongly influenced by parametric variables such as co-substrates abundance, pH, temperature, and initial chlorpyrifos concentration. The review provides evidence that microbial biodegradation is a viable method for remediating chlorpyrifos-contaminated sites in a sustainable and safe manner.
Collapse
Affiliation(s)
- Subrajit Bosu
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman.
| | - Shatha Al Salti
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | | | - Papiya Das
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| |
Collapse
|
6
|
Raj A, Kumar A, Khare PK. The looming threat of profenofos organophosphate and microbes in action for their sustainable degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14367-14387. [PMID: 38291208 DOI: 10.1007/s11356-024-32159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Organophosphates are the most extensively used class of pesticides to deal with increasing pest diversity and produce more on limited terrestrial areas to feed the ever-expanding global population. Profenofos, an organophosphate group of non-systematic insecticides and acaricides, is used to combat aphids, cotton bollworms, tobacco budworms, beet armyworms, spider mites, and lygus bugs. Profenofos was inducted into the system as a replacement for chlorpyrifos due to its lower toxicity and half-life. It has become a significant environmental concern due to its widespread presence. It accumulates in various environmental components, contaminating food, water, and air. As a neurotoxic poison, it inhibits acetylcholinesterase receptor activity, leading to dizziness, paralysis, and pest death. It also affects other eukaryotes, such as pollinators, birds, mammals, and invertebrates, affecting ecosystem functioning. Microbes directly expose themselves to profenofos and adapt to these toxic compounds over time. Microbes use these toxic compounds as carbon and energy sources and it is a sustainable and economical method to eliminate profenofos from the environment. This article explores the studies and developments in the bioremediation of profenofos, its impact on plants, pollinators, and humans, and the policies and laws related to pesticide regulation. The goal is to raise awareness about the global threat of profenofos and the role of policymakers in managing pesticide mismanagement.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, (M.P), -470003, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, (M.P), -470003, India.
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, (UP), -211002, India.
| | - Pramod Kumar Khare
- Ecology Laboratory, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Madhya Pradesh, Sagar, -470003, India
| |
Collapse
|
7
|
Wepukhulu M, Wachira P, Huria N, Sifuna P, Essuman S, Asamba M. Optimization of Growth Conditions for Chlorpyrifos-Degrading Bacteria in Farm Soils in Nakuru County, Kenya. BIOMED RESEARCH INTERNATIONAL 2024; 2024:1611871. [PMID: 38304346 PMCID: PMC10834098 DOI: 10.1155/2024/1611871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/03/2024]
Abstract
Chlorpyrifos (CP) is a chlorinated organophosphate pesticide. In Kenya, it is commonly used as an acaricide, particularly in dairy farming, leading to soil and water contamination. The study is aimed at isolating bacteria with CP-degrading potential and optimizing their growth conditions, including temperature, pH, and CP concentration. The enrichment culture technique was used, with minimal salt medium (MSM) supplemented with commercial grade CP. A multilevel factorial design was used to investigate the interactions of temperature, pH, and CP concentration. According to the findings, seven bacterial strains with potential to degrade CP were characterized and identified as Alcaligenes faecalis, Bacillus weihenstephanensis, Bacillus toyonensis, Alcaligenes sp. strain SCAU23, Pseudomonas sp. strain PB845W, Brevundimonas diminuta, and uncultured bacterium clone 99. Growth and biodegradation of bacteria differed significantly among the isolates across pH value, temperature, and concentrations (P ≤ 0.05). The optimum conditions for growth were pH 7, temperature of 25°C, and 25mg/l chlorpyrifos concentration, while optimum degradation conditions were pH 5, temp 25°C, and CP conc. 25mg/l. The Pearson correlation between optimum growth and degradation showed a weak positive relationship (R = 0.1144) for pH and strong positive relationship for temperature and concentration of chlorpyrifos. Other than pH, the study shows that there could be other cofactors facilitating the chlorpyrifos degradation process. The findings show that an efficient consortium, at 25°C and pH 5, can include Bacillus toyonensis 20SBZ2B and Alcaligenes sp. SCAU23 as they showed high optical density (OD) values under these conditions. These results indicate the potential for these bacteria to be employed in chlorpyrifos-contaminated ecosystem detoxification efforts upon manipulation of natural growth conditions. The findings of this study offer a potential foundation for future research into the reconstitution of a consortium. Based on the optimum conditions identified, the isolated bacterial strains could be further developed into a consortium to effectively degrade CP in both laboratory and field conditions. Dairy farmers can utilize the isolated strains and the consortia to decontaminate farm soils.
Collapse
Affiliation(s)
- Miriam Wepukhulu
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-0100, Nairobi, Kenya
- Department of Dryland Agriculture and Natural Resources, Tharaka University, Marimanti, Kenya
| | - Peter Wachira
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-0100, Nairobi, Kenya
| | - Nderitu Huria
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-0100, Nairobi, Kenya
| | - Paul Sifuna
- Department of Medical Microbiology, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
| | - Suliman Essuman
- Department of Medical Microbiology, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
| | - Micah Asamba
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi, Kenya
| |
Collapse
|
8
|
Srivastava S, Dafale NA. Genomic dissection of Niallia sp. for potential application in lignocellulose hydrolysis and bioremediation. Arch Microbiol 2023; 206:2. [PMID: 37989968 DOI: 10.1007/s00203-023-03728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Genus Niallia has recently been separated taxonomic group from the Bacillus based on conserved signature indels in the genome. Unlike bioremediation, its role in plant biomass hydrolysis has not garnered considerable attention. The present study investigates the genomic potential of a novel Niallia sp. CRN 25 for applications in lignocellulose hydrolysis, significant enzyme production, and bioremediation. The CRN 25 strain exhibits xylosidase, cellobiosidase, α-arabinosidase, and α-D-galactosidase activity as 0.03 U/ml whereas β-D-glucosidase and glucuronidase as 0.06 U/ml and 0.01 U/ml, respectively. Further genome sequencing reveals nine copies of GH43 gene coding for hemicellulose-specific xylanase enzyme attached to the CBM 6 domain for increased processivity. The presence of β-glucosidase and β-galactosidase indicates the possible application of CRN 25 in facilitating the valorization of plant biomass into value-added products. Apart from this, genes of FMN-dependent NADH-azoreductase, cytochrome P450, and nitrate reductase, playing a crucial role in bioremediation processes, were annotated. Biosynthetic gene clusters (BGCs), responsible for synthesizing specialized metabolites of terpenes and lasso peptides, were also found in the genome. Conclusively genomic sketch of Niallia sp. CRN 25 reveals versatile metabolic potential for diverse environmental applications.
Collapse
Affiliation(s)
- Shweta Srivastava
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
10
|
Kumar P, Arshad M, Gacem A, Soni S, Singh S, Kumar M, Yadav VK, Tariq M, Kumar R, Shah D, Wanale SG, Al Mesfer MKM, Bhutto JK, Yadav KK. Insight into the environmental fate, hazard, detection, and sustainable degradation technologies of chlorpyrifos-an organophosphorus pesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108347-108369. [PMID: 37755596 DOI: 10.1007/s11356-023-30049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Pesticides play a critical role in terms of agricultural output nowadays. On top of that, pesticides provide economic support to our farmers. However, the usage of pesticides has created a public health issue and environmental hazard. Chlorpyrifos (CPY), an organophosphate pesticide, is extensively applied as an insecticide, acaricide, and termiticide against pests in various applications. Environmental pollution has occurred because of the widespread usage of CPY, harming several ecosystems, including soil, sediment, water, air, and biogeochemical cycles. While residual levels in soil, water, vegetables, foodstuffs, and human fluids have been discovered, CPY has also been found in the sediment, soil, and water. The irrefutable pieces of evidence indicate that CPY exposure inhibits the choline esterase enzyme, which impairs the ability of the body to use choline. As a result, neurological, immunological, and psychological consequences are seen in people and the natural environment. Several research studies have been conducted worldwide to identify and develop CPY remediation approaches and its derivatives from the environment. Currently, many detoxification methods are available for pesticides, such as CPY. However, recent research has shown that the breakdown of CPY using bacteria is the most proficient, cost-effective, and sustainable. This current article aims to outline relevant research events, summarize the possible breakdown of CPY into various compounds, and discuss analytical summaries of current research findings on bacterial degradation of CPY and the potential degradation mechanism.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Snigdha Singh
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Manoj Kumar
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Mohd Tariq
- Department of Life Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Deepankshi Shah
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | | | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, Madhya Pradesh, 462044, India.
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| |
Collapse
|
11
|
Zhang D, Ding W, Liu W, Li L, Zhu G, Ma J. Single and Combined Effects of Chlorpyrifos and Glyphosate on the Brain of Common Carp: Based on Biochemical and Molecular Perspective. Int J Mol Sci 2023; 24:12934. [PMID: 37629125 PMCID: PMC10455211 DOI: 10.3390/ijms241612934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Chlorpyrifos (CPF) and glyphosate (GLY) are the most widely used organophosphate insecticide and herbicide worldwide, respectively; co-occurrence of CPF and GLY in aquatic environments occurs where they inevitably have potential hazards to fish. However, the potential mechanisms of CPF and GLY to induce toxicity have not been fully explored. To identify the adverse impacts of CPF and GLY on fish, either alone or in combination (MIX), CPF (25 μg/L) and GLY (3.5 mg/L) were set up according to an environmentally relevant concentration to expose to common carp for 21 days. After exposure, CPF and GLY decreased the activities of acetylcholinesterase and Na+/K+-ATPase, altered monoamine oxidase levels, decreased antioxidant enzyme activities (superoxide dismutase, catalase, glutathione S-transferase and glutamic reductase), and induced the accumulation of malondialdehyde in the carp brain. The parameters in the MIX groups had a greater impact compared to that in the CPF or GLY group, suggesting that both single and combined exposure could affect neurological signaling systems and cause oxidative stress and lipid peroxidation damage in carp brains, and that MIX exposure increases the impact of each pollutant. RNA-seq results showed that single or combined exposure to CPF and GLY induced global transcriptomic changes in fish brains, and the number of differentially expressed genes in MIX-treated carp brains were globally increased compared to either the CPF or GLY groups, suggesting that the effects of co-exposure were greater than single exposure. Further analysis results revealed that the global transcriptomic changes participated in oxidative stress, immune dysfunction, and apoptosis of fish brains, and identified that the P13k-Akt signaling pathway participates in both single and combined exposure of CPF- and GLY-induced toxicity. Taken together, our results demonstrated that the interaction of CPF and GLY might be synergic and provided novel insights into the molecular mechanisms of fish brains coping with CPF and GLY.
Collapse
Affiliation(s)
- Dongfang Zhang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wei Liu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Liuying Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Gongming Zhu
- State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
- Pingyuan Laboratory, Xinxiang 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Nistala S, Kumar A. Effect of toxicological interaction of chlorpyrifos, cypermethrin, and arsenic on soil dehydrogenase activity in the terrestrial environment. ECOTOXICOLOGY (LONDON, ENGLAND) 2023:10.1007/s10646-023-02666-3. [PMID: 37233842 DOI: 10.1007/s10646-023-02666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Soil is the most widespread area for the co-occurrence of two or more numbers of contaminants. Therefore, toxicity assessments based on contaminants mixture are urgently required to assess their combined impacts on soil enzymes. In the present study, the median effect plot and the combination index isobologram were studied to evaluate the dose-response curve for individual and interactive impacts of chlorpyrifos (Chl), cypermethrin (Cyp), and arsenic (As) on soil dehydrogenase, a potential marker of soil health. Along with these methods, a two-way ANOVA was also tested and the results showed significant changes with respect to different treatments. The results also showed that the Dm value increases in the order of As<Cyp<Chl. Another side, the m values for Cyp and As were negative, while positive for Chl. The day-dependent variation analysis revealed maximum inhibition in dehydrogenase activity on days 20 and 30 after treatment. The results also revealed that binary mixtures Chl + Cyp- and Chl + As- induced synergistic and antagonistic impacts over dehydrogenase enzyme at 0.1 fa level on different treatment days, whereas, applied binary and ternary combinations exhibited antagonistic effects at >0.25 fa level. However, Chl + Cyp unveiled a synergistic impact over soil dehydrogenase on day 30th. The overall impact of applied chemicals on dehydrogenase activity was contributed by bioavailability and the nature of toxicological interactions between them. This study would be one of the exclusive studies for the agricultural sector to predict the potential risk associated with the co-existence of these or similar contaminants in the terrestrial environment.
Collapse
Affiliation(s)
- Shweta Nistala
- Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India
| |
Collapse
|
13
|
Bhende RS, Dafale NA. Insights into the ubiquity, persistence and microbial intervention of imidacloprid. Arch Microbiol 2023; 205:215. [PMID: 37129684 DOI: 10.1007/s00203-023-03516-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Collapse
Affiliation(s)
- Rahul S Bhende
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
14
|
Hanková K, Maršík P, Zunová T, Podlipná R. The Impact of Pesticide Use on Tree Health in Riparian Buffer Zone. TOXICS 2023; 11:235. [PMID: 36977000 PMCID: PMC10053419 DOI: 10.3390/toxics11030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The result of the enormous usage of pesticides in agriculture is the contamination of soil and water bodies surrounding the fields. Therefore, creating buffer zones to prevent water contamination is very useful. Chlorpyrifos (CPS) is the active substance of a number of insecticides widely used all over the world. In our study, we focused on the effect of CPS on plants forming riparian buffer zones: poplar (Populus nigra L., TPE18), hybrid aspen (P.tremula L. × P. tremuloides Michx.), and alder (Alnus glutinosa L.). Foliage spray and root irrigation experiments were conducted under laboratory conditions on in vitro cultivated plants. Spray applications of pure CPS were compared with its commercially available form-Oleoekol®. Although CPS is considered a nonsystemic insecticide, our results indicate that CPS is transferred not only upwards from roots to shoots but also downwards from leaves to roots. The amount of CPS in the roots was higher (4.9 times and 5.7 times, respectively) in aspen or poplar sprayed with Oleoekol than in those sprayed with pure CPS. Although the treated plants were not affected in growth parameters, they showed increased activity of antioxidant enzymes (approximately two times in the case of superoxide dismutase and ascorbate peroxidase) and augmented levels of phenolic substances (control plants -114.67 mg GAE/g dry tissue, plants treated with CPS-194.27 mg GAE/g dry tissue). In summary, chlorpyrifos, especially as a foliar spray pesticide, can create persistent residues and affects not only target plants but also plants surrounding the field.
Collapse
Affiliation(s)
- K. Hanková
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha 6, Czech Republic
| | - P. Maršík
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha 6, Czech Republic
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Lysolaje, 165 02 Praha 6, Czech Republic
| | - T. Zunová
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha 6, Czech Republic
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Lysolaje, 165 02 Praha 6, Czech Republic
| | - R. Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Lysolaje, 165 02 Praha 6, Czech Republic
| |
Collapse
|
15
|
Theansun W, Sriprachuabwong C, Chuenchom L, Prajongtat P, Techasakul S, Tuantranont A, Dechtrirat D. Acetylcholinesterase modified inkjet-printed graphene/gold nanoparticle/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid electrode for ultrasensitive chlorpyrifos detection. Bioelectrochemistry 2023; 149:108305. [DOI: 10.1016/j.bioelechem.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
|
16
|
Hou K, Cheng C, Shi B, Liu W, Du Z, Li B, Wang J, Wang J. New insights into the effects of chlorpyrifos on soil microbes: Carbon and nitrogen cycle related microbes in wheat/maize rotation agricultural field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120908. [PMID: 36549448 DOI: 10.1016/j.envpol.2022.120908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Chlorpyrifos, a broad-spectrum organophosphorus insecticide, has been widely detected worldwide and is a potential neurotoxin and endocrine disruptor. Besides, chlorpyrifos has been proven that have a negative effect on soil microbes. In the present study, chlorpyrifos formulation (LORSBAN®, 45% emulsifiable concentrate) was applied in an agricultural field at the recommended dose (R dose, 270.0 and 337.5 g a.i. ha-1 for wheat and maize respectively) and double recommended (DR) dose. Chlorpyrifos residue level and effect on soil microbes related to soil carbon and nitrogen cycle function were analyzed. Results showed that the half-lives of chlorpyrifos in wheat and maize field soil were 7.23-8.23 and 1.45-1.77 d, respectively. Application of chlorpyrifos at even DR dose did not result in unacceptable residual chlorpyrifos, where the final residual chlorpyrifos in wheat/maize (leaf, stem, and grain) was meet the requirement of the maximum residual limit (0.5 mg kg-1 for wheat and 0.05 mg kg-1 for maize) in China. Chlorpyrifos enhanced the activity of β-glucosidase by increasing the relative abundance of Sphingosinicella and promoted the carbon cycle in wheat field. The changes of cbbLR and cbbLG gene abundance also confirmed that chlorpyrifos could affect the import and export of soil carbon pool. The effect of chlorpyrifos on soil N cycle was determined by changes in the abundance of the bacterial genus Gemmatimonas, which is associated with denitrification. Further analysis of N-cycle functional genes and urease activity showed that chlorpyrifos inhibited nitrogen fixation in wheat field, but promoted nitrogen fixation in maize field. In general, bacterial abundance, urease, and AOA-amoA gene could be early warning markers of chlorpyrifos contamination. The results demonstrated the negative effects of chlorpyrifos on soil microbes especially on soil C and N cycle in actual agricultural field. It provides new insights about chlorpyrifos environmental pollution and its effect on soil ecosystems.
Collapse
Affiliation(s)
- Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Chao Cheng
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Wei Liu
- Experiment Management Centre, Dezhou University, No. 566 University West Road, Dezhou, 253023, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| |
Collapse
|
17
|
Gelaye Y. The status and natural impact of floriculture production in Ethiopia: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9066-9081. [PMID: 36437364 DOI: 10.1007/s11356-022-24279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Ethiopia's floriculture industry is exceedingly emerging, and, currently, it ranks as the sixth largest exporter of roses worldwide and second largest in Africa. Currently, many flowers, such as rose, gypsophila, carnations, and chrysanthemum, are growing. However, floriculture farms are contributing a high level of health risks and environmental problems in Ethiopia. Thus, the purpose of this paper is to scrutinize the status and impacts of floriculture industries in Ethiopia. The floriculture division is an emerging sector in Ethiopia, and the number of farms, income, job opportunities, and diversity of flowers are increasing. However, the health risks and environmental fates of the sector are also increasing. Ethiopian floriculture farms lack waste disposal technologies and workers' protective equipment and safety, and the chemicals, plastics, and corrugated irons used in the farms are carelessly disposed everywhere. Pesticides, plastics, and fertilizers are also freely discharged into water bodies and terrestrial land, which is causing the development of health risks; aquatic life hazards; and soil, water, and air pollution. However, Ethiopia has no strong and functional system or structure to control the impacts of floriculture farms. The government and the farm owners are not thoughtful about the environmental issues, health concerns, and socioeconomic impacts of the wastes. The government lacks regular control and assessment of farms, and the farms are engaging for their profit. Nevertheless, developed countries are currently using both natural and modern technologies to manage floricultural wastes. Ethiopia should therefore suggest manageable possible approaches and sound management strategies based on the findings of the analyses.
Collapse
Affiliation(s)
- Yohannes Gelaye
- Department of Horticulture, College of Agriculture and Natural Resources, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia.
| |
Collapse
|
18
|
Kumar G, Lal S, Soni SK, Maurya SK, Shukla PK, Chaudhary P, Bhattacherjee AK, Garg N. Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics. Front Microbiol 2022; 13:891870. [PMID: 35958149 PMCID: PMC9360973 DOI: 10.3389/fmicb.2022.891870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The indiscriminate use of organophosphate insecticide chlorpyrifos in agricultural crops causes significant soil and water pollution and poses a serious threat to the global community. In this study, a microbial consortium ERM C-1 containing bacterial strains Pseudomonas putida T7, Pseudomonas aeruginosa M2, Klebsiella pneumoniae M6, and a fungal strain Aspergillus terreus TF1 was developed for the effective degradation of chlorpyrifos. Results revealed that microbial strains were not only utilizing chlorpyrifos (500 mg L-1) but also coupled with plant growth-promoting characteristics and laccase production. PGP traits, that is, IAA (35.53, 45.53, 25.19, and 25.53 μg mL-1), HCN (19.85, 17.85, 12.18, and 9.85 μg mL-1), and ammonium (14.73, 16.73, 8.05, and 10.87 μg mL-1) production, and potassium (49.53, 66.72, 46.14, and 52.72 μg mL-1), phosphate (52.37, 63.89, 33.33, and 71.89 μg mL-1), and zinc (29.75, 49.75, 49.12, and 57.75 μg mL-1) solubilization tests were positive for microbial strains T7, M2, M6, and TF1, respectively. The laccase activity by ERM C-1 was estimated as 37.53, 57.16, and 87.57 enzyme U mL-1 after 5, 10, and 15 days of incubation, respectively. Chlorpyrifos degradation was associated with ERM C-1 and laccase activity, and the degree of enzyme activity was higher in the consortium than in individual strains. The biodegradation study with developed consortium ERM C-1 showed a decreased chlorpyrifos concentration from the 7th day of incubation (65.77% degradation) followed by complete disappearance (100% degradation) after the 30th day of incubation in the MS medium. First-order degradation kinetics with a linear model revealed a high k -day value and low t 1/2 value in ERM C-1. The results of HPLC and GC-MS analysis proved that consortium ERM C-1 was capable of completely removing chlorpyrifos by co-metabolism mechanism.
Collapse
Affiliation(s)
- Govind Kumar
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Shatrohan Lal
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Sumit K. Soni
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Shailendra K. Maurya
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Pradeep K. Shukla
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Parul Chaudhary
- Department of Animal Biotechnology, Indian Council of Agricultural Research (ICAR)–National Dairy Research Institute, Karnal, Haryana, India
| | - A. K. Bhattacherjee
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Neelima Garg
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| |
Collapse
|