1
|
Tang F, Zhao Y, Mao Z, Huang Y, Hu Y, Liu B, Huang Y, Shao Y. Consistency of gene expression and protein acetylation modification with physiological and biochemical changes responding to the deficiency of histone deacetylase 1 homolog in Monascus ruber. Int J Biol Macromol 2025; 308:142485. [PMID: 40180089 DOI: 10.1016/j.ijbiomac.2025.142485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Monascus species can produce several secondary metabolites (SMs), which are regulated by a complex network. Histone deacetylase 1 (Hda1) has been demonstrated as a critical regulator of SMs and developmental processes; however, little is known about Hda1 in Monascus spp. (named MrHda1). In this study, strain ΔMrHda1 was generated for phenotypic assays. The results indicated that MrHda1 inactivation led to reduced conidia and ascospores but significantly increased pigment and citrinin production. Transcriptome data showed that MrHda1 deletion upregulated the expression of most genes in the glycolytic pathway as well as the gene clusters involved in pigment and citrinin biosynthesis. Western blotting (WB) and label-free acetylome data indicated that MrHda1 deletion significantly enhanced lysine acetylation modifications on the H3 subunit and enzymes involved in the citric acid cycle. Site-directed mutation demonstrated that the production of pigments and citrinin directly correlates with the acetylation level of histone H3 lysine 18 (H3K18). These findings provide new insights into the essential functions of MrHda1 and its regulation mechanisms on the SMs.
Collapse
Affiliation(s)
- Fufang Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuehan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zejing Mao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueyan Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Baixue Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Li RY, Zhang CY, Xiao S, Liu XY, Li RX, Li J, Li H, Liu J. Exploring the multifaceted roles of histone deacetylase inhibitor vorinostat in the cell growth, mycelial morphology, pigments, and citrinin biosynthesis of Monascus purpureus. Arch Microbiol 2025; 207:95. [PMID: 40108053 DOI: 10.1007/s00203-025-04300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Acetylation is an important modification type of histones, which is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, the histone acetylation level of Monascus was enhanced through the exogenous addition of the HDACs inhibitor vorinostat, and the regulation effects of histone acetylation on cell growth and secondary metabolism were evaluated. The results demonstrated that the augmentation of histone acetylation level could slightly facilitate sugar consumption, increase biomass weight, and significantly induce noticeable morphological alterations. Furthermore, in the presence of 80 μmol/L vorinostat concentration, there was a significant reduction observed in both extracellular and intracellular Monascus pigments, citrinin productions, with decreases of 35.46%, 63.90%, and 98.33% respectively. RT-qPCR results showed that adding vorinostat resulted in the up-regulation of HAT genes and down-regulation of HDAC genes. Additionally, transcriptome analysis revealed that glycolysis, tricarboxylic acid cycle, fatty acid metabolism, cell membrane anchor-protein related genes, and biosynthetic pathways involved in ergosterol and chitin synthesis were upregulated. Conversely, the electron transport chain and genetic clusters associated with Monascus pigments and citrinin synthesis were down-regulated. These findings underscore the pivotal role of histone acetylation in regulating the cell growth and secondary metabolism of M. purpureus and extend novel perspectives on the potential applications of clinical compounds derived from this process.
Collapse
Affiliation(s)
- Run-Ya Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Chen-Yu Zhang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Shaoxiang Xiao
- Hunan Vocational College of Science and Technology, Changsha, 410004, Hunan, China
| | - Xin-Yi Liu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ru-Xue Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jing Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Hao Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jun Liu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
3
|
Li S, Cai Q, Liu Q, Gong Y, Zhao D, Wan J, Wang D, Shao Y. Effective enhancement of the ability of Monascus pilosus to produce lipid-lowering compound Monacolin K via perturbation of metabolic flux and histone acetylation modification. Food Res Int 2024; 195:114961. [PMID: 39277234 DOI: 10.1016/j.foodres.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Monacolin K (MK), also known as lovastatin, is a polyketide compound with the ability to reduce plasma cholesterol levels and many other bio-activities. Red yeast rice (also named Hongqu) rich in MK derived from Monascus fermentation has attracted widespread attention due to its excellent performance in reducing blood lipids. However, industrial Monascus fermentation suffers from the limitations such as low yield of MK, long fermentation period, and susceptibility to contamination. In this study, we firstly blocked the competitive pathway of MK biosynthesis to create polyketide synthase gene pigA (the key gene responsible for the biosynthesis of Monascus azaphilone pigments) deficient strain A1. Then, based on the strategies to increase precursor supply for MK biosynthesis, acetyl-CoA carboxylase gene acc overexpression strains C1 and C2 were constructed with WT and A1 as the parent, respectively. Finally, histone deacetylase gene hos2 overexpression strain H1 was constructed by perturbation of histone acetylation modification. HPLC detection revealed all these four strains significantly increased their abilities to produce MK. After 14 days of solid-state fermentation, the MK yields of strains A1, C1, C2, and H1 reached 2.03 g/100 g, 1.81 g/100 g, 2.45 g/100 g and 2.52 g/100 g, which increased by 28.5 %, 14.7 %, 43.9 % and 36.1 % compared to WT, respectively. RT-qPCR results showed that overexpression of hos2 significantly increased the expression level of almost all genes responsible for MK biosynthesis after 5-day growth. Overall, the abilities of these strains to produce MK has been greatly improved, and MK production period has been shortened to 14 days from 20 days, providing new approaches for efficient production of Hongqu rich in MK.
Collapse
Affiliation(s)
- Shengfa Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinhua Cai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianrui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Deqing Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Danjuan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Wu Z, Gao H, Liu Z. COMPASS core subunits MpSet1 and MpSwd3 regulate Monascus pigments synthesis in Monascus purpureus. J Basic Microbiol 2024; 64:e2300686. [PMID: 38362934 DOI: 10.1002/jobm.202300686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
In eukaryotes, methylation of histone H3 at lysine 4 (H3K4me) catalyzed by the complex of proteins associated with Set1 (COMPASS) is crucial for the transcriptional regulation of genes and the development of organisms. In Monascus, the functions of COMPASS in establishing H3K4me remain unclear. This study first identified the conserved COMPASS core subunits MpSet1 and MpSwd3 in Monascus purpureus and confirmed their roles in establishing H3K4me2/3. Loss of MpSet1 and MpSwd3 resulted in slower growth and development and inhibited the formation of cleistothecia, ascospores, and conidia. The loss of these core subunits also decreased the production of extracellular and intracellular Monascus pigments (MPs) by 94.2%, 93.5%, 82.7%, and 82.5%, respectively. In addition, RNA high-throughput sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) showed that the loss of MpSet1 and MpSwd3 altered the expression of 2646 and 2659 genes, respectively, and repressed the transcription of MPs synthesis-related genes. In addition, the ΔMpset1 and ΔMpswd3 strains demonstrated increased sensitivity to cell wall stress with the downregulation of chitin synthase-coding genes. These results indicated that the COMPASS core subunits MpSet1 and MpSwd3 help establish H3K4me2/3 for growth and development, spore formation, and pigment synthesis in Monascus. These core subunits also assist in maintaining cell wall integrity.
Collapse
Affiliation(s)
- Zhongling Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Hongyan Gao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
5
|
Gong Y, Li S, Liu Q, Chen F, Shao Y. CRISPR/Cas9 system is a suitable gene targeting editing tool to filamentous fungus Monascus pilosus. Appl Microbiol Biotechnol 2024; 108:154. [PMID: 38240803 PMCID: PMC10799099 DOI: 10.1007/s00253-023-12865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 01/22/2024]
Abstract
Monascus pilosus has been used to produce lipid-lowering drugs rich in monacolin K (MK) for a long period. Genome mining reveals there are still many potential genes worth to be explored in this fungus. Thereby, efficient genetic manipulation tools will greatly accelerate this progress. In this study, we firstly developed the protocol to prepare protoplasts for recipient of CRISPR/Cas9 system. Subsequently, the vector and donor DNA were co-transformed into recipients (106 protoplasts/mL) to produce 60-80 transformants for one test. Three genes (mpclr4, mpdot1, and mplig4) related to DNA damage response (DDR) were selected to compare the gene replacement frequencies (GRFs) of Agrobacterium tumefaciens-mediated transformation (ATMT) and CRISPR/Cas9 gene editing system (CGES) in M. pilosus MS-1. The results revealed that GRF of CGES was approximately five times greater than that of ATMT, suggesting that CGES was superior to ATMT as a targeting gene editing tool in M. pilosus MS-1. The inactivation of mpclr4 promoted DDR via the non-homologous end-joining (NHEJ) and increased the tolerances to DNA damaging agents. The inactivation of mpdot1 blocked DDR and led to the reduced tolerances to DNA damaging agents. The inactivation of mplig4 mainly blocked the NHEJ pathway and led to obviously reduced tolerances to DNA damaging agents. The submerged fermentation showed that the ability to produce MK in strain Δmpclr4 was improved by 52.6% compared to the wild type. This study provides an idea for more effective exploration of gene functions in Monascus strains. KEY POINTS: • A protocol of high-quality protoplasts for CGES has been developed in M. pilosus. • The GRF of CGES was about five times that of ATMT in M. pilosus. • The yield of MK for Δmpclr4 was enhanced by 52.6% compared with the wild type.
Collapse
Affiliation(s)
- Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengfa Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianrui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Gong Y, Li S, Zhou Y, Chen F, Shao Y. Histone lysine methyltransferases MpDot1 and MpSet9 are involved in the production of lovastatin and MonAzPs by histone crosstalk modification. Int J Biol Macromol 2024; 255:128208. [PMID: 37979745 DOI: 10.1016/j.ijbiomac.2023.128208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Increasing data suggested that histone methylation modification plays an important role in regulating biosynthesis of secondary metabolites (SMs). Monascus spp. have been applied to produce hypolipidemic drug lovastatin (also called monacolin K, MK) and edible Monascus-type azaphilone pigments (MonAzPs). However, little is known about how histone methylation regulates MK and MonAzPs. In this study, we constructed H3K9 methyltransferase deletion strain ΔMpDot1 and H4K20 methyltransferase deletion strain ΔMpSet9 using Monascus pilosus MS-1 as the parent. The result showed that deletion of MpDot1 reduced the production of MK and MonAzPs, and deletion of MpSet9 increased MonAzPs production. Real-time quantitative PCR (RT-qPCR) showed inactivation of mpdot1 and mpset9 disturbed the expression of genes responsible for the biosynthesis of MK and MonAzPs. Western blot suggested that deletion of MpDot1 reduced H3K79me and H4K16ac, and deletion of MpSet9 decreased H4K20me3 and increased H4pan acetylation. Chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) showed ΔMpDot1 strain and ΔMpSet9 strain reduced the enrichment of H3K79me2 and H4K20me3 in the promoter regions of key genes for MK and MonAzPs biosynthesis, respectively. These results suggested that MpDot1 and MpSet9 affected the synthesis of SMs by regulating gene transcription and histone crosstalk, providing alternative approach for regulation of lovastatin and MonAzPs.
Collapse
Affiliation(s)
- Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengfa Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youxiang Zhou
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Liu Q, Zheng Y, Liu B, Tang F, Shao Y. Histone deacetylase MrHos3 negatively regulates the production of citrinin and pigments in Monascus ruber. J Basic Microbiol 2023; 63:1128-1138. [PMID: 37236161 DOI: 10.1002/jobm.202300138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Monascus spp. can produce a variety of beneficial metabolites widely used in food and pharmaceutical industries. However, some Monascus species contain the complete gene cluster responsible for citrinin biosynthesis, which raises our concerns about the safety of their fermented products. In this study, the gene Mrhos3, encoding histone deacetylase (HDAC), was deleted to evaluate its effects on the production of mycotoxin (citrinin) and the edible pigments as well as the developmental process of Monascus ruber M7. The results showed that absence of Mrhos3 caused an enhancement of citrinin content by 105.1%, 82.4%, 111.9%, and 95.7% at the 5th, 7th, 9th, and 11th day, respectively. Furthermore, deletion of Mrhos3 increased the relative expression of citrinin biosynthetic pathway genes including pksCT, mrl1, mrl2, mrl4, mrl6, and mrl7. In addition, deletion of Mrhos3 led to an increase in total pigment content and six classic pigment components. Western blot results revealed that deletion of Mrhos3 could significantly elevate the acetylation level of H3K9, H4K12, H3K18, and total protein. This study provides an important insight into the effects of hos3 gene on the secondary metabolites production in filamentous fungi.
Collapse
Affiliation(s)
- Qianrui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunfan Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baixue Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fufang Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Zhang J, Shao Y, Chen F. Overexpression of MrEsa1 accelerated growth, increased ascospores yield, and the polyketide production in Monascus ruber. J Basic Microbiol 2023. [PMID: 36760018 DOI: 10.1002/jobm.202200664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
Esa1 has been proven to be an important histone acetyltransferase involved in the regulation of growth and metabolism. Monascus spp. with nearly 2000 years of edible history in East Asian countries can produce a variety of polyketides. It is unknown whether Esa1 plays a regulatory role in Monascus spp. In this study, we isolated the homology of histone acetyltransferase Esa1 (named MrEsa1) and constructed a mresa1-overexpressed strain. Western blot experiments showed that MrEsa1 hyperacetylated at K4 and K9 of the H3 subunit in Monascus ruber. Overexpression of mresa1 led to the larger colony diameter and increased dry cell mass; meanwhile, the conidia germination rate was significantly accelerated in the mresa1-overexpressed strain before 4 h, and the number of ascospores in the mresa1-overexpressed strain was significantly higher than that in WT. In addition, the Monascus azaphilone pigments (MonAzPs) and citrinin production of the mresa1-overexpressed strain were 1.7 and 2.4 times more than those of WT, respectively. Reverse transcription-quantitative polymerase chain reaction experiment suggested that mrpigB, mrpigH, mrpigJ, and mrpigK, involved in MonAzPs synthesis, and pksCT, mrl3, and mrl7, involved in citrinin synthesis, were upregulated in mresa1-overexpressed strain. This study provides important insights into the effect of MrEsa1 on the developmental process and the production of secondary metabolites in Monascus spp.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Food and Pharmaceutical Science College, Huaian, People's Republic of China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|