1
|
Qu J, Fang Y, Tao R, Zhao J, Xu T, Chen R, Zhang J, Meng K, Yang Q, Zhang K, Yan X, Sun D, Chen X. Advancing thyroid disease research: The role and potential of zebrafish model. Life Sci 2024; 357:123099. [PMID: 39374770 DOI: 10.1016/j.lfs.2024.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Thyroid disorders significantly affect human metabolism, cardiovascular function, skeletal health, and reproductive systems, presenting a complex challenge due to their multifactorial nature. Understanding the underlying mechanisms and developing novel therapeutic approaches require appropriate models. Zebrafish, with their genetic tractability, short life cycle, and physiological relevance, have emerged as a valuable model for investigating thyroid diseases. This review provides a comprehensive analysis of the zebrafish thyroid gland's structure and function, explores its application in modeling thyroid pathologies such as hypothyroidism, hyperthyroidism, and thyroid cancer, and discusses current limitations and possible improvements. Furthermore, it outlines future directions for zebrafish-based research, focusing on enhancing the model's relevance to human thyroid disease and its potential to expedite the development of clinical therapies.
Collapse
Affiliation(s)
- Junying Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Rongbing Chen
- Department of Biomedical, City university of Hong Kong, Kowloon 999077, Hong Kong
| | - Junbei Zhang
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Kaikai Meng
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| |
Collapse
|
2
|
Lan L, Feng Z, Liu X, Zhang B. The roles of essential trace elements in T cell biology. J Cell Mol Med 2024; 28:e18390. [PMID: 38801402 PMCID: PMC11129730 DOI: 10.1111/jcmm.18390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
T cells are crucial for adaptive immunity to regulate proper immune response and immune homeostasis. T cell development occurs in the thymus and mainly differentiates into CD4+ and CD8+ T cell subsets. Upon stimulation, naive T cells differentiate into distinct CD4+ helper and CD8+ cytotoxic T cells, which mediate immunity homeostasis and defend against pathogens or tumours. Trace elements are minimal yet essential components of human body that cannot be overlooked, and they participate in enzyme activation, DNA synthesis, antioxidant defence, hormone production, etc. Moreover, trace elements are particularly involved in immune regulations. Here, we have summarized the roles of eight essential trace elements (iron, zinc, selenium, copper, iodine, chromium, molybdenum, cobalt) in T cell development, activation and differentiation, and immune response, which provides significant insights into developing novel approaches to modulate immunoregulation and immunotherapy.
Collapse
Affiliation(s)
- Linbo Lan
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anChina
- Clinical Teaching and Research Center, School of NursingWeinan vocational and technical collegeWeinanChina
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Xi'an Jiaotong University Health Science Center, Institute of Infection and Immunity, Translational Medicine InstituteXi'anShaanxiChina
| | - Xiaobin Liu
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anChina
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Xi'an Jiaotong University Health Science Center, Institute of Infection and Immunity, Translational Medicine InstituteXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
3
|
Li Y, Liu H, He C, Lin Y, Ma L, Xue H. IL-9-Producing Th9 Cells Participate in the Occurrence and Development of Iodine-Induced Autoimmune Thyroiditis. Biol Trace Elem Res 2023; 201:5298-5308. [PMID: 36773201 DOI: 10.1007/s12011-023-03598-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Iodine excess may cause and aggravate autoimmune thyroiditis (AIT), which is regarded as a typical kind of autoimmune disease mainly mediated by CD4+ T cells. Thus far, it is unclear whether T helper (Th) 9 cells, a novel subpopulation of CD4+ T cells, play a potential role in AIT. Therefore, in the present study, changes in Th9 cells were detected in murine models of AIT induced by excess iodine intake to explore the possible immune mechanism. Female C57BL/6 mice were divided into 7 groups (n = 8) and were supplied with water containing 0.005% sodium iodide for 0, 2, 4, 6, 8, 10, and 12 weeks. With the extension of the high-iodine intake duration, the incidence of thyroiditis and the spleen index were significantly increased, and serum thyroglobulin antibody (TgAb) titers and interleukin 9 (IL-9, major cytokine from Th9 cells) concentrations were also increased. Additionally, it was revealed that the percentages of Th9 cells in spleen mononuclear cells (SMCs) and thyroid tissues were both markedly elevated and accompanied by increased mRNA and protein expression of IL-9 and key transcription factors of Th9 cells (PU.1 and IRF-4). Significantly, dynamic changes in Th9 cells were found, with a peak at 8 weeks after high iodine intake, the time point when thyroiditis was the most serious. Importantly, Th9 cells were detected in the areas of infiltrating lymphocytes in thyroid sections. In conclusion, the continuously increasing proportions of Th9 cells may play an important role in the occurrence and development of AIT induced by high iodine intake.
Collapse
Affiliation(s)
- Yiwen Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Hao Liu
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Chengyan He
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Yawen Lin
- Department of Dermatology, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Lei Ma
- Department of Dermatology, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Haibo Xue
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China.
| |
Collapse
|
4
|
Harui A, McLachlan SM, Rapoport B, Zarembinski TI, Roth MD. Peri-tumor administration of controlled release anti-CTLA-4 synergizes with systemic anti-PD-1 to induce systemic antitumor immunity while sparing autoimmune toxicity. Cancer Immunol Immunother 2020; 69:1737-1749. [PMID: 32333082 PMCID: PMC11027619 DOI: 10.1007/s00262-020-02579-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Combination immunotherapy targeting the PD-1 and CTLA-4 checkpoint inhibitor pathways provides substantial clinical benefit in patients with advanced-stage cancer but at the risk of dose-limiting inflammatory and autoimmune toxicity. The delicate balance that exists between unleashing tumor killing and promoting systemic autoimmune toxicity represents a major clinical challenge. We hypothesized that targeting anti-CTLA-4 so that it perfuses tumor-draining lymph nodes would provide a significant therapeutic advantage and developed an injectable hydrogel with controlled antibody release characteristics for this purpose. Injection of hydrogel-encapsulated anti-CTLA-4 at a peri-tumor location (MC-38 tumor model) produced dose-dependent antitumor responses and survival that exceeded those by anti-CTLA-4 alone (p < 0.05). Responses to 100 µg of targeted anti-CTLA-4 also equaled or exceeded those observed with a series of systemic injections delivering 600 µg (p < 0.05). While preserving antitumor activity, this approach resulted in serum anti-CTLA-4 exposure (area under the curve) that averaged only 1/16th of that measured with systemic therapy. Consistent with the marked differences in systemic exposure, systemic anti-CTLA-4 stimulated the onset of autoimmune thyroiditis in iodide-exposed NOD.H-2h4 mice, as measured by anti-thyroglobulin antibody titer, while hydrogel-encapsulated anti-CTLA-4 had a minimal effect (p ≤ 0.01). At the same time, this targeted low-dose anti-CTLA-4 approach synergized well with systemic anti-PD-1 to control tumor growth and resulted in a high frequency of complete responders that were immune to tumor re-challenge at a distant site. We conclude that targeted and controlled delivery of low-dose anti-CTLA-4 has the potential to improve the benefit-risk ratio associated with combination checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Airi Harui
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Sandra M McLachlan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Basil Rapoport
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | - Michael D Roth
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
He X, Xiong C, Liu A, Zhao W, Xia X, Peng S, Li C, Zhou M, Li Y, Shi X, Shan Z, Teng W. Phagocytosis Deficiency of Macrophages in NOD.H-2 h4 Mice Accelerates the Severity of Iodine-Induced Autoimmune Thyroiditis. Biol Trace Elem Res 2018; 184:196-205. [PMID: 29052174 DOI: 10.1007/s12011-017-1183-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/02/2017] [Indexed: 01/15/2023]
Abstract
Apoptosis occurs in many autoimmune diseases. Excess iodine induces thyrocyte apoptosis and increases the incidence and prevalence of autoimmune thyroiditis (AIT). However, the sequence of events between the appearance of thyrocyte apoptosis and the occurrence of thyroiditis remains uncharacterized. Furthermore, few studies have investigated the role of macrophage phagocytosis in the development of AIT. Therefore, we evaluated the relationship between apoptosis and inflammatory infiltration in NOD.H-2h4 mouse thyroids by comparing the sequence of events in tissue samples. We also investigated the role of macrophages by comparing macrophage phagocytosis function in BALB/c, C57BL/6, and NOD.H-2h4 mice treated with different levels of iodine. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays and thyroid inflammatory scores revealed that apoptosis (2 weeks) occurred before inflammatory infiltration (4 weeks). Phosphatidylserine (PS) expression on the extracellular surface of the cell membrane and double-stranded DNA fragments associated with apoptosis appeared at 2 and 8 weeks, respectively. Additionally, although apoptosis was enhanced in the thyroids of mice supplemented with excess iodine (0.05 ± 0.12 vs 1.63 ± 0.82% for BALB/c, 0.09 ± 0.14 vs 1.51 ± 0.34% for C57BL/6, and 0.07 ± 1.11 vs 4.72 ± 0.62% for NOD.H-2h4 mice), only NOD.H-2h4 mouse thyroids presented with inflammation. Furthermore, macrophages from NOD.H-2h4 mice (44.46 ± 1.79%) exhibited decreased phagocytotic activity relative to that in BALB/c (54.21 ± 4.58%) and C57BL/6 (58.96 ± 4.04%) mice. There were no differences in phagocytosis function between NOD.H-2h4 mice supplemented with excess iodine or left untreated (24.50 ± 2.66 vs 21.71 ± 1.79%, p = 0.06). In conclusion, deficiencies in the apoptosis clearance of macrophages in NOD.H-2h4 mice may constitute an early pathogenic mechanism in AIT that is not influenced by iodine intake.
Collapse
Affiliation(s)
- Xue He
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Chuhui Xiong
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Aihua Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Wei Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xinghai Xia
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Chenyan Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Mi Zhou
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xiaoguang Shi
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
6
|
Sharma R, Di Dalmazi G, Caturegli P. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase. Thyroid 2016; 26:1117-24. [PMID: 27296629 PMCID: PMC4976247 DOI: 10.1089/thy.2016.0092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. METHODS NOD-H2(h4) mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. RESULTS CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. CONCLUSIONS This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2(h4) mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade.
Collapse
Affiliation(s)
- Rajni Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Giulia Di Dalmazi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, G. d'Annunzio University of Chieti, Cheti, Italy
| | - Patrizio Caturegli
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
7
|
Liu X, Mao J, Han C, Peng S, Li C, Jin T, Fan C, Shan Z, Teng W. CXCR4 antagonist AMD3100 ameliorates thyroid damage in autoimmune thyroiditis in NOD.H‑2h⁴ mice. Mol Med Rep 2016; 13:3604-12. [PMID: 26935473 DOI: 10.3892/mmr.2016.4965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/10/2015] [Indexed: 11/06/2022] Open
Abstract
CXC chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor 4 (CXCR4), are upregulated in mice with autoimmune thyroid diseases. However, whether this interaction is involved in the pathophysiology of autoimmune thyroiditis (AIT) remains to be elucidated. In the present study, the effects of the CXCR4 antagonist, AMD3100, in an iodine‑induced autoimmune thyroiditis model were investigated. NOD.H‑2h4 mice were randomly separated into a control, AIT and AIT+AMD3100 groups. The mice were fed with 0.05% sodium iodide water for 8 weeks to induce AIT. The AMD3100‑treated mice were administered with the CXCR4 antagonist at a dose of 10 mg/kg intraperitoneally three times a week during the experimental period. The percentages of CD19+interleukin (IL)10+ B cells and CD4+IL10+ T cells, and the mRNA expression levels of IL10 in the splenocytes were reduced in the AIT group, compared with the control group, however, they increased following AMD3100 treatment, compared with the untreated AIT group. The percentages of CD4+ T cells, CD8+ T cells, CD19+ B cells and CD8+ interferon (IFN)γ+ T cells, and the mRNA expression levels of IFNγ increased in the AIT group, compared with the control group, however, these were reduced in the AMD3100 group, compared with the AIT group. The AMD3100‑treated mice also had lower serum thyroglobulin antibody titers and reduced lymphocytic infiltration in the thyroid, compared with the untreated AIT mice. These results suggested that inhibition of this chemokine axis may offer potential as a therapeutic target for the treatment of AIT.
Collapse
Affiliation(s)
- Xin Liu
- Department of Endocrinology and Metabolism, The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jinyuan Mao
- Department of Endocrinology and Metabolism, The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Cheng Han
- Department of Endocrinology and Metabolism, The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chenyan Li
- Department of Endocrinology and Metabolism, The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ting Jin
- Department of Endocrinology and Metabolism, The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Kolypetri P, King J, Larijani M, Carayanniotis G. Genes and environment as predisposing factors in autoimmunity: acceleration of spontaneous thyroiditis by dietary iodide in NOD.H2(h4) mice. Int Rev Immunol 2015; 34:542-56. [PMID: 26287317 DOI: 10.3109/08830185.2015.1065828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the field of autoimmune thyroiditis, NOD.H2(h4) mice have attracted significant and increasing attention since they not only develop spontaneous disease but they present thyroiditis with accelerated incidence and severity if they ingest iodide through their drinking water. This animal model highlights the interplay between genetic and dietary factors in the triggering of autoimmune disease and offers new opportunities to study immunoregulatory parameters influenced by both genes and environment. Here, we review experimental findings with this mouse model of thyroiditis.
Collapse
Affiliation(s)
- Panayota Kolypetri
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Justin King
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Mani Larijani
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - George Carayanniotis
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada.,b Division of Endocrinology, Faculty of Medicine , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
9
|
YU ZHENQIAN, LIU TONG, LIU SHANSHAN, ZOU HONGJIN, SUN XUREN, SHI XIAOGUANG, LI YUSHU, SHAN ZHONGYAN, TENG WEIPING. Interleukin-10 influences susceptibility to experimental autoimmune thyroiditis independently of the H-2 gene. Int J Mol Med 2014; 35:413-24. [DOI: 10.3892/ijmm.2014.2025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/27/2014] [Indexed: 11/06/2022] Open
|
10
|
Iodine excess as an environmental risk factor for autoimmune thyroid disease. Int J Mol Sci 2014; 15:12895-912. [PMID: 25050783 PMCID: PMC4139880 DOI: 10.3390/ijms150712895] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 01/29/2023] Open
Abstract
The global effort to prevent iodine deficiency disorders through iodine supplementation, such as universal salt iodization, has achieved impressive progress during the last few decades. However, iodine excess, due to extensive environmental iodine exposure in addition to poor monitoring, is currently a more frequent occurrence than iodine deficiency. Iodine excess is a precipitating environmental factor in the development of autoimmune thyroid disease. Excessive amounts of iodide have been linked to the development of autoimmune thyroiditis in humans and animals, while intrathyroidal depletion of iodine prevents disease in animal strains susceptible to severe thyroiditis. Although the mechanisms by which iodide induces thyroiditis are still unclear, several mechanisms have been proposed: (1) excess iodine induces the production of cytokines and chemokines that can recruit immunocompetent cells to the thyroid; (2) processing excess iodine in thyroid epithelial cells may result in elevated levels of oxidative stress, leading to harmful lipid oxidation and thyroid tissue injuries; and (3) iodine incorporation in the protein chain of thyroglobulin may augment the antigenicity of this molecule. This review will summarize the current knowledge regarding excess iodide as an environmental toxicant and relate it to the development of autoimmune thyroid disease.
Collapse
|
11
|
Wang SH, Fan Y, Baker JR. Overexpression of BID in thyroids of transgenic mice increases sensitivity to iodine-induced autoimmune thyroiditis. J Transl Med 2014; 12:180. [PMID: 24957380 PMCID: PMC4083877 DOI: 10.1186/1479-5876-12-180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. METHODS A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. RESULTS Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. CONCLUSIONS Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice.
Collapse
Affiliation(s)
- Su He Wang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
12
|
Yang X, Gao T, Shi R, Zhou X, Qu J, Xu J, Shan Z, Teng W. Effect of iodine excess on Th1, Th2, Th17, and Treg cell subpopulations in the thyroid of NOD.H-2h4 mice. Biol Trace Elem Res 2014; 159:288-96. [PMID: 24740393 DOI: 10.1007/s12011-014-9958-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/25/2014] [Indexed: 12/18/2022]
Abstract
Iodine is an indispensable micronutrient for thyroid hormone synthesis and metabolism. Iodine excess may trigger and exacerbate autoimmune thyroiditis (AIT). The pathogenetic mechanism of iodine excess-induced AIT is partly regarded as T helper type 1 (Th1) cell and/or T helper type 17 (Th17) cell dominant autoimmune disease. It is still unknown whether other cluster of differentiation 4+ T (CD4+T) cell subpopulations are involved. Therefore, we studied the profile of all the CD4+T cell subpopulations of the thyroid in iodine excess-induced nonobese diabetic-H2h4 (NOD.H-2h4) mice to explore the potential immunologic mechanism of iodine excess-induced AIT. A total of 40 healthy 8-week-old NOD.H-2h4 mice were randomly allocated into the normal group (NG, n=20) and the test group (TG, n=20), which were fed with double-distilled water and 0.05% sodium iodine (NaI) for 8 weeks, respectively. Compared to the NG, in the TG, the incidence of AIT was significantly higher, the expressions of interleukin-17 (IL-17), interleukin-23 (IL-23), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β) remarkably increased by immunohistochemistry, which were further verified by reverse transcription polymerase chain reaction (RT-PCR), while the protein and mRNA expressions of interleukin-4 (IL-4) and interferon-γ (INF-γ) decreased markedly. In the AIT mice, the expressions of retinoic acid-related orphan receptor gamma t (RORγt), retinoic acid-related orphan receptor alpha (RORα), and signal transducer and activator of transcription 3 (STAT3) were much higher, the expression of forkhead/winged helix transcription factor p3 (Foxp3) significantly lower by western blot, and the proportion of Th17 cells by flow cytometry method (FCM) much larger compared to those of the NG group. In conclusion, Th17 cells may promote an inflammatory reaction in the development of iodine-excess-induced AIT, which is negatively regulated by Th1, T helper type 2 (Th2), and regulatory T (Treg) cells.
Collapse
Affiliation(s)
- Xiao Yang
- The Second Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ehlers M, Thiel A, Papewalis C, Domröse A, Stenzel W, Bernecker C, Haase M, Allelein S, Schinner S, Willenberg HS, Feldkamp J, Schott M. Enhanced iodine supplementation alters the immune process in a transgenic mouse model for autoimmune thyroiditis. Thyroid 2014; 24:888-96. [PMID: 24460670 DOI: 10.1089/thy.2013.0495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The impact of excessive iodine intake on the development of autoimmune thyroiditis (AIT) is still under debate. Transgenic, antibody-devoid TAZ10 mice spontaneously develop AIT due to autoreactive thyroperoxidase-specific T cells. In this model, development of AIT is determined by a T cell infiltration of the thyroid gland leading to an elevation of serum thyrotropin (TSH) levels and significant weight gain. In the present study we investigated the impact of moderate and high iodine supplementation on the course of disease in these mice, which are immunologically prone to AIT. METHODS In addition to normal nutrition, mice were supplemented for 20 weeks with 2.5 μg versus 5 μg iodine per milliliter drinking water, which corresponds to a human daily iodine supplementation of 150 μg, 315 μg, and 615 μg iodine. AIT-defining parameters (weight gain, elevation of serum TSH levels, cellular infiltration of the thyroid) and immunologic effects were analyzed. RESULTS No significant differences were displayed when comparing weight and serum TSH levels in the iodine-supplemented versus control groups. Increased thyroid infiltrates with CD8⁺ T cells were detected by fluorescein-activated cell sorter (FACS) and immunofluorescence staining in mice supplemented with elevated iodine amounts (315 μg and 615 μg iodine per day, respectively). Immunologic monitoring revealed selective changes in immune cell frequencies (CD8⁺ and regulatory T cells, natural killer [NK] cells) and cytokine production (interferon-γ, interleukin-1α, and interleukin-17), however, without affecting the overall immune balance. CONCLUSION Our results demonstrate that elevated iodine supplementation has no physical impact on the course of disease in transgenic, antibody-devoid TAZ10 mice, which are immunologically prone to AIT.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cytokines/blood
- Cytokines/metabolism
- Dietary Supplements
- Female
- Immunity, Cellular
- Immunologic Factors/administration & dosage
- Immunologic Factors/therapeutic use
- Iodine/administration & dosage
- Iodine/therapeutic use
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Male
- Mice, Transgenic
- Organ Size
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/pathology
- Thyroid Gland/immunology
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Thyroiditis, Autoimmune/diet therapy
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/metabolism
- Thyroiditis, Autoimmune/pathology
- Thyrotropin/blood
- Weight Gain
Collapse
Affiliation(s)
- Margret Ehlers
- 1 Division for Specific Endocrinology, University of Duesseldorf , Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shi L, Bi M, Yang R, Zhou J, Zhao S, Fan C, Shan Z, Li Y, Teng W. Defective expression of regulatory B cells in iodine-induced autoimmune thyroiditis in non-obese diabetic H-2(h4) mice. J Endocrinol Invest 2014; 37:43-50. [PMID: 24464449 DOI: 10.1007/s40618-013-0013-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The ability of B cells to negatively regulate cellular immune responses and inflammation has been described. The regulatory B (Breg) cells with the unique CD1d(hi)CD5(+)CD19(+) phenotype and the capacity to produce IL-10 are potent negative regulators of inflammation and autoimmunity in several in vivo mouse models of autoimmune disease. AIM To investigate whether Breg cell deficiency participates in autoimmune thyroiditis (AIT) in an animal model. MATERIALS AND METHODS Non-obese diabetic (NOD).H-2(h4) mice at 4 weeks of age were randomly divided into control and iodine-treated groups; the iodine-treated group received sterile water containing 0.005 % NaI for 10 or 20 weeks. The percentage of CD1d(hi)CD5(+)CD19(+) Bregs, CD4(+)CD25(+)FoxP3(+) regulatory T cells (Treg) and CD4(+)IL17(+) T helper 17 cells (Th17) in splenic mononuclear cells was detected by multicolor flow cytometry. The expression of IL-10 mRNA and TGF-β mRNA in splenocytes was measured by real-time RT-PCR. RESULTS NOD.H-2(h4) mice spontaneously develop anti-thyroglobulin autoantibodies and intrathyroidal lymphocyte infiltration when supplied with iodine in drinking water. Mice with AIT had a decreased CD1d(hi)CD5(+)CD19(+) Breg subset and reduced IL-10 mRNA expression in splenocytes compared with controls (p < 0.05) and maintained relatively low levels during the development of thyroiditis. The proportion of Breg cells was negatively correlated with the proportion of Th17 cells, but positively correlated with CD4(+)CD25(+)FoxP3(+) Treg cells in splenocytes (All p < 0.05). CONCLUSIONS The defective expression of Breg cells combined with impaired Treg cells and enhanced Th17 cells might play an important role in the development of iodine-induced AIT in NOD.H-2(h4) mice.
Collapse
Affiliation(s)
- L Shi
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|