1
|
Zhao X, Li J, Yu J, Shi Y, Tang M. The Role of Sex Steroid Hormones in the Association Between Manganese Exposure and Bone Mineral Density: National Health and Nutrition Examination Survey 2013-2018. TOXICS 2025; 13:296. [PMID: 40278612 PMCID: PMC12031611 DOI: 10.3390/toxics13040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
This study investigates the association between blood Mn and bone mineral density (BMD), focusing on the mediating role of sex steroids, using data from 8617 participants in the National Health and Nutrition Examination Survey (NHANES) 2013-2018. Weighted multiple linear regression models were used to examine the association of blood Mn and total BMD, and mediation analyses were used to explored the roles of total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) in the Mn-BMD relationship, stratified by sex and menopausal status. Blood Mn was negatively associated with BMD in both sexes, with a pronounced effect in postmenopausal women. SHBG mediated 37.16% of the Mn-BMD association in men, whereas no mediating effects were found in women. E2 exhibited a significant indirect effect, suggesting that reduced E2 levels may amplify Mn's effect on BMD. These findings indicate that Mn exposure is associated with decreased BMD, potentially through alterations in sex steroids, highlighting the importance of considering hormone status when evaluating the impact of Mn exposure on BMD.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
- Orthopaedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jiayi Li
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jincong Yu
- Department of Orthopeadics, YuYao People’s Hospital, Ningbo 315400, China
| | - Yinhui Shi
- Department of Orthopeadics, CHC International Hospital, Ningbo 315300, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Hua X, Hu R, Chen C, Sun J, Feng X, Zhang X. Joint effects of tobacco smoke exposure and heavy metals on serum sex hormones in adult males. Hormones (Athens) 2025; 24:189-198. [PMID: 39269601 DOI: 10.1007/s42000-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE This study aimed to explore the associations of tobacco smoke exposure (TSE) and heavy metal exposure on sex hormones and the joint effects between them in adult males. METHODS The study used data of 2244 adult males from the National Health and Nutrition Examination Survey (NHANES, 2013-2016). Weighted linear regression models were used to calculate their beta (β) coefficients and corresponding confidence interval (95% CI), which assessed the joint effects of TSE and heavy metals on sex hormones. RESULTS Sex hormone-binding globulin (SHBG) showed a positive association with increased per standard deviation (SD) for cotinine (β=0.024 [0.004, 0.043]; P<0.001), lead (β=0.021 [0.002, 0.039]; P=0.028), and cadmium (β=0.034 [0.015, 0.053]; P<0.001). Manganese was positively associated with estradiol (E2) (β=0.025 [0.009, 0.042]; P=0.002). The subjects with higher cadmium levels were more likely to have higher total testosterone (TT) (β=0.042 [0.023, 0.062]; P<0.001). TSE and lead exerted synergistic effects on TT (p for interaction = 0.015) and E2 (p for interaction = 0.009), as also did TSE and cadmium on SHBG (p for interaction = 0.037). Compared with the reference group, TSE participants who were exposed to high concentrations of lead, cadmium, mercury, and manganese had significantly elevated TT levels, but these high levels presented no significant association with E2 levels. A significantly higher level of SHBG among TSE participants was detected in high concentrations for lead, cadmium, and mercury. CONCLUSION TSE exacerbated sex hormone imbalances when combined with high levels of metal exposure. Smoking cessation is crucial, especially in the case of high levels of occupational exposure to heavy metals.
Collapse
Affiliation(s)
- Xiaoguo Hua
- Office of Medical Insurance Management, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Rui Hu
- Department of Clinical Teaching Management, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, 230031, China
| | - Cai Chen
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Jiangjie Sun
- Department of Health Data Science, School of Health Care Management, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiqiu Feng
- Office of Medical Insurance Management, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Xiujun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
3
|
Zečević N, Kocić J, Perović M, Stojsavljević A. Detrimental effects of cadmium on male infertility: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117623. [PMID: 39733596 DOI: 10.1016/j.ecoenv.2024.117623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Infertility has become a serious health and socio-economic-psychological problem globally. The harmful role of trace metals in male infertility is recognized but still not sufficiently explained. Herein, a comprehensive review was conducted to elucidate the detrimental role of cadmium (Cd) on male infertility, particularly on infertility with unknown (idiopathic) causes. Peer-reviewed studies from 2000 to 2024 dealing with seminal plasma and blood Cd levels of fertile and infertile men were retrieved were interrogated with regard to strict inclusion/exclusion criteria, and then were thoroughly reviewed and analyzed. Another aim of this review was to indicate the potential effects of Cd on changes in seminogram findings. A median range of seminal plasma Cd levels from 0.2 to 1.5 µg/L can be considered safe for men's fertility. This review strongly implies that Cd levels were notably higher in seminal plasma of infertile cases than controls. The review's data also indicate that exposure to tobacco smoke is a major source of elevated seminal and blood Cd levels in infertile men. Newer research points to the importance of Cd in lower levels from the environment on changes in seminogram findings, primarily count, motility of spermatozoa, and their morphology. Overall, this review implies that seminal plasma Cd levels could be a good indicator of semen quality. However, new, in-depth studies are needed to confirm or reject the causal relationship of Cd with male infertility.
Collapse
Affiliation(s)
- Nebojša Zečević
- Clinic for Gynecology and Obstetrics "Narodni front", Kraljice Natalije 62, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Doktora Subotića 8, Belgrade, Serbia; Special Hospital Belgrade, Human Reproduction Center, Antifašističke borbe 2a, Belgrade, Serbia
| | - Jovana Kocić
- Clinic for Gynecology and Obstetrics "Narodni front", Kraljice Natalije 62, Belgrade, Serbia
| | - Milan Perović
- Clinic for Gynecology and Obstetrics "Narodni front", Kraljice Natalije 62, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Doktora Subotića 8, Belgrade, Serbia
| | - Aleksandar Stojsavljević
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
4
|
Fan Y, Jiang X, Xiao Y, Li H, Chen J, Bai W. Natural antioxidants mitigate heavy metal induced reproductive toxicity: prospective mechanisms and biomarkers. Crit Rev Food Sci Nutr 2024; 64:11530-11542. [PMID: 37526321 DOI: 10.1080/10408398.2023.2240399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention, attributed to their health hazards to humans and animals. Due to the non-degradable property of heavy metals, organisms are inevitably exposed to heavy metals such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). Several studies revealed that heavy metals can cause reproductive damage by the excessive production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation, and endocrine disruption. Natural antioxidants, mainly polyphenols, carotenoids, and vitamins, have been shown to mitigate heavy metal-induced reproductive toxicity potentially. In this review, accumulated evidences on the influences of four non-essential heavy metals As, Cd, Pb, and Hg on both males and females reproductive system were established. The purpose of this review is to explore the potential mechanisms of the effects of heavy metals on reproductive function and point out the potential biomarkers of natural antioxidants interventions toward heavy metal-induced reproductive toxicity. Notably, increasing evidence proven that the regulations of hypothalamic-pituitary-gonadal axis, Nrf2, MAPK, or NF-κB pathways are the important mechanisms for the amelioration of heavy metal induced reproductive toxicity by natural antioxidants. It also provided a promising guidance for prevention and management of heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yueyao Fan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Ding Q, Hao T, Gao Y, Jiang S, Zhu Y, Huang Y, Liang Y. Associations of Co-Exposure to Polycyclic Aromatic Hydrocarbons and Heavy Metals with Sex Steroid Hormones among Children Aged 6-19 Years. Horm Res Paediatr 2024:1-11. [PMID: 39396497 DOI: 10.1159/000541875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are endocrine-disrupting chemicals (EDCs) that may have a combined effect on sex hormone levels in children. This study investigated the correlations between co-exposure to PAHs and HMs and levels of sex steroid hormones in children. METHODS We employed the data from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016, including 1,167 participants aged 6-19 years. Sex hormone indicators include testosterone (TT), estradiol (E2), sex hormone-binding globulin (SHBG), free androgen index (FAI), and the TT/E2 ratio. Weighted multivariate linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to analyze the associations between co-exposure to PAHs and HMs and sex steroid hormone levels. RESULTS Co-exposure to PAHs and HMs was associated with a 16.2% reduction (95% CI [-0.321, -0.004]) in SHBG level among prepubertal males and a 16% reduction (95% CI [-0.30, -0.03]) in E2 level among pubertal males by the WQS regression, and cadmium (Cd) and mercury (Hg) contributed the highest weight, respectively. In the Bayesian kernel machine regression (BKMR) model, co-exposure to PAHs and HMs was positively associated with TT/E2 in pubertal males and negatively correlated with FAI in pubertal females, and 1-hydroxypyrene (1-PYR) and Cd were the most important components, respectively. CONCLUSIONS Co-exposure to PAHs and HMs was associated with sex hormone levels in children. These findings highlight the necessity for preventing the effects of these chemicals on sex hormones.
Collapse
Affiliation(s)
- Qi Ding
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Tingting Hao
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yuan Gao
- School of Public Health, Wannan Medical College, Wuhu, China
| | | | - Yu Zhu
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yue'e Huang
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yali Liang
- School of Public Health, Wannan Medical College, Wuhu, China
| |
Collapse
|
6
|
Zhang XD, Sun J, Zheng XM, Zhang J, Tan LL, Fan LL, Luo YX, Hu YF, Xu SD, Zhou H, Zhang YF, Li H, Yuan Z, Wei T, Zhu HL, Xu DX, Xiong YW, Wang H. Plin4 exacerbates cadmium-decreased testosterone level via inducing ferroptosis in testicular Leydig cells. Redox Biol 2024; 76:103312. [PMID: 39173539 PMCID: PMC11387904 DOI: 10.1016/j.redox.2024.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Strong evidence indicates that environmental stressors are the risk factors for male testosterone deficiency (TD). However, the mechanisms of environmental stress-induced TD remain unclear. Based on our all-cause male reproductive cohort, we found that serum ferrous iron (Fe2⁺) levels were elevated in TD donors. Then, we explored the role and mechanism of ferroptosis in environmental stress-reduced testosterone levels through in vivo and in vitro models. Data demonstrated that ferroptosis and lipid droplet deposition were observed in environmental stress-exposed testicular Leydig cells. Pretreatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, markedly mitigated environmental stress-reduced testosterone levels. Through screening of core genes involved in lipid droplets formation, it was found that environmental stress significantly increased the levels of perilipins 4 (PLIN4) protein and mRNA in testicular Leydig cells. Further experiments showed that Plin4 siRNA reversed environmental stress-induced lipid droplet deposition and ferroptosis in Leydig cells. Additionally, environmental stress increased the levels of METTL3, METTL14, and total RNA m6A in testicular Leydig cells. Mechanistically, S-adenosylhomocysteine, an inhibitor of METTL3 and METTL14 heterodimer activity, restored the abnormal levels of Plin4, Fe2⁺ and testosterone in environmental stress-treated Leydig cells. Collectively, these results suggest that Plin4 exacerbates environmental stress-decreased testosterone level via inducing ferroptosis in testicular Leydig cells.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jian Sun
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shen-Dong Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
7
|
Zheng XM, Zhang XD, Tan LL, Zhang J, Wang TT, Ling Q, Wang H, Ouyang KW, Wang KW, Chang W, Li H, Zhu HL, Xiong YW, Wang H. Sirt1 m6A modification-evoked Leydig cell senescence promotes Cd-induced testosterone decline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116884. [PMID: 39153281 DOI: 10.1016/j.ecoenv.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Diminished testosterone levels have been documented as a key factor in numerous male health disorders. Both human and animal studies have consistently demonstrated that cadmium (Cd), a pervasive environmental heavy metal, results in decreased testosterone levels. However, the exact mechanism through which Cd interferes with testosterone synthesis remains incompletely elucidated. This research sought to examine the impact of cellular senescence on Cd-suppressed testosterone synthesis. We also investigated the related m6A modification mechanism. The results demonstrated that Cd (100 mg/L) led to a decrease in testosterone levels, along with downregulated expression of testosterone synthase in C57BL/6 N male mice. Furthermore, Cd significantly increased β-galactosidase staining intensity, senescence-related proteins, and senescence-related secretory phenotypes in mouse testicular Leydig cells. Subsequent investigations revealed that Cd decreased the mRNA and protein levels of NAD-dependent deacetylase Sirtuin-1 (SIRT1) in Leydig cells. Mechanistically, mice treated with resveratrol (50 mg/kg), a specific SIRT1 activator, mitigated Leydig cell senescence and reversed Cd-reduced testosterone levels in mouse testes. These effects were also restored by SIRT1 overexpression in Leydig cells. Additionally, we found that Cd increased the level of methyltransferase enzyme METTL3 and Sirt1 m6A modification in Leydig cells. Mettl3 siRNA effectively restored Cd-enhanced Sirt1 m6A level and reversed Cd-downregulated Sirt1 mRNA expression in Leydig cells. Overall, our findings suggest that Cd exposure inhibits testosterone synthesis via Sirt1 m6A modification-mediated senescence in mouse testes. These results offer an experimental basis for investigating the causes and potential treatments of hypotestosteronemia induced by environmental factors.
Collapse
Affiliation(s)
- Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
8
|
Liu H, Li Z, Xie L, Jing G, Liang W, He J, Dang Y. The Relationship Between Heavy Metals and Missed Abortion: Using Mediation of Serum Hormones. Biol Trace Elem Res 2024; 202:3401-3412. [PMID: 37982984 DOI: 10.1007/s12011-023-03931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Accumulating evidence suggests that heavy metal exposure may have adverse effects on the fetal development. Furthermore, disruption of serum hormone homeostasis can result in the adverse pregnancy outcomes. Therefore, this study aimed to investigate the potential association between heavy metals and missed abortion, with a focus on whether serum hormones mediate this relationship. The concentrations of heavy metals and hormones in serum were measured in this case-control study. Statistical models including, logistic regression model, principal component analysis (PCA), and weighted quantile sum (WQS) regression model were employed to examine the relationship between heavy metals, serum hormones, and missed abortion. Furthermore, the mediation analysis was performed to assess the role of serum hormones as potential mediators in this relationship. This study revealed significant associations between heavy metal exposure and missed abortion. Notable, the WQS index weight, which was mainly influenced by copper (Cu) and zine (Zn), is associated with missed abortion. Moreover, heavy metals including manganese (Mn), nickel (Ni), Zn, arsenic (As), Cu, cadmium (Cd), and lead (Pb) were found to be associated with serum levels of β-human chorionic gonadotropin (β-hCG), progesterone (P), estradiol (E2), and lactogen (HPL). In addition, the mediation analysis indicated that β-hCG explained a portion of the association (ranging from 18.77 to 43.51%) of between Mn, Ni, Zn, and As exposure and missed abortion. Serum P levels explained 17.93 to 51.70% of the association between Ni, Cu, and As exposure and missed abortion. Serum E2 levels played a significant mediating role, explaining a portion of the association (ranging from 22.14 to 73.60%) between Mn, Ni, Cu, As, Cd, and Pb exposure and missed abortion. Our results suggested that β-hCG, P, and E2 are one of the potential mediators in the complex relationship between heavy metals exposure and missed abortion. These results highlight the importance of considering both heavy metal exposure and serum hormone levels in understanding the etiology of missed abortion.
Collapse
Affiliation(s)
- Haixia Liu
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Li'ao Xie
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Guangzhuang Jing
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Weitao Liang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Jie He
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China.
| |
Collapse
|
9
|
Wang TT, Zhu HL, Ouyang KW, Wang H, Luo YX, Zheng XM, Ling Q, Wang KW, Zhang J, Chang W, Lu Q, Zhang YF, Yuan Z, Li H, Xiong YW, Wei T, Wang H. Environmental cadmium inhibits testicular testosterone synthesis via Parkin-dependent MFN1 degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134142. [PMID: 38555669 DOI: 10.1016/j.jhazmat.2024.134142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qi Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
10
|
Du X, Zhu J, Xu X, Lu Z, Li X, Li Y, Luo L, Zhang W, Liu J. Effects of cadmium exposure during pregnancy on genome-wide DNA methylation and the CREB/CREM pathway in the testes of male offspring rats. CHEMOSPHERE 2024; 349:140906. [PMID: 38092170 DOI: 10.1016/j.chemosphere.2023.140906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
This experimental study explored the multigenerational and transgenerational effects of cadmium (Cd) exposure during pregnancy on the testicular tissue and spermatogenesis of male offspring rats. CdCl2 at different doses (0, 0.5, 1, 2 mg/kg/day) were dispensed to pregnant SD rats, thus producing generation F1. Adult females in F1 (PND 56) were mated with untreated fertile males so as to produce generation F2. Likewise, adult females in F2 were mated to produce generation F3. Damages to testicular tissue were observed in all the three generations, with serum testosterone (T) increased in F2 and F3. Notably, the genome-wide DNA methylation level in the testicular tissue of F1 was altered, as was the expression of F1-F3 methyltransferases. In addition, the expression of Creb/Crem pathway, a pathway critical for the metamorphosis from postmeiotic round spermatocytes to spermatozoa, was also remarkably altered in the three generations. In concludion, prenatal Cd exposure might bring multigenerational and transgenerational toxic effects to testes via genome-wide DNA methylation and the regulation of CREB/CREM pathway.
Collapse
Affiliation(s)
- Xiushuai Du
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhilan Lu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xiaoqin Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
11
|
Gao X, Li G, Pan X, Xia J, Yan D, Xu Y, Ruan X, He H, Wei Y, Zhai J. Environmental and occupational exposure to cadmium associated with male reproductive health risk: a systematic review and meta-analysis based on epidemiological evidence. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7491-7517. [PMID: 37584848 DOI: 10.1007/s10653-023-01719-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
There is an abundance of epidemiological evidence and animal experiments concerning the correlation between cadmium exposure and adverse male reproductive health outcomes. However, the evidence remains inconclusive. We conducted a literature search from PubMed, Embase, and Web of Science over the past 3 decades. Pooled r and 95% confidence intervals (CIs) were derived from Cd levels of the type of biological materials and different outcome indicators to address the large heterogeneity of existing literature. Cd was negatively correlated with semen parameters (r = - 0.122, 95% CI - 0.151 to - 0.092) and positively correlated with sera sex hormones (r = 0.104, 95% CI 0.060 to 0.147). Among them, Cd in three different biological materials (blood, semen, and urine) was negatively correlated with semen parameters, while among sex hormones, only blood and urine were statistically positively correlated. In subgroup analysis, blood Cd was negatively correlated with semen density, sperm motility, sperm morphology, and sperm count. Semen Cd was negatively correlated with semen concentration. As for serum sex hormones, blood Cd had no statistical significance with three hormones, while semen Cd was negatively correlated with testosterone. In summary, cadmium exposure might be associated with the risk of a decline in sperm quality and abnormal levels of sex hormones.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xingchen Pan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Jiajia Xia
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Yang Xu
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xiang Ruan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
12
|
Rivera-Núñez Z, Hansel M, Capurro C, Kozlosky D, Wang C, Doherty CL, Buckley B, Ohman-Strickland P, Miller RK, O’Connor TG, Aleksunes LM, Barrett ES. Prenatal Cadmium Exposure and Maternal Sex Steroid Hormone Concentrations across Pregnancy. TOXICS 2023; 11:589. [PMID: 37505555 PMCID: PMC10384739 DOI: 10.3390/toxics11070589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Cadmium exposure has been associated with adverse perinatal outcomes. One possible mechanism is endocrine disruption. Studies of non-pregnant adults suggest that cadmium impacts androgen production; here, we examined these associations during pregnancy. Participants in the Understanding Pregnancy Signals and Infant Development (UPSIDE) cohort provided biospecimens and questionnaire data in each trimester (n = 272). We quantified urinary cadmium, serum total testosterone (TT), estrone, estradiol, and estriol and serum free testosterone (fT). In adjusted longitudinal models, we examined sex steroid concentrations across pregnancy in relation to specific gravity-adjusted, ln-transformed cadmium concentrations. Additionally, we examined trimester-specific associations and stratified models by fetal sex. Results are presented as percent change (%∆) in hormone concentrations. In longitudinal models, higher cadmium concentrations were associated with lower fT across pregnancy (%∆ = -5.19, 95%CI: -8.33, -1.93), with no differences in other hormones observed. In trimester-specific models, higher cadmium concentrations were associated with lower TT in trimester 2 (%∆ = -15.26, 95%CI: -25.15, -4.06) and lower fT in trimester 3 (%∆ = -14.35, 95%CI: -19.75, -8.59). Associations with TT were stronger in pregnancies carrying female fetuses. Maternal cadmium exposure may be associated with reduced testosterone in pregnancy. Additional work is necessary to understand how alterations in gestational testosterone activity may impact pregnancy and child health.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
| | - Megan Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
| | - Camila Capurro
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
| | - Danielle Kozlosky
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Cathleen L. Doherty
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
| | - Richard K. Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14620, USA; (R.K.M.); (T.G.O.)
- Department of Environmental Medicine, Pediatrics and Pathology, University of Rochester, New York, NY 14642, USA
| | - Thomas G. O’Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14620, USA; (R.K.M.); (T.G.O.)
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, New York, NY 14620, USA
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14620, USA; (R.K.M.); (T.G.O.)
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Zhai Y, He J, Tang M, Liu Y, Yao Y, Xue P, He M, Li Q, Xu Y, Qu W, Zhang Y. Cadmium impairs the development of natural killer cells and bidirectionally modifies their capacity for cytotoxicity. CHEMOSPHERE 2023; 311:137068. [PMID: 36330983 DOI: 10.1016/j.chemosphere.2022.137068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal in the environment. The aim of this study was to investigate the impact of Cd on natural killer (NK) cells. C57BL/6 mice were treated with 10 ppm Cd via drinking water for 3 months, and the development of NK cells in the bone marrow (BM) and the cytotoxicity of mature NK (mNK) cells in the peripheral immune organs were evaluated thereafter; the impact of Cd on the cytotoxicity of mNK cells from human peripheral blood mononuclear cells (PBMC) was also investigated. Whereas Cd treatment impaired the differentiation of NK progenitors in the BM, Cd treatment activated the JAK3/STAT5 signaling to drive the proliferation of mNK cells and thereby lead to a compensation increase of mNK cells in the peripheral immune organs of mice. Additionally, Cd treatment bidirectionally regulated the cytotoxicity of mouse mNK cells to differential tumor cells, dependent on the levels of Fas expression in the tumor cells; mechanically, Cd treatment activated the JAK3/STAT5 signaling to promote the expression of FasL in mNK cells to increase their cytotoxicity, while Cd treatment reduced the expression of granzyme B in mNK cells to impair their cytotoxicity in the peripheral immune organs of mice. Likewise, in vitro assays indicated that Cd treatment also activated the JAK3/STAT5 signaling to increase the expression of FasL, whereas Cd treatment reduced the expression of granzyme B in human mNK cells. Thus Cd treatment impaired the development of NK cells in the BM and bidirectionally regulated the cytotoxicity of mNK cells in the peripheral immune organs, which may extend our current understanding for the immunotoxicity of Cd.
Collapse
Affiliation(s)
- Yufan Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yue Zhai
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Jinyi He
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Mengke Tang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yalin Liu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Ye Yao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qian Li
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yanyi Xu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Weidong Qu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Hu X, Lin R, Zhang C, Pian Y, Luo H, Zhou L, Shao J, Ren X. Nano-selenium Alleviates Cadmium-Induced Mouse Leydig Cell Injury, via the Inhibition of Reactive Oxygen Species and the Restoration of Autophagic Flux. Reprod Sci 2022; 30:1808-1822. [PMID: 36509961 DOI: 10.1007/s43032-022-01146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) is a well-known environmental pollutant that can contribute to male reproductive toxicity through oxidative stress. Nano-selenium (Nano-se) is an active single body of selenium with strong antioxidant properties and low toxicity. Some studies have addressed the potential ameliorative effect of Nano-se against Cd-induced testicular toxicity; however, the underlying mechanisms remain to be investigated. This study aimed to explore the protective effect of Nano-se on Cd-induced mouse testicular TM3 cell toxicity by regulating autophagy process. We showed that cadmium exposure to TM3 cells inhibited cell viability and elevated the level of reactive oxygen species (ROS) generation. Morphology observation by transmission electron microscope and the presence of mRFP-GFP-LC3 fluorescence puncta demonstrated that cadmium increased autophagosome formation and accumulation in TM3 cells, resulting in blocking the autophagic flux of TM3 cells. Meanwhile, cadmium remarkably increased the ratio of LC3-II to LC3-I protein expression (2.07 ± 0.31) and the Beclin-1 protein expression (1.97 ± 0.40) in TM3 cells (P < 0.01). Pretreatment with Nano-se significantly reduced Cd-induced TM3 cell toxicity (P < 0.01). Furthermore, Nano-se treatment reversed Cd-induced ROS production and autophagosome accumulation, and autophagy as evidenced by the ratio of LC3-II to LC3-I and Beclin-1 expression. In addition, ROS scavenger, N-acetyl-L-cysteine (NAC) or autophagy inhibitor, 3-methyladenine (3-MA) reversed cadmium-induced ROS generation, autophagosome accumulation, and autophagy-related protein expression levels, which confirmed that cadmium induced TM3 cell injury via ROS signal pathway and blockage of autophagic flux. Collectively, our results reveal that Nano-se attenuates Cd-induced TM3 cell toxicity through the inhibition of ROS production and the amelioration of autophagy disruption.
Collapse
Affiliation(s)
- Xindi Hu
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Rui Lin
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yajing Pian
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jihong Shao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China. .,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
15
|
Ali W, Ma Y, Zhu J, Zou H, Liu Z. Mechanisms of Cadmium-Induced Testicular Injury: A Risk to Male Fertility. Cells 2022; 11:cells11223601. [PMID: 36429028 PMCID: PMC9688678 DOI: 10.3390/cells11223601] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium is a heavy toxic metal with unknown biological functions in the human body. Over time, cadmium accretion in the different visceral organs (liver, lungs, kidney, and testis) is said to impair the function of these organs, which is associated with a relatively long biological half-life and a very low rate of excretion. Recently studies have revealed that the testes are highly sensitive to cadmium. In this review, we discussed the adverse effect of cadmium on the development and biological functions of the testis. The Sertoli cells (SCs), seminiferous tubules, and Blood Testis Barrier are severely structurally damaged by cadmium, which results in sperm loss. The development and function of Leydig cells are hindered by cadmium, which also induces Leydig cell tumors. The testis's vascular system is severely disturbed by cadmium. Cadmium also perturbs the function of somatic cells and germ cells through epigenetic regulation, giving rise to infertile or sub-fertile males. In addition, we also summarized the other findings related to cadmium-induced oxidative toxicity, apoptotic toxicity, and autophagic toxicity, along with their possible mechanisms in the testicular tissue of different animal species. Consequently, cadmium represents a high-risk factor for male fertility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Qiu Y, Lv Y, Zhang M, Ji S, Wu B, Zhao F, Qu Y, Sun Q, Guo Y, Zhu Y, Lin X, Zheng X, Li Z, Fu H, Li Y, Song H, Wei Y, Ding L, Chen G, Zhu Y, Cao Z, Shi X. Cadmium exposure is associated with testosterone levels in men: A cross-sectional study from the China National Human Biomonitoring. CHEMOSPHERE 2022; 307:135786. [PMID: 35872064 DOI: 10.1016/j.chemosphere.2022.135786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sex hormone disorders can cause adverse health consequences. While experimental data suggests that cadmium (Cd) disrupts the endocrine system, little is known about the link between Cd exposure and sex hormones in men. METHODS We measured blood cadmium (B-Cd), urine cadmium (U-Cd), serum testosterone and serum estradiol in men aged ≥18 years old participating in the China National Human Biomonitoring program, from 2017 to 2018. Urine cadmium adjusted for creatinine (Ucr-Cd) and the serum testosterone to serum estradiol ratio (T/E2) were calculated. The association of Cd exposure to serum testosterone and T/E2 in men was analyzed with multiple linear regression models. RESULTS Among Chinese men ≥18 years old, the weighted geometric mean (95% CI) of B-Cd and Ucr-Cd levels were 1.23 (1.12-1.35) μg/L and 0.53 (0.47-0.59) μg/g, respectively. The geometric means (95% CI) of serum testosterone and T/E2 were 18.56 (17.92-19.22) nmol/L and 143.86 (137.24-150.80). After adjusting for all covariates, each doubling of B-Cd level was associated with a 5.04% increase in serum testosterone levels (β = 0.071; 95%CI: 0.057-0.086) and a 4.03% increase in T/E2 (β = 0.057; 95%CI: 0.040-0.075); similar findings were found in Ucr-Cd. CONCLUSIONS In Chinese men, Cd may be an endocrine disruptor, which is positively associated with serum testosterone and T/E2.
Collapse
Affiliation(s)
- Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanbo Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Liang Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guangdi Chen
- Institute of Environmental Health, School of Public Health, and Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Rami Y, Ebrahimpour K, Maghami M, Shoshtari-Yeganeh B, Kelishadi R. The Association Between Heavy Metals Exposure and Sex Hormones: a Systematic Review on Current Evidence. Biol Trace Elem Res 2022; 200:3491-3510. [PMID: 34668113 DOI: 10.1007/s12011-021-02947-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The general population is voluntarily or unintentionally exposed to heavy metals through ingestion of food, polluted water, or contact with soil, dust, or polluted air. A number of metals are considered as endocrine disruptors and can alter the level of reproductive hormones. This study aims to systematically review the epidemiological studies on the association between heavy metals exposure and sex hormones level. We conducted a systematic search from available databases, including PubMed, Clarivate Web of Science, Scopus, Google Scholar, and Cochrane Collaboration, until April 2021. The relevant studies were selected, and two reviewers conducted the quality assessment. Then, data were extracted based on the inclusion criteria. We identified nine articles related to the association between heavy metals exposure and sex hormones level. We summarized the relevant information. Due to the diversity of metals and the variety of sex hormones, the effect of exposure on hormones level was not clear; however in most studies, at least for one metal, a significant association (inverse or positive) was observed between metals exposure and hormones level. Heavy metals exposure may potentially alter sex hormone levels; however, further research is needed to evaluate the impact of this association.
Collapse
Affiliation(s)
- Yasaman Rami
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Maghami
- Department of Bio-Statistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Baralić K, Javorac D, Marić Đ, Đukić-Ćosić D, Bulat Z, Antonijević Miljaković E, Anđelković M, Antonijević B, Aschner M, Buha Djordjevic A. Benchmark dose approach in investigating the relationship between blood metal levels and reproductive hormones: Data set from human study. ENVIRONMENT INTERNATIONAL 2022; 165:107313. [PMID: 35635964 DOI: 10.1016/j.envint.2022.107313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The main objective of this research was to conduct a dose-response modeling between the internal dose of measured blood Cd, As, Hg, Ni, and Cr and hormonal response of serum testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). The study included 207 male participants from subjects of 5 different cohorts (patients with prostate, testicular, and pancreatic cancer, patients suffering from various thyroid and metabolic disorders, as well as healthy volunteers), enrolled from January 2019 to May 2021 at the Clinical Centre of Serbia in Belgrade, Serbia. Benchmark dose-response modeling analysis was performed with the PROAST software version 70.1, showing the hormone levels as quantal data. The averaging technique was applied to compute the Benchmark dose (BMD) interval (BMDI), with benchmark response set at 10%. Dose-response relationships between metal/metalloid blood concentration and serum hormone levels were confirmed for all the investigated metals/metalloid and hormones. The narrowest BMDI was found for Cd-testosterone and Hg-LH pairs, indicative of high confidence in these estimates. Although further research is needed, the observed findings demonstrate that the BMD approach may prove to be significant in the dose-response modeling of human data.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | | | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
19
|
Zhao Y, He J, Zhu T, Zhang Y, Zhai Y, Xue P, Yao Y, Zhou Z, He M, Qu W, Zhang Y. Cadmium exposure reprograms energy metabolism of hematopoietic stem cells to promote myelopoiesis at the expense of lymphopoiesis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113208. [PMID: 35051759 DOI: 10.1016/j.ecoenv.2022.113208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal in our living environment. Hematopoietic stem cells (HSC) are ancestors for all blood cells. Therefore understanding the impact of Cd on HSC is significant for public health. The aim of this study was to investigate the impact of Cd2+ on energy metabolism of HSC and its involvement in hematopoiesis. Wild-type C57BL/6 mice were treated with 10 ppm of Cd2+ via drinking water for 3 months, and thereafter glycolysis and mitochondrial (MT) oxidative phosphorylation (OXPHOS) of HSC in the bone marrow (BM) and their impact on hematopoiesis were evaluated. After Cd2+ treatment, HSC had reduced lactate dehydrogenase (LDH) activity and lactate production while having increased pyruvate dehydrogenase (PDH) activity, MT membrane potential, ATP production, oxygen (O2) consumption and reactive oxygen species (ROS), indicating that Cd2+ switched the pattern of energy metabolism from glycolysis to OXPHOS in HSC. Moreover, Cd2+ switch of HSC energy metabolism was critically dependent on Wnt5a/Cdc42/calcium (Ca2+) signaling triggered by a direct action of Cd2+ on HSC. To test the biological significance of Cd2+ impact on HSC energy metabolism, HSC were intervened for Ca2+, OXPHOS, or ROS in vitro, and thereafter the HSC were transplanted into lethally irradiated recipients to reconstitute the immune system; the transplantation assay indicated that Ca2+-dependent MT OXPHOS dominated the skewed myelopoiesis of HSC by Cd2+ exposure. Collectively, we revealed that Cd2+ exposure activated Wnt5a/Cdc42/Ca2+ signaling to reprogram the energy metabolism of HSC to drive myelopoiesis at the expense of lymphopoiesis.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Jinyi He
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Tingting Zhu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yufan Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yue Zhai
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Ye Yao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Sciences, Fudan University, Shanghai 200032, China
| | - Weidong Qu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Zeng A, Li S, Zhou Y, Sun D. Association Between Low-Level Blood Cadmium Exposure and Hyperuricemia in the American General Population: a Cross-sectional Study. Biol Trace Elem Res 2022; 200:560-567. [PMID: 33837913 DOI: 10.1007/s12011-021-02700-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/28/2021] [Indexed: 11/25/2022]
Abstract
Heavy metals, including cadmium, are suspected to increase serum uric acid levels and hyperuricemia in both gender, but the evidences about this are inconclusive. To determine whether serum cadmium in American adults(≥19 years old) is associated with uric acid levels and risk of hyperuricemia, 2620 participants from the US National Health and Nutrition Examination Survey were recruited. Hyperuricemia was defined as a serum UA concentration ≥ 416.4 μmol/L for men and ≥ 356.9 μmol/L for women. Regression analyses were used to analyze the association of cadmium with serum UA and hyperuricemia. The threshold effect explored using two-piecewise linear regression model by the smoothing plot. The overall median of blood cadmium was 0.27 μg/L in men and 0.33μg/L in women. After adjusting for the covariates (race; age; education; BMI; smoke status; alcohol consumption; blood lead; hypertension; diabetes mellitus; hemoglobin; eGFR; triglyceride; and cholesterol), a non-linear relationship between hyperuricemia and cadmium among men was detected; and there was a positive line correlation between them for women (OR = 1.58; 95%CI (1.08, 2.31)). No significant association between uric acid and cadmium in either gender was found. Blood cadmium levels in the range currently considered acceptable were positively associated with increased prevalence of hyperuricemia in women, but inversely associated in men (cadmium <0.77μg/L).
Collapse
Affiliation(s)
- Aihui Zeng
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Sai Li
- Department of Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan Zhou
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Datong Sun
- Department of Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
21
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Imam SS, Alshehri S, Kazmi I. Novelkaraya gum micro-particles loaded Ganoderma lucidum polysaccharide regulate sex hormones, oxidative stress and inflammatory cytokine levels in cadmium induced testicular toxicity in experimental animals. Int J Biol Macromol 2022; 194:338-346. [PMID: 34800521 DOI: 10.1016/j.ijbiomac.2021.11.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 11/05/2022]
Abstract
Presented research aimed to develop a spray drying process without the use of organic solvents for the preparation of novel Karaya gum polymer microparticles (MPs) of Ganoderma lucidum polysaccharide (GLP). The prepared microparticles were characterized and evaluated. Prepared novel karaya gum micro-particles loaded Ganoderma lucidum polysaccharide (GLP MPs) were observed an effect on cadmium (CAD) induced testicular toxicity. A total of 40 rats (male) was divided into 4 groups viz. 1. Control group, 2. GLP MPs (250 mg/kg, 60 days of b.w per day), 3. CAD (60 days of 30 mg/l/day), 4. GLP MPs + CAD. CAD was responsible for altering the sex hormones, oxidative stress and inflammatory cytokines. Furthermore, elevated levels of indicator of oxidative stress, malondialdehyde, and a reduced action of SOD, GSH, and CAT (antioxidant enzymes), were observed in the tissues of the testicles of CAD- treated group. Such harmful occurrences were followed by an up-regulation in proinflammatory cytokines (TNF-α, IL-1β) levels, protein expression of Nrf2, and HO-1 expression was decreased. GLP MPs pre-treatment significantly abrogated these toxic effects which were confirmed histologically. This study concluded that pre-treatment with GLP MPs exerts a protective effect against CAD-induced male reproductive testicular toxicity.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
22
|
Zeng L, Zhou J, Wang X, Zhang Y, Wang M, Su P. Cadmium attenuates testosterone synthesis by promoting ferroptosis and blocking autophagosome-lysosome fusion. Free Radic Biol Med 2021; 176:176-188. [PMID: 34610361 DOI: 10.1016/j.freeradbiomed.2021.09.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
Ferroptosis is a newly defined programmed cell death pathway characterized by iron overload and lipid peroxidation. Increasing studies show that autophagy regulates testosterone synthesis and promotes ferroptosis. Testosterone is essential for sexual development and the maintenance of male characteristics. The deficiency of testosterone induced by cadmium (Cd) can severely affect male fertility. However, the underlying mechanism of testosterone reduction after Cd exposure remains blurry. In this study, we found that Cd affected iron homeostasis and elicited ferroptosis, ultimately reducing testosterone production. Mechanically, our findings revealed that Cd-induced ferroptosis depended upon the excessive activation of Heme oxygenase 1 (HMOX1) and the release of free iron from heme. Additionally, Cd exposure promoted autophagosome formation but blocked autophagosome-lysosome fusion, which attenuated the absorption of total cholesterol and triglycerides, further aggravating testosterone synthesis disorder. Collectively, Cd induced ferroptosis by iron homeostasis dysregulation, mediated by excessive activation of HMOX-1. The disruption of autophagy flow contributed to Cd-induced testicular dysfunction and attenuated testosterone synthesis.
Collapse
Affiliation(s)
- Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
23
|
Al-Bazi MM, Kumosani TA, Al-Malki AL, Kannan K, Moselhy SS. Association of trace elements abnormalities with thyroid dysfunction. Afr Health Sci 2021; 21:1451-1459. [PMID: 35222610 PMCID: PMC8843264 DOI: 10.4314/ahs.v21i3.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The metabolic pathways can be affected by dysregulation in thyroid hormone levels which in turn can arise from environmental chemical exposure. This study investigated the association of selected trace elements with thyroid disorders in a Saudi population. Methods Urine samples collected from 100 participants (50 thyroid disorder patients and 50 controls) were analyzed to determine trace elements using inductively coupled plasma-mass spectrometer. Non-parametric Mann-Whitney Test, were used to examine the association between socio-demographic as well as clinical characteristics of thyroid profile levels (T3, T4 and TSH) and urinary trace element concentrations. Results Urine from patients with thyroid disorders had significantly higher concentrations of Ni, Cu, and Cd (p-values <0.0005). In contrast, urinary Cr and Zn (p-values <0.013 and 0.005) were low in thyroid patients compared to the control. Conclusion First study to report urinary trace element levels showed a possible link between thyroid disorders and trace element exposure which reflect the environmental pollution..
Collapse
Affiliation(s)
- Maha M Al-Bazi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), PO Box 80203, Jeddah, Saudi Arabia
| | - Taha A Kumosani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), PO Box 80203, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.,Production of Bio-products for Industrial Applications Research Group, King Abdulaziz University (KAU) Jeddah, Saudi Arabia
| | - Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), PO Box 80203, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.,Bioactive natural products Research Group, KAU, Jeddah, Saudi Arabia
| | - Kurunthachalam Kannan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), PO Box 80203, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.,Production of Bio-products for Industrial Applications Research Group, King Abdulaziz University (KAU) Jeddah, Saudi Arabia.,Department of Environmental medicine, University School of Medicine, New York, NY10016, USA
| | - Said S Moselhy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
Yi L, Dai J, Chen Y, Tong Y, Li Y, Fu G, Teng Z, Huang J, Quan C, Zhang Z, Zhou T, Zhang L, Shi Y. Reproductive toxicity of cadmium in pubertal male rats induced by cell apoptosis. Toxicol Ind Health 2021; 37:469-480. [PMID: 34128436 DOI: 10.1177/07482337211022615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cadmium (Cd) is a heavy metal that is widely present in modern industrial production. It is a known, highly toxic environmental endocrine disruptor. Long-term exposure to Cd can cause varying degrees of damage to the liver, kidney, and reproductive system of organisms, especially the male reproductive system. This study aimed to explore the mechanism of Cd toxicity in the male reproductive system during puberty. Eighteen healthy 6-week-old male Sprague-Dawley rats were randomly divided into three groups (control group, low-dose group, and high-dose group) according to their body weight, with six in each group. Cd (0, 1, and 3 mg/kg/day) was given by gavage for 28 consecutive days. The results showed that Cd exposure to each dose group caused a decrease in the testicular organ coefficient and sperm count, compared with the control group. Cd exposure resulted in significant changes in testicular morphology in the 3 mg/kg/day Cd group. In the 1 and 3 mg/kg/day Cd groups, serum testosterone decreased and apoptosis of testicular cells increased significantly (p < 0.05). In addition, compared with the control group, the activity of glutathione peroxidase and superoxide dismutase in each Cd exposure dose group decreased, but the content of malondialdehyde in the high-dose, 3 mg/kg/day Cd treatment group significantly increased (p < 0.05). Although Cd exposure caused an increase in the messenger RNA (mRNA) levels of Bcl-2, Caspase-3 and Caspase-9 in the testicular tissues (p < 0.05), Bcl-2 expression was unchanged (p > 0.05). The expression level of Akt mRNA in testicular tissue of rats in the high-dose 3 mg/kg/day Cd group was increased (p < 0.05). Our data suggest that Cd affected testosterone levels, and apoptosis was observed in spermatids.
Collapse
Affiliation(s)
- Lingna Yi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Juan Dai
- 369606Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Yong Chen
- Emergency Department, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Yeqing Tong
- Hubei Centers for Disease Prevention and Control, Wuhan, China
| | - You Li
- Tigermed Consulting Ltd, China
| | - Guoqing Fu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Zengguang Teng
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Jufeng Huang
- Hanchuan Centers for Disease Prevention and Control, Hanchuan, China
| | - Chao Quan
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Zhibing Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Zan G, Li L, Cheng H, Huang L, Huang S, Luo X, Xiao L, Liu C, Zhang H, Mo Z, Yang X. Mediated relationships between multiple metals exposure and fasting blood glucose by reproductive hormones in Chinese men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116791. [PMID: 33684679 DOI: 10.1016/j.envpol.2021.116791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have reported metals exposure contribute to the change of fasting blood glucose (FBG) level. However, the roles of reproductive hormones in their associations have not been fully elucidated. The aim of the study is to investigate the associations of multiple serum metals with reproductive hormones, and to further explore potential roles of reproductive hormones in relationships between metals exposure and FBG level. A total of 1911 Chinese Han men were analyzed by a cross-sectional study. We measured serum levels of 22 metals by inductively coupled plasma mass spectrometer (ICP-MS). FBG, total testosterone (TT), estradiol (E2), follicle stimulating hormone (FSH), and sex hormone-binding globulin (SHBG) levels were determined. Least absolute shrinkage and selection operator (LASSO) regression models were conducted to select important metals, and restricted cubic spline models were then used to estimate dose-response relationships between selected metals and reproductive hormones. We also conducted mediation analyses to evaluate whether reproductive hormones played mediating roles in the associations between metals and FBG. We found significant inverse dose-dependent trends of copper, tin and zinc with E2; zinc with SHBG; copper and nickel with TT, while significant positive dose-dependent trend of iron with E2, respectively. Moreover, approximately inverted U-shaped associations existed between lead and SHBG, iron and TT. In addition, E2, SHBG and TT were negatively associated with FBG level. In mediation analyses, the association of copper with FBG was mediated by E2 and TT, with a mediation ratio of 10.4% and 22.1%, respectively. Furthermore, E2 and SHBG mediated the relationship of zinc with FBG, with a mediation ratio of 7.8% and 14.5%, respectively. E2 mediated 11.5% of positive relationship between tin with FBG. Our study suggested that the associations of metals exposure with FBG may be mediated by reproductive hormones.
Collapse
Affiliation(s)
- Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Longman Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Sifang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Xiaoyu Luo
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China.
| |
Collapse
|
26
|
Kim K, Pollack AZ, Nobles CJ, Sjaarda LA, Zolton JR, Radoc JG, Schisterman EF, Mumford SL. Associations between blood cadmium and endocrine features related to PCOS-phenotypes in healthy women of reproductive age: a prospective cohort study. Environ Health 2021; 20:64. [PMID: 34022900 PMCID: PMC8141255 DOI: 10.1186/s12940-021-00749-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/10/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cadmium is an endocrine disrupting chemical that affects the hypothalamic-pituitary-gonadal axis. Though evidence suggests its potential role in altering androgen synthesis and metabolic pathways that are characteristic of polycystic ovary syndrome (PCOS), its relation in healthy women of reproductive age is largely unknown. As women with mild sub-clinical features of PCOS who do not meet the diagnostic criteria of PCOS may still experience reduced fecundability, investigating associations between cadmium and PCOS-phenotypes among healthy women may provide unique insight into the reproductive implications for many on the PCOS spectrum. Therefore, the objective of this study was to evaluate associations between cadmium and androgens, anti-Müllerian hormone (AMH), and metabolic markers in women of reproductive age. METHODS This was a prospective cohort study of 251 healthy premenopausal women without self-reported PCOS (mean age 27.3 years and BMI 24.1 kg/m2). Cadmium was measured in blood collected at baseline. Reproductive hormones and metabolic markers were measured in fasting serum 8 times per menstrual cycle for 2 cycles. Linear mixed models and Poisson regression with a robust error variance were used to examine associations between cadmium and reproductive hormones and metabolic markers and anovulation, respectively. RESULTS Median (interquartile range) blood cadmium concentrations at baseline were 0.30 (0.19-0.43) µg/L. Higher levels of testosterone (2.2 %, 95 % confidence interval [CI] 0.4, 4.1), sex hormone-binding globulin (2.9 %, 95 % CI 0.5, 5.5), and AMH (7.7 %, 95 % CI 1.1, 14.9) were observed per 0.1 µg/L increase in cadmium concentrations. An 18 % higher probability of a mild PCOS-phenotype (95 % CI 1.06, 1.31), defined by a menstrual cycle being in the highest quartile of cycle-averaged testosterone and AMH levels, was also found per 0.1 µg/L increase in cadmium levels. No associations were observed for insulin and glucose. These findings were consistent even after analyses were restricted to non-smokers or further adjusted for dietary factors to account for potential sources of exposure. CONCLUSIONS Overall, among healthy reproductive-aged women, cadmium was associated with endocrine features central to PCOS, but not with metabolic markers. These suggest its potential role in the hormonal milieu associated with PCOS even at low levels of exposure.
Collapse
Affiliation(s)
- Keewan Kim
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive MSC 7004, Maryland 20892 Bethesda, USA
| | | | - Carrie J. Nobles
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive MSC 7004, Maryland 20892 Bethesda, USA
| | - Lindsey A. Sjaarda
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive MSC 7004, Maryland 20892 Bethesda, USA
| | - Jessica R. Zolton
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive MSC 7004, Maryland 20892 Bethesda, USA
- Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 20892 Bethesda, Maryland USA
| | - Jeannie G. Radoc
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive MSC 7004, Maryland 20892 Bethesda, USA
| | - Enrique F. Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive MSC 7004, Maryland 20892 Bethesda, USA
| | - Sunni L. Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive MSC 7004, Maryland 20892 Bethesda, USA
| |
Collapse
|
27
|
Tian M, Wang YX, Wang X, Wang H, Liu L, Zhang J, Nan B, Shen H, Huang Q. Environmental doses of arsenic exposure are associated with increased reproductive-age male urinary hormone excretion and in vitro Leydig cell steroidogenesis. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124904. [PMID: 33385727 DOI: 10.1016/j.jhazmat.2020.124904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Humans are ubiquitously exposed to arsenic from multiple sources, and chronic arsenic exposure may be associated with male reproductive health. Although association regarding arsenic exposure and sex hormone secretion in blood has been reported, sex hormone excretion in urine studies is lacking. Urinary sex hormone excretion has emerged as a complementary strategy to evaluate gonadal function. Herein, we determined the associations between environmental exposure to arsenic and urinary sex hormone elimination and in vitro Leydig cell steroidogenesis. Concentrations of arsenic and testosterone (T), estradiol (E2) and progesterone (P) in repeated urine samples were determined among 451 reproductive-age males. Moreover, an in vitro Leydig cell MLTC-1 steroidogenesis experiment was designed to simulate real-world scenarios of low human exposure. Multivariable linear regression models were used to assess the associations of urinary arsenic levels with urinary hormones. Urinary arsenic concentrations were positively associated with urinary sex hormone (T, E2, and P) levels. An in vitro test further demonstrated that a population-based environmental exposure range (0.01-5 μM) of arsenic induced Leydig cell steroidogenesis potency. Our results indicate that low-dose arsenic exposure exhibits an endocrine disrupting effect by stimulating Leydig cell steroidogenesis and accelerating urinary steroid excretion, which extends previous knowledge of the inverse association of high-dose arsenic exposure with sexual steroid production that is assumed to be anti-androgen.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiaofei Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bingru Nan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
28
|
Zhu Q, Li X, Ge RS. Toxicological Effects of Cadmium on Mammalian Testis. Front Genet 2020; 11:527. [PMID: 32528534 PMCID: PMC7265816 DOI: 10.3389/fgene.2020.00527] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a heavy metal, and people are exposed to it through contaminated foods and smoking. In humans and other mammals, cadmium causes damage to male testis. In this review, we summarize the effects of cadmium on the development and function of the testis. Cadmium causes severe structural damage to the seminiferous tubules, Sertoli cells, and blood-testis barrier, thus leading to the loss of sperm. Cadmium hinders Leydig cell development, inhibits Leydig cell function, and induces Leydig cell tumors. Cadmium also disrupts the vascular system of the testis. Cadmium is a reactive oxygen species inducer and possibly induces DNA damage, thus epigenetically regulating somatic cell and germ cell function, leading to male subfertility/infertility.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Deng B, Pakhomov OV, Bozhok GA. Long-term effects of acute cadmium exposure on testis immune privilege. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cadmium (Cd) is a widespread and non-biodegradable pollutant of great concern to human health. This element can affect cellular signal transduction and cell-to-cell interaction in the testis. Immune tolerance towards auto- and alloantigens is an important component of testis immunity. It is involved in spermatogenesis and hormone secretion. Plus, the immune tolerance may help to reveal the changes in testis immunity over a long period after Cd exposure. The current research was aimed at investigating the long-term effects of acute Cd exposure on testis immunity by means of elicitation of testicular immune cell composition shift induced by Cd. Cadmium chloride was intraperitoneally injected at 3 mg Cd/kg to mice. After that testis interstitial cells were stained with surface markers for leukocyte and lymphocyte subpopulations (CD45, CD11b, CD3, CD4, CD8, CD25) and analyzed cytofluorimetrically by week 4, 6, 8 and 12 after Cd administration (Cd group). To identify the delayed effects of cadmium on immune tolerance two groups of animals were subjected to intratesticular allotransplantation of neonatal testis (groups ITT and Cd+ ITT). One of the groups was administered with Cd four weeks before the transplantation (Cd+ITT group). I group served as a control that did not undergo any transplantation or Cd injection. For a better demonstration of the phenomenon of immunological tolerance of the testicles, an additional group (UKT group) was used which got grafts under the kidney capsule (non-immune privileged site).Investigation of the cell population showed that CD45+, CD11b+, CD4+, CD8+ cells were permanently present in testicular interstitial tissue in I group. Intratesticular testis transplantation increased the proportion of CD11b+ but did not have such a pronounced effect on CD8+ cells in ITT group. Moreover, the transplantation elevated CD4+ CD25+ cells known for their immunosuppressive property and promoted graft development by week 2 (histological data). Cd injection resulted in severe inflammation that quenched by week 4 (Cd and Cd+ ITT groups). This time point was chosen for transplantation in Cd+ ITT group. Such Cd pretreatment led to a high CD8+ cell proportion and to the delayed appearance of CD4+ CD25+ cells by week 2 (Cd+ ITTgroup). The finding is consistent with the impairment of graft development in Cd+ ITTgroup pretreated with Cd. Observation suggest that Cd pretreatment was associated with disproportion of interstitial immune cell populations which resulted in the impairment of immunoprotective function of the testis. The impairment of testis immunity showed itself only after several weeks of Cd administration, and only when the recipient testis immunity was provoked by alloantigens of donor testes.
Collapse
|
30
|
Ren X, Wang S, Zhang C, Hu X, Zhou L, Li Y, Xu L. Selenium ameliorates cadmium-induced mouse leydig TM3 cell apoptosis via inhibiting the ROS/JNK /c-jun signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110266. [PMID: 32058163 DOI: 10.1016/j.ecoenv.2020.110266] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/11/2023]
Abstract
Despite the well-known acknowledgement of both the toxicity of cadmium (Cd) and the ameliorative effect of selenium (Se), the mechanism of the protective effect of selenium on cadmium-induced Mouse Leydig (TM3) cell apoptosis remains unknown. In this study, we hypothesized that the reactive oxygen species (ROS)-mediated c-jun N-terminal kinase (JNK) signaling pathway is involved in anti-apoptosis of selenium against cadmium in TM3 cells. We found that exposure to cadmium caused evident cytotoxicity, in which cell viability was inhibited, followed by inducement of apoptosis. Moreover, the level of ROS generation was elevated, leading to the phosphorylation of JNK. In addition, following cadmium exposure, the nuclear transcription factor c-jun was significantly activated, which led to increased expression of downstream gene c-jun, resulting in downstream activation of the apoptosis-related protein Caspase3 and upregulation of Cleaved-PARP, as well as inhibition of the anti-apoptosis protein Bcl-2. However, pretreatment with selenium remarkably suppressed cadmium-induced TM3 cell apoptosis. Furthermore, the level of ROS declined, and the JNK signaling pathway was blocked. Following this, the gene expression of c-jun decreased while Bcl-2 increased, which was consistent with the effects on proteins, that Caspase3 activity and Cleaved-PARP were inhibited while Bcl-2 level was restored. In order to explain the relationship between molecules of the signaling pathway, N-acetyl-L-cysteine (NAC), the ROS inhibitor, and JNK1/2 siRNA were administered, which further indicated the mediatory role of the ROS/JNK/c-jun signaling pathway in regulating anti-apoptosis of selenium against cadmium-induced TM3 cell apoptosis.
Collapse
Affiliation(s)
- Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China.
| | - Susu Wang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Xindi Hu
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yuanhong Li
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Lichun Xu
- Department of Hygiene, School of Public Health, Xuzhou Medical University, China
| |
Collapse
|
31
|
Castiello F, Olmedo P, Gil F, Molina M, Mundo A, Romero RR, Ruíz C, Gómez-Vida J, Vela-Soria F, Freire C. Association of urinary metal concentrations with blood pressure and serum hormones in Spanish male adolescents. ENVIRONMENTAL RESEARCH 2020; 182:108958. [PMID: 31835118 DOI: 10.1016/j.envres.2019.108958] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 05/18/2023]
Abstract
OBJECTIVE To examine the association of urinary concentrations of arsenic (As), cadmium (Cd), mercury (Hg), nickel (Ni), lead (Pb), manganese (Mn), and chromium (Cr) with blood pressure (BP) and serum hormone levels in male adolescents. METHODS Participants were selected from the INMA (Environment and Childhood)-Granada cohort at their follow-up visit when aged 15-17 years. Metal concentrations were measured in urine samples using inductively coupled plasma mass spectrometry. Outcomes were BP measurements (systolic, diastolic, and pulse pressure) recorded during the visit and concurrent serum levels of thyroid hormones, sex hormones, and adrenal hormones. Associations were assessed by regression analysis in a sub-sample of 133 boys with available data on urinary metals, outcomes, and relevant covariates. RESULTS Models simultaneously adjusted for all metals and other potential confounders showed that urinary As and Cd were both associated with slight elevations in systolic BP (0.70 mmHg, 95%CI = 0.11; 1.29 and 1.47, 95%CI = 0.30; 2.63, respectively, per each 50% increase in metal concentrations), and urinary As was also associated with an increased risk of elevated systolic BP (≥120 mmHg) (OR = 1.28, 95%CI = 1.04; 1.56). The presence of detectable levels of 4 and 5 versus 2-3 non-essential metals (As, Cd, Hg, Ni, Pb) per boy was associated with elevations in systolic BP of 5.84 mmHg (95%CI = 0.40; 11.3) and 7.01 mmHg (95%CI = 1.01; 13.0), respectively (p-trend = 0.05). Significant associations were also found between Hg and increased testosterone and luteinizing hormone (LH) and decreased thyroid-stimulating hormone (TSH); between the combination of As and Hg and increased LH and insulin-like growth factor 1; between Cr and decreased TSH; and between Cd and increased adrenocorticotropic hormone. CONCLUSIONS These findings suggest that combined exposure to toxic metals, especially As and Cd, may contribute to BP elevation in male adolescents and that exposure to Hg, As, Cd, and Cr may affect their hormone levels.
Collapse
Affiliation(s)
- Francesca Castiello
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Pablo Olmedo
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18071 Granada, Spain.
| | - Fernando Gil
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18071 Granada, Spain.
| | - Marina Molina
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Antonio Mundo
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Raquel R Romero
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Carlos Ruíz
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - José Gómez-Vida
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
32
|
Luo Q, Zhao H, Jiang Y, Guo J, Lv N, Tang J, Li S, Zhang D, Bai R, Chen G. Association of blood metal exposure with testosterone and hemoglobin: A cross-sectional study in Hangzhou Birth Cohort Study. ENVIRONMENT INTERNATIONAL 2020; 136:105451. [PMID: 31924581 DOI: 10.1016/j.envint.2019.105451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Few epidemiological studies have investigated associations of exposure to multiple metals with testosterone homeostasis and erythropoiesis, especially for the pregnant women. METHODS Among all the 1644 participants enrolled in Hangzhou Birth Cohort Study (HBCS) at baseline, a total of 918 pregnant women with complete data of interest were analyzed. The whole blood metals levels were examined by inductively coupled plasma mass spectrometry (ICP-MS), and serum testosterone level was evaluated by chemiluminescent microparticle immunoassay (CMIA), and erythropoietic parameters values were extracted from medical record. Multivariable linear regression models were applied to estimate the relationships between metals levels and testosterone level, and between metals levels and erythropoietic parameters, and potential confounders were adjusted. RESULTS Single metal model analysis revealed a significant association of blood As, Mn and Pb level with serum testosterone level. After controlling for multiple testing, the dose-response trend with statistical significance (FDR-adjusted p trend <0.05) was observed across tertiles of Pb with testosterone. This association, when by stratified by gender, remained in pregnant women with a male fetus but did not reach significant in those with a female fetus. Furthermore, blood Pb level was positively associated with red blood cell counts, hemoglobin level and hematocrit. Serum testosterone level was positively associated with red blood cell counts, hemoglobin level and hematocrit. Mediation analyses indicated that testosterone might act as a mediator in the association between Pb exposure and erythropoietic parameters. CONCLUSIONS Serum testosterone level and hemoglobin level was positively related to blood Pb level among Chinese pregnant women, and testosterone might mediate the effect of Pb exposure on hemoglobin. Additional prospective studies are warranted to confirm the causality.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Zhao
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Lv
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shuai Li
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Rongpan Bai
- Bioelectromagnetics Laboratory, Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Bioelectromagnetics Laboratory, Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
33
|
Wang S, Ren X, Hu X, Zhou L, Zhang C, Zhang M. Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse Leydig cells. Toxicol Appl Pharmacol 2019; 368:37-48. [DOI: 10.1016/j.taap.2019.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
|
34
|
Sun H, Wang N, Chen C, Nie X, Han B, Li Q, Zhu C, Chen Y, Xia F, Chen Y, Zhai H, Jiang B, Hu B, Lu Y. Cadmium exposure and its association with serum uric acid and hyperuricemia. Sci Rep 2017; 7:550. [PMID: 28373703 PMCID: PMC5428845 DOI: 10.1038/s41598-017-00661-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Few studies have investigated the association between serum uric acid (UA) and cadmium exposure. Our previous study revealed a significantly higher blood cadmium (CdB) level in the Chinese population compared to populations in other countries. To determine whether CdB in Chinese adults is associated with serum UA and hyperuricemia, 2996 participants from the cross-sectional SPECT-China study were recruited. CdB was measured by atomic absorption spectrometry. Hyperuricemia was defined as a serum UA concentration ≥416.4 μmol/L for men and ≥356.9 μmol/L for women. Regression analyses were used to analyze the association of CdB with serum UA and hyperuricemia. We found that the median CdB level was higher in men with hyperuricemia (2.40 μg/L) than in men without hyperuricemia (1.98 μg/L, P < 0.05). A positive relationship between serum UA and CdB was found in Chinese men after adjusting for the estimated glomerular filtration rate (eGFR), current smoking status, diabetes, dyslipidemia, hypertension and body mass index and in participants with eGFR > 60 mL/min per 1.73 m2. Further, the odds ratio of hyperuricemia increased with increasing CdB quartiles (P for trend < 0.05) in men. In conclusion, CdB was positively related to the serum UA level and to hyperuricemia in Chinese men but not in Chinese women.
Collapse
Affiliation(s)
- Honglin Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaomin Nie
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qin Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chunfang Zhu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingchao Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hualing Zhai
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Boren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Hu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Nie X, Wang N, Chen Y, Chen C, Han B, Zhu C, Chen Y, Xia F, Cang Z, Lu M, Meng Y, Jiang B, D Jensen M, Lu Y. Blood cadmium in Chinese adults and its relationships with diabetes and obesity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18714-23. [PMID: 27312901 DOI: 10.1007/s11356-016-7078-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/13/2016] [Indexed: 05/18/2023]
Abstract
The aim of this study is to evaluate blood cadmium levels (BCLs) in Chinese adults and explore whether blood cadmium is associated with diabetes or obesity. This study included 5544 adults from a cross-sectional SPECT-China study. BCL and blood lead level (BLL) was measured by atomic absorption spectrometry. Fasting plasma glucose (FPG) was used to define prediabetes and diabetes. Overweight and obesity were defined by body mass index (BMI). The associations of BCL with prediabetes, diabetes, overweight, and obesity were analyzed by multinomial logistic regression analyses. Medians (interquartile range) of BCL were 1.97 μg/L (0.60-3.82) in men and 1.59 μg/L (0.54-3.51) in women. Subjects in low-economic-status areas and urban areas had significantly higher BCL. BCL in current smokers was significantly higher than in current non-smokers. In the adjusted model, a mild positive relationship between BCL and FPG was found. Meanwhile, the prevalence of prediabetes was increased according to the increase in BCL tertiles. Surprisingly, BCL had a negative relationship with prevalence of overweight. In conclusion, BCL in Chinese adults was much higher than in other developed countries and was influenced by gender, smoking, and residential area. BCL was positively related to prediabetes while negatively related to overweight.
Collapse
Affiliation(s)
- Xiaomin Nie
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chunfang Zhu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yingchao Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhen Cang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meng Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ying Meng
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Boren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Michael D Jensen
- Endocrine Research Unit, Mayo Clinic, 5-194 Joseph, Rochester, MN55905, USA.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|