1
|
Li Y, Yi J, Liu K, Liu X, Yangzom C, Pan J, Iqbal M, Hu L, Tang Z, Li Y, Zhang H. Mn 2O 3 NPs-induced liver injury is potentially associated with gut microbiota dysbiosis in broiler chicken. Food Chem Toxicol 2025; 202:115487. [PMID: 40288515 DOI: 10.1016/j.fct.2025.115487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/27/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Mn2O3 nanometer particles(Mn2O3 NPs), a new material, is widely used in medicine, electrochemical sensing and energy storage fields. The widespread use of Mn2O3 NPs has caused health concerns, and it is necessary to clarify the toxic mechanism of Mn2O3 NPs exposure. Our findings showed that Mn2O3 NPs exposure could lead to liver histological abnormalities, mitochondrial dysfunction in liver, as well as mitochondrial-mediated apoptosis, autophagy and mitochondrial dynamics disorder, and eventually lead to liver injury. At the same time, the ileal epithelium suffered physiological damage and inflammation after Mn2O3 NPs exposure, and the expression levels of genes and proteins related to intestinal barrier function (MUC1 ZO-1 Claudin1 and Occludin) were significantly down-regulated. Meanwhile, 16s sequencing analysis of intestinal bacteria showed that Mn2O3 NPs exposure caused significant changes in intestinal flora abundance. The Firmicutes/Bacteroidetes ratio increased, and the abundance of probiotics (Bacteroides, Bifidobacterium, Faecalibacterium) decreased, while the abundance of harmful bacteria (Streptococcus, Enterococcus, Pseudomonas) increased. The changes in these microflorae may potentially impact the development of liver injury. Altogether, these results provide novel insights into the potential mechanism of Mn2O3 NPs related hepatotoxicity induced by gut microbiota via the gut-liver axis, and contribute to a better interpretation of the health impact of Mn2O3 NPs.
Collapse
Affiliation(s)
- Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chamba Yangzom
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Tibet, Linzhi, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Zheng XW, Fang YY, Lin JJ, Luo JJ, Li SJ, Aschner M, Jiang YM. Signal Transduction Associated with Mn-induced Neurological Dysfunction. Biol Trace Elem Res 2024; 202:4158-4169. [PMID: 38155332 DOI: 10.1007/s12011-023-03999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Manganese (Mn) is a heavy metal that occurs widely in nature and has a vital physiological role in growth and development. However, excessive exposure to Mn can cause neurological damage, especially cognitive dysfunction, such as learning disability and memory loss. Numerous studies on the mechanisms of Mn-induced nervous system damage found that this metal targets a variety of metabolic pathways, for example, endoplasmic reticulum stress, apoptosis, neuroinflammation, cellular signaling pathway changes, and neurotransmitter metabolism interference. This article reviews the latest research progress on multiple signaling pathways related to Mn-induced neurological dysfunction.
Collapse
Affiliation(s)
- Xiao-Wei Zheng
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Yuan-Yuan Fang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jun-Jie Lin
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jing-Jing Luo
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| |
Collapse
|
3
|
Cen Y, Yang J, Su L, Wang F, Zhu D, Zhao L, Li Y. Manganese induces neuronal apoptosis by activating mTOR signaling pathway in vitro and in vivo. Food Chem Toxicol 2024; 185:114508. [PMID: 38336017 DOI: 10.1016/j.fct.2024.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Manganese (Mn) is a well-known environmental pollutant and occupational toxicant that causes neurotoxicity, which present as neurodegenerative-like symptoms. However, the mechanism of Mn-induced neuronal injury remains unclear. In this research, we explored the mechanism of Mn-induced neurotoxicity, focusing on the mTOR signaling pathway. A plasmid expressing a short hairpin RNA (shRNA) targeting mTOR (shRNA-mTOR) was transfected into N27 cells in vitro, and rapamycin was used as an mTOR inhibitor in vivo to block the mTOR signaling pathway. Cells were treated with different concentrations of manganese (II) chloride (MnCl2). We found that Mn induced cell injury and apoptosis and markedly upregulated the expression of mTOR pathway-related proteins. The phosphorylation of 4E-BP1, S6K1, Akt and SGK1 was markedly decreased after blocking mTOR, and cell apoptosis was also reduced. Furthermore, the mTOR-specific inhibitor rapamycin restored learning and memory abilities in vivo. This research highlights that inhibiting mTOR might be useful for preventing Mn-induced neurodegenerative-like disorders.
Collapse
Affiliation(s)
- Yuyan Cen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, 563000, PR China
| | - Jianmin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Liyu Su
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Feng Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Deyu Zhu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lan Zhao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Yan Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
4
|
Liang DY, Peng JC, Xie BY, Qin WX, Aschner M, Ou SY, Jiang YM. Effects of combined exposure of manganese and iron on serum inflammatory factor levels among workers. Hum Exp Toxicol 2024; 43:9603271241293112. [PMID: 39504345 DOI: 10.1177/09603271241293112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
OBJECTIVE The aim of the study is to examine the association between long-term occupational exposure to Mn and Fe and their health effects in workers. METHODS 108 Mn workers were selected for the Mn exposure groups; 92 non-Mn workers were in the control group. Inductively coupled plasma-mass spectrometry was used to determine the Mn and Fe concentration in the working environment. Graphite furnace-atomic absorption spectroscopy was used to determine the blood Mn concentration of workers. Serum inflammatory factors were measured by enzyme-linked immunosorbent assay. RESULTS The blood Mn concentration, positive rate of clinical symptoms and serum inflammatory response in the Mn exposure group was higher than in the control group. CONCLUSIONS Low levels of Mn exposure may increase blood Mn concentrations, the rate of complaints of neurological symptoms and promote increased serum inflammatory response in workers.
Collapse
Affiliation(s)
- Dian-Yin Liang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Jian-Chao Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Bing-Yan Xie
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Nanning Maternity and Child Health Hospital, Nanning, China
| | - Wen-Xia Qin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Li WH, Xiang ZTY, Lu AX, Wang SS, Yan CH. Manganese-induced apoptosis through the ROS-activated JNK/FOXO3a signaling pathway in CTX cells, a model of rat astrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115326. [PMID: 37556958 DOI: 10.1016/j.ecoenv.2023.115326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Manganese (Mn) is an essential trace element that maintains many normal physiological functions. However, multi-system disorders would occur once overexposure to Mn, especially neurotoxicity. Despite evidence demonstrating the critical role of ROS-activated JNK/FOXO3a signaling pathway in neuronal survival, the specific mechanisms by which it contributes to Mn-induced neurotoxicity are still unclear. The objectives of this study was to examine the modulation of the JNK/FOXO3a signaling pathway, which is activated by ROS, in Mn-induced apoptosis, using a rat brain astrocyte cell line (CTX cells). This study found that a dose-dependent decrease in cell viability of CTX cells was observed with 150, 200, 250, 300 μmol/L Mn. The results of apoptosis-related protein assay showed that Mn decreased the expression of anti-apoptotic protein Bcl-2 and enhanced the expression of apoptosis-related proteins like Bax and Cleaved-Caspase3. In addition, treatment with Mn resulted in elevated ROS levels and increased phosphorylation levels of JNK. Conversely, phosphorylation of nuclear transcription factors FOXO3a, which regulates expression of transcription factors including Bim and PUMA, was decreased. Depletion of ROS by N-acetyl-L-cysteine (NAC) and inhibition of the JNK pathway by SP600125 prevented Mn-induced JNK/FOXO3a pathway activation and, more importantly, the level of apoptosis was also significantly reduced. Confirmation of Mn-induced apoptosis in CTX cells through ROS generation and activation of the JNK/FOXO3a signaling pathway was the outcome of this study. These findings offer fresh insights into the neurotoxic mechanisms of Mn and therapeutic targets following Mn exposure.
Collapse
Affiliation(s)
- Wan-He Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Ting-Yan Xiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Xie HL, Zhang YH, Tan XD, Zheng Y, Ni HY, Dong LP, Zheng JL, Diao JZ, Yin YJ, Zhang JB, Sun XQ, Yang YW. miR-375 Induced the Formation and Transgenerational Inheritance of Fatty Liver in Poultry by Targeting MAP3K1. DNA Cell Biol 2022; 41:590-599. [PMID: 35533015 DOI: 10.1089/dna.2022.0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The liver of poultry is the primary site of lipid synthesis. The excessive production of lipids accumulates in liver tissues causing lipid metabolism disorders, which result in fatty liver disease and have a transgenerational effect of acquired phenotypes. However, its specific mechanisms have not yet been fully understood. In this study, the differentially expressed miR-375 as well as its target gene MAP3K1 (mitogen-activated protein kinase kinase kinase 1) were screened out by interaction network analysis of microRNA sequencing results and transcriptome profiling in the fatty liver group of the F0-F3 generation (p < 0.05 or p < 0.01). Furthermore, the results showed that the number of lipid droplets and triglyceride content were significantly decreased after upregulation of miR-375 in primary hepatocyte culture in vitro (p < 0.05 or p < 0.01). The MAP3K1 knockdown group exhibited the opposite trends (p < 0.05 or p < 0.01). P53, Bcl-x, PMP22, and CDKN2C related to cell proliferation were significantly upregulated or downregulated after knocking down MAP3K1 (p < 0.05). This research uniquely revealed that silencing miR-375 inhibits lipid biosynthesis and promotes cell proliferation, which may be due to the partial regulation of the expression level of MAP3K1, thereby further participating in the transgenerational inheritance process of regulating liver lipid metabolism. These results reveal the pathogenesis of fatty liver in noncoding RNA and provide good candidate genes for breeding progress of disease resistance in chickens.
Collapse
Affiliation(s)
- Heng-Li Xie
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Yong-Hong Zhang
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Xiao-Dong Tan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yi Zheng
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Hong-Yu Ni
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Li-Ping Dong
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Jin-Lei Zheng
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Ji-Zhe Diao
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Yi-Jing Yin
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Jia-Bao Zhang
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Xue-Qi Sun
- College of Animal Science, Jilin University, Changchun, P.R. China.,Jilin Academy of Agricultural Sciences, Changchun, P.R. China
| | - Yu-Wei Yang
- College of Animal Science, Jilin University, Changchun, P.R. China
| |
Collapse
|
7
|
Xiang Y, Wang L, Wei Y, Zhang H, Emu Q. Excessive manganese alters serum biochemical indices, induces histopathological alterations, and activates apoptosis in liver and cerebrum of Jianzhou Da'er goat (Capra hircus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109241. [PMID: 34752896 DOI: 10.1016/j.cbpc.2021.109241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 02/05/2023]
Abstract
The present study aimed to explore the toxic effects of excessive dietary Mn in livers and cerebrums of Jianzhou Da'er goat (Capra hircus). Three-month old goats were assigned into three groups: control group, fed on basal diet; Mn I group, fed on the basal diet mixed with MnCl2 (2.5 g/kg); Mn II group, fed on the basal diet mixed with MnCl2 (5 g/kg). Compared with the control group, the activities of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and the concentrations of interferon-γ (IFN-γ) in Mn I and Mn II groups were significantly increased, but the concentrations of IgG in Mn I and Mn II groups were significantly decreased (p < 0.05). The activities of superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and the concentrations of glutathione (GSH) in Mn I and Mn II groups were significantly decreased, whereas the concentrations of malondialdehyde (MDA) in Mn I and Mn II groups were significantly increased in livers and cerebrums (p < 0.05). Moreover, the hepatocytes necrosed, inflammatory cells infiltrated, chromatin concentrated, mitochondrial cristae reduced in Mn I and Mn II groups. The nerve cells necrosed, blood vessels congested, inflammatory cells infiltrated, mitochondrial electron density and mitochondrial cristae decreased, and vacuolization increased in Mn I and Mn II groups. Furthermore, the mRNA expressions of tumor necrosis factor alpha (TNF-α), tumor necrosis factor receptor type 1 (TNFR1), fas-associated protein via a death domain (FADD), Bcl2-associated X (Bax), cysteinyl aspartate specific proteinase 3, 8, 9 (Caspase-3, 8, 9) in Mn I and Mn II groups were significantly increased (p < 0.05), but the mRNA expressions of B-cell lymphoma-2 (Bcl-2) in Mn I and Mn II groups were significantly decreased (p < 0.05) in livers. The mRNA expressions of Bcl-2, Bax, Caspase-3, 9, 7, 12 in Mn I and Mn II groups were significantly increased (p < 0.05), however, the ratio of Bcl-2/Bax in Mn I and Mn II groups was significantly decreased (p < 0.05) in cerebrums. In summary, our results provided new insights for better understanding the mechanisms of Mn toxicity in Capra hircus.
Collapse
Affiliation(s)
- Yi Xiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Wei
- Animal Science Academy of Sichuan Province, Chengdu 610066, China.
| | - Hua Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Quzhe Emu
- Animal Science Academy of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
8
|
Liu Y, Yu M, Cui J, Du Y, Teng X, Zhang Z. Heat shock proteins took part in oxidative stress-mediated inflammatory injury via NF-κB pathway in excess manganese-treated chicken livers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112833. [PMID: 34600291 DOI: 10.1016/j.ecoenv.2021.112833] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Manganese (Mn) is an essential metal in humans and animals. However, excess Mn entered environment due to the wide application of Mn in industry and agriculture, and became an environmental pollutant. Exposure to high doses of Mn is toxic to humans and animals (including chickens). Liver is a target organ of Mn poisoning. Nevertheless, there were few studies on whether Mn poisoning damages chicken livers and poisoning mechanism of Mn in chicken livers. Herein, the aim of this study was to explore if oxidative stress, heat shock proteins (HSPs), and inflammatory response were involved in the mechanism of Mn poisoning-caused damage in chicken livers. A chicken Mn poisoning model was established. One hundred and eighty chickens were randomly divided into one control group (containing 127.88 mg Mn kg-1) and three Mn-treated groups (containing 600, 900, and 1800 mg Mn kg-1, respectively). Histomorphological structure was observed via microstructure and ultrastructure. Spectrophotometry was used to detect total antioxidant capacity (T-AOC) and inducible nitric oxide synthase (iNOS) activity, as well as nitric oxide (NO) content. And qRT-PCR was performed to measure mRNA expression of inflammatory genes (nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and iNOS) and heat shock protein (HSP) genes (HSP27, HSP40, HSP60, HSP70, and HSP90). Multivariate correlation analysis, principal component analysis, and cluster analysis were used to demonstrate the reliability of mechanism of Mn poisoning in our experiment. The results indicated that excess Mn led to inflammatory injury at three contents and three time points. Meanwhile, we found that NO content, iNOS activity, and NF-κB, TNF-α, COX-2, PGE2, and iNOS mRNA expression increased after Mn treatment, meaning that exposure to Mn induced inflammatory response via NF-κB pathway in chicken livers. Moreover, excess Mn decreased T-AOC activity, indicating that Mn exposure caused oxidative stress. Furthermore, mRNA expression of above five HSP genes was up-regulated during Mn exposure. Oxidative stress triggered the increase of HSPs and the increase of HSPs mediated inflammatory response induced by Mn. In addition, there were time- and dose-dependent effects on Mn-caused chicken liver inflammatory injury. Taken together, HSPs participated in oxidative stress-mediated inflammatory damage caused by excess Mn in chicken livers via NF-κB pathway. For the first time, we found that oxidative stress can trigger HSP70 and HSPs can trigger poisoning-caused inflammatory damage, which needs to be further explored. This study provided a new insight into environmental pollutants and a reference for further study on molecular mechanisms of poisoning.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot City 010018, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Meijin Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin 132101, PR China.
| | - Zuozhong Zhang
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot City 010018, PR China.
| |
Collapse
|
9
|
Chen J, Su Y, Lin R, Lin F, Shang P, Hussain R, Shi D. Effects of Acute Diquat Poisoning on Liver Mitochondrial Apoptosis and Autophagy in Ducks. Front Vet Sci 2021; 8:727766. [PMID: 34458360 PMCID: PMC8385319 DOI: 10.3389/fvets.2021.727766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Diquat (DQ) is an effective herbicide and is widely used in agriculture. Due to persistent and frequent applications, it can enter into aquatic ecosystem and induce toxic effects to exposed aquatic animals. The residues of DQ via food chain accumulate in different tissues of exposed animals including humans and cause adverse toxic effects. Therefore, it is crucial and important to understand the mechanisms of toxic effects of DQ in exposed animals. We used ducks as test specimens to know the effects of acute DQ poisoning on mechanisms of apoptosis and autophagy in liver tissues. Results on comparison of various indexes of visceral organs including histopathological changes, apoptosis, autophagy-related genes, and protein expression indicated the adverse effects of DQ on the liver. The results of our experimental trial showed that DQ induces non-significant toxic effects on pro-apoptotic factors like BAX, BAK1, TNF-α, caspase series, and p53. The results revealed that anti-apoptotic gene Parkin was significantly upregulated, while an upward trend was also observed for Bcl2, suggesting that involvement of the anti-apoptotic factors in ducklings plays an important role in DQ poisoning. Results showed that DQ significantly increased the protein expression level of the autophagy factor Beclin 1 in the liver. Results on key autophagy factors like LC3A, LC3B, and p62 showed an upward trend at gene level, while the protein expression level of both LC3B and p62 reduced that might be associated with process of translation affected by the pro-apoptotic components such as apoptotic protease that inhibits the occurrence of autophagy while initiating cell apoptosis. The above results indicate that DQ can induce cell autophagy and apoptosis and the exposed organism may resist the toxic effects of DQ by increasing anti-apoptotic factors.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Renzhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Xiang Y, Yu Y, Li Q, Jiang Z, Li J, Liang C, Chen J, Li Y, Chen X, Cao W. Mutual regulation between chicken telomerase reverse transcriptase and the Wnt/β-catenin signalling pathway inhibits apoptosis and promotes the replication of ALV-J in LMH cells. Vet Res 2021; 52:110. [PMID: 34412690 PMCID: PMC8375160 DOI: 10.1186/s13567-021-00979-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed to explore the mutual regulation between chicken telomerase reverse transcriptase (chTERT) and the Wnt/β-catenin signalling pathway and its effects on cell growth and avian leukosis virus subgroup J (ALV-J) replication in LMH cells. First, LMH cells stably overexpressing the chTERT gene (LMH-chTERT cells) and corresponding control cells (LMH-NC cells) were successfully constructed with a lentiviral vector expression system. The results showed that chTERT upregulated the expression of β-catenin, Cyclin D1, TCF4 and c-Myc. chTERT expression level and telomerase activity were increased when cells were treated with LiCl. When the cells were treated with ICG001 or IWP-2, the activity of the Wnt/β-catenin signalling pathway was significantly inhibited, and chTERT expression and telomerase activity were also inhibited. However, when the β-catenin gene was knocked down by small interfering RNA (siRNA), the changes in chTERT expression and telomerase activity were consistent with those in cells treated with ICG001 or IWP-2. These results indicated that chTERT and the Wnt/β-catenin signalling pathway can be mutually regulated. Subsequently, we found that chTERT not only shortened the cell cycle to promote proliferation but also inhibited apoptosis by downregulating the expression of Caspase 3, Caspase 9 and BAX; upregulating BCL-2 and BCL-X expression; and promoting autophagy. Moreover, chTERT significantly enhanced the migration ability of LMH cells, upregulated the protein and mRNA expression of ALV-J and increased the virus titre. ALV-J replication promoted chTERT expression and telomerase activity.
Collapse
Affiliation(s)
- Yong Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yun Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingbo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jinqun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Canxin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Miao Z, Zhang K, Bao R, Li J, Tang Y, Teng X. Th1/Th2 imbalance and heat shock protein mediated inflammatory damage triggered by manganese via activating NF-κB pathway in chicken nervous system in vivo and in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44361-44373. [PMID: 33847884 DOI: 10.1007/s11356-021-13782-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) is a ubiquitous heavy metal pollutant in environment, and excess Mn can damage nervous system of humans and animals. However, molecular mechanism of Mn-induced poultry neurotoxicity on inflammatory injury is still not fully clear. Thus, the purpose of the conducted research was to explore molecular mechanism of inflammatory injury caused by Mn in chicken nervous system. Two Mn poisoning models were established in vivo and in vitro. One hundred and eighty chickens were randomly separated into four groups. One control group was raised drinking water and standard diet. Three Mn groups were raised drinking water, and the standard diet supplemented with three different concentrations of MnCl2 ∙ 4H2O. There were 45 birds and 3 replicates in each group. Neurocytes from chicken embryos were cultured in mediums without and with six different concentrations of MnCl2 ∙ 4H2O in vitro. Our experiments showed that excess Mn caused cerebral histomorphological structure alternations and damage, and increased the expressions (P < 0.05) of inflammation-related factor NF-κB, TNF-α, iNOS, COX-2, and PTGEs in vivo and in vitro, meaning that excess Mn caused inflammatory damage and inflammatory response in chicken nervous system. Moreover, there were an upregulated IFN-γ mRNA expression and a downregulated IL-4 mRNA expression (P < 0.05) in bird cerebra and embryonic neurocytes after exposure to Mn, indicating that Mn exposure caused Th1/Th2 imbalance and immunosuppression. Additionally, in our research, the elevation (P < 0.05) of five HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90) was found, suggesting that HSPs participated molecular mechanism of Mn stress. In addition, the inflammatory toxicity of Mn to chicken nervous system was time- and dose-dependent. Taken all together, our findings indicated that Th1/Th2 imbalance and HSPs mediated Mn-caused inflammatory injury via NF-κB pathway in chicken nervous system in vivo and in vitro.
Collapse
Affiliation(s)
- Zhiying Miao
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, Jilin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kun Zhang
- Heihe University, Heihe, 164300, People's Republic of China
| | - Rongkun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingxin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - You Tang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, Jilin, China.
| | - Xiaohua Teng
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, Jilin, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
12
|
Li Y, Zhang R, Li X, Li J, Ji W, Zeng X, Bao J. Exposure to the environmental pollutant ammonia causes changes in gut microbiota and inflammatory markers in fattening pigs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111564. [PMID: 33396094 DOI: 10.1016/j.ecoenv.2020.111564] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 05/24/2023]
Abstract
Ammonia (NH3) is a major pollutant in livestock houses and atmospheric environment. It has been demonstrated that NH3 can cause a series of damage to animals and human. However, toxicity evaluation of NH3 on farm animals was rarely reported, especially in the intestinal microflora. Therefore, in this study, twenty-four 125-day-old fattening pigs were randomly divided into 4 groups: control group, NH3 group (88.2 mg m-3 < NH3 concentration < 90.4 mg m-3), Se group (Se content: 0.5 mg kg-1), and NH3 + Se group (88.2 mg m-3 < NH3 concentration < 90.4 mg m-3, Se content: 0.5 mg kg-1), and the effects of NH3 and L-Selenomethionine on the microbiota composition in the jejunum and the levels of inflammatory markers in feces of fattening pigs were examined by 16S rDNA and ELISA, respectively. Our results showed that the content of Matrix metalloproteinase-9 (MMP-9), Myeloperoxidase (MPO), Lactoferrin (LTF) and Calprotectin in the ammonia group (A group) were significantly elevated compared to the control group, and the content of MMP-9, MPO, LTF and Calprotectin in the A + Se group were significantly reduced. A significant difference in microbiota composition in the phylum, class, family and genus levels was found in the A group and the NH3 + Se group. There was a negative correlation between Streptococcus and Calprotectin. Our results indicated that excessive NH3 inhalation could cause changes in inflammatory markers and beta diversity of intestinal microflora in fattening pigs. We found there was a positive correlation between MPO and Pseudomonas. In addition, we first proposed that L-Selenomethionine could improve the imbalance of microbial flora and the inflammatory injury caused by NH3. Changes in intestinal microflora and inflammatory markers can be used as important indicators to evaluate NH3 toxicity, and studying changes in intestinal microflora is also an important mechanism to reveal NH3 toxicity.
Collapse
Affiliation(s)
- Yutao Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiangyin Zeng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jun Bao
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
13
|
Association between Serum Essential Metal Elements and the Risk of Schizophrenia in China. Sci Rep 2020; 10:10875. [PMID: 32620780 PMCID: PMC7335092 DOI: 10.1038/s41598-020-66496-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/19/2020] [Indexed: 01/02/2023] Open
Abstract
Numerous essential metal elements (EMEs) are necessary to maintain the proper function of human body. In this case-control study, we investigated the associations of 11 EMEs [Calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), manganese (Mn), selenium (Se), cobalt (Co), Molybdenum (Mo), copper (Cu), zinc (Zn), and iron (Fe)] in serum with the risk of schizophrenia. We recruited first-episode and drug-naïve schizophrenic patients (cases = 99) and age-sex-matched normal subjects (controls = 99) from Tangshan, Hebei Province, China. The 11 EMEs in serum from cases and controls were quantified by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. We observed that a higher level of Mn (OR = 2.390; 95%CI: 1.504–3.796) and lower levels of Ca (OR = 0.939; 95%CI: 0.890–0.990), Mg (OR = 0.806; 95%CI: 0.669–0.972), Na (OR = 0.995; 95%CI: 0.993–0.998), and Se (OR = 0.954; 95%CI: 0.937–0.972) were associated with an elevated risk of schizophrenia. Dose–response relationships between serum EME concentrations and the risk of schizophrenia were observed in most of the schizophrenia-associated EMEs. Moreover, the serum concentrations of these schizophrenia-associated EMEs in patients were correlated with the severity of their clinical symptoms. Significant correlations were found between EMEs and biomarkers associated with schizophrenia related to metabolic and oxidative stress. This study suggested that the concentration and profile of EMEs were different between schizophrenic patients and normal controls and revealed potential metabolisms associated with EMEs and schizophrenia, suggesting EMEs might act as biomarkers of schizophrenia to improve the current situation of diagnosis and treatment.
Collapse
|
14
|
Pyrroloquinoline Quinine and LY294002 Changed Cell Cycle and Apoptosis by Regulating PI3K-AKT-GSK3β Pathway in SH-SY5Y Cells. Neurotox Res 2020; 38:266-273. [PMID: 32385839 DOI: 10.1007/s12640-020-00210-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
To verify the role of PI3K-AKT-GSK3β pathway during manganese (Mn)-induced cell death, apoptosis, related indicators were investigated. SH-SY5Y cells were directly exposed to different concentrations of MnCl2. Then, cell viability, apoptosis, necrosis rate, and cell cycle were detected by MTT, FITC Annexin V Apoptosis Detection Kit with PI and PI staining. Then, in two intervention groups, cells were preconditioned with agonist (PQQ) and suppressant (LY294002). The cell viability decreased with a dose-response relationship (p < 0.05), while apoptosis and necrosis increased (p < 0.05). The ratio of G0/G1 and G2/M also decreased, but the percentage of S phase increased (p < 0.05). During above process, PI3K-AKT-GSK3β pathway was involved by regulating the expression of PI3K, AKT, p-AKT, and GSK3β (p < 0.05). For further research, cell cycle and apoptosis were detected pretreatment with PQQ and LY294002 before Mn exposure. The result showed cell ability, apoptosis, and necrosis rate changed obviously compared with non-pretreated group (p < 0.05). The variance of G0/G1 and G2/M ratio and percentage of S phase were also different, especially in 2.0 mM (p < 0.05). Mn can cause apoptosis and necrosis, varying cell cycle of SH-SY5Y cells, which could be changed by PQQ and LY294002 by regulating PI3K-AKT-GSK3β pathway.
Collapse
|
15
|
Pajarillo E, Rizor A, Son DS, Aschner M, Lee E. The transcription factor REST up-regulates tyrosine hydroxylase and antiapoptotic genes and protects dopaminergic neurons against manganese toxicity. J Biol Chem 2020; 295:3040-3054. [PMID: 32001620 PMCID: PMC7062174 DOI: 10.1074/jbc.ra119.011446] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic functions are important for various biological activities, and their impairment leads to neurodegeneration, a hallmark of Parkinson's disease (PD). Chronic manganese (Mn) exposure causes the neurological disorder manganism, presenting symptoms similar to those of PD. Emerging evidence has linked the transcription factor RE1-silencing transcription factor (REST) to PD and also Alzheimer's disease. But REST's role in dopaminergic neurons is unclear. Here, we investigated whether REST protects dopaminergic neurons against Mn-induced toxicity and enhances expression of the dopamine-synthesizing enzyme tyrosine hydroxylase (TH). We report that REST binds to RE1 consensus sites in the TH gene promoter, stimulates TH transcription, and increases TH mRNA and protein levels in dopaminergic cells. REST binding to the TH promoter recruited the epigenetic modifier cAMP-response element-binding protein-binding protein/p300 and thereby up-regulated TH expression. REST relieved Mn-induced repression of TH promoter activity, mRNA, and protein levels and also reduced Mn-induced oxidative stress, inflammation, and apoptosis in dopaminergic neurons. REST reduced Mn-induced proinflammatory cytokines, including tumor necrosis factor α, interleukin 1β (IL-1β), IL-6, and interferon γ. Moreover, REST inhibited the Mn-induced proapoptotic proteins Bcl-2-associated X protein (Bax) and death-associated protein 6 (Daxx) and attenuated an Mn-induced decrease in the antiapoptotic proteins Bcl-2 and Bcl-xL. REST also enhanced the expression of antioxidant proteins, including catalase, NF-E2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). Our findings indicate that REST activates TH expression and thereby protects neurons against Mn-induced toxicity and neurological disorders associated with dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32301
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32301
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York 10461
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32301.
| |
Collapse
|
16
|
Xu Y, Li Z, Zhang S, Zhang H, Teng X. miR-187-5p/apaf-1 axis was involved in oxidative stress-mediated apoptosis caused by ammonia via mitochondrial pathway in chicken livers. Toxicol Appl Pharmacol 2019; 388:114869. [PMID: 31863799 DOI: 10.1016/j.taap.2019.114869] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Ammonia (NH3), a toxic gas, is an important cause of atmospheric haze and one of the main pollutants in air environment of poultry houses, threatening the health of human beings and poultry. However, little is known about the effect of NH3 on liver apoptotic damage. This study aimed to investigate the mechanism of oxidative stress-mediated apoptosis caused by NH3 in chicken livers and whether miR-187-5p/apaf-1 axis was involved in this mechanism. Here we duplicated NH3 poisoning model of chickens for fattening to study the ultrastructure of chicken livers, apoptosis rate, oxidative stress indexes, miR-187-5p, and apoptosis-related genes. Obvious apoptotic characteristics of liver tissues exposed to excess NH3 were observed, and the apoptosis rate increased. Excess NH3 decreased the activities of catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px), and increased the content of malondialdehyde (MDA), suggesting that oxidative stress occurred. miR-187-5p decreased, and apoptotic protease activating factor-1 (apaf-1) increased, indicating that excess NH3 dysregulated miR-187-5p/apaf-1 axis. The expression of tumor protein p53 (p53), Bcl-2 associated X protein (Bax), Bcl-2 homologous antagonist/killer (Bak), Cytochrome-c (Cyt-c), Caspase-9, Caspase-8, and Caspase-3 was promoted, and the expression of B-cell lymphoma-2 (Bcl-2) was inhibited, resulting in apoptosis. Moreover, oxidative stress indexes, miR-187-5p, and apoptosis-related genes changed in dose- and time-dependent manner. Altogether, miR-187-5p/apaf-1 axis participated in oxidative stress-mediated apoptosis caused by NH3 via mitochondrial pathway in the livers of chickens for fattening. This study may provide new ideas to study the mechanism of liver apoptotic damage induced by NH3 exposure.
Collapse
Affiliation(s)
- Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhuo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
17
|
Lv C, Niu S, Yan S, Bai C, Yu X, Hou J, Gao W, Zhang J, Zhao Z, Yang C, Zhang Y. Low-density lipoprotein receptor-related protein 1 regulates muscle fiber development in cooperation with related genes to affect meat quality. Poult Sci 2019; 98:3418-3425. [PMID: 30982888 DOI: 10.3382/ps/pez168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an important signal protein that is widely involved in physiological processes, such as lipid metabolism, cell movement, and disease processes. However, the relationship between LRP1 and meat quality remains unknown in chickens. The present study aimed to investigate the correlation between LRP1 and meat quality that builds on our preliminary research, as well as to reveal the underlying molecular mechanism of LRP1 on meat-quality traits. The results showed that LRP1 was significantly correlated with shear force (P < 0.05). Several key genes involved in muscle growth and development, including IGF-1, IGFBP-5, IGF-1R, IGF-2, and MyoD, were down-regulated significantly (P < 0.05 or P < 0.01), and MSTN was up-regulated significantly (P < 0.01) in the presence of LRP1 interference. Cell proliferation- or apoptosis-related genes, including PMP22, CDKN2C, and p53, increased significantly (P < 0.05 or P < 0.01), whereas Bcl-x decreased significantly (P < 0.05) in the RNAi group. We conclude that LRP1 regulates muscle fiber development in cooperation with related genes that affect myoblast proliferation and apoptosis, thereby impacting shear force in chickens. This study will provide a valuable resource for biological investigations of muscle growth and meat-quality-related genes in chickens. The results could be useful in identifying candidate genes that could be used for selective breeding to improve meat quality.
Collapse
Affiliation(s)
- Chao Lv
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Shuling Niu
- College of Animal Science, Jilin University, Changchun 130062, P. R. China.,Department of Animal Science and Technology, Changchun Sci-Tech University, Changchun 130600, P. R. China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Chunyan Bai
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Xi Yu
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Jiani Hou
- Department of Animal Science and Technology, Changchun Sci-Tech University, Changchun 130600, P. R. China
| | - Wenjing Gao
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Jinyu Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Caini Yang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
18
|
Gandhi D, Sivanesan S, Kannan K. Manganese-Induced Neurotoxicity and Alterations in Gene Expression in Human Neuroblastoma SH-SY5Y Cells. Biol Trace Elem Res 2018; 183:245-253. [PMID: 28914406 DOI: 10.1007/s12011-017-1153-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
Abstract
Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.
Collapse
Affiliation(s)
- Deepa Gandhi
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Saravanadevi Sivanesan
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| | - Krishnamurthi Kannan
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|