1
|
Song S, Li R, Wu C, Dong J, Wang P. EFFECTS OF HYPERBARIC OXYGEN THERAPY ON INTESTINAL ISCHEMIA-REPERFUSION AND ITS MECHANISM. Shock 2024; 61:650-659. [PMID: 38113056 DOI: 10.1097/shk.0000000000002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
ABSTRACT Ischemia can cause reversible or irreversible cell or tissue damage, and reperfusion after ischemia not only has no therapeutic effect but also aggravates cell damage. Notably, gut tissue is highly susceptible to ischemia-reperfusion (IR) injury under many adverse health conditions. Intestinal IR (IIR) is an important pathophysiological process in critical clinical diseases. Therefore, it is necessary to identify better therapeutic methods for relieving intestinal ischemia and hypoxia. Hyperbaric oxygenation refers to the intermittent inhalation of 100% oxygen in an environment greater than 1 atm pressure, which can better increase the oxygen level in the tissue and change the inflammatory pathway. Currently, it can have a positive effect on hypoxia and ischemic diseases. Related studies have suggested that hyperbaric oxygen can significantly reduce ischemia-hypoxic injury to the brain, spinal cord, kidney, and myocardium. This article reviews the pathogenesis of IR and the current treatment measures, and further points out that hyperbaric oxygen has a better effect in IR. We found that not only improved hypoxia but also regulated IR induced injury in a certain way. From the perspective of clinical application, these changes and the application of hyperbaric oxygen therapy have important implications for treatment, especially IIR.
Collapse
Affiliation(s)
- Shurui Song
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| | - Ruojing Li
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| | - Changliang Wu
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| | | | - Peige Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| |
Collapse
|
2
|
Shao JL, Wang LJ, Xiao J, Yang JF. Non-coding RNAs: The potential biomarker or therapeutic target in hepatic ischemia-reperfusion injury. World J Gastroenterol 2023; 29:4927-4941. [PMID: 37731999 PMCID: PMC10507504 DOI: 10.3748/wjg.v29.i33.4927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is the major complication of liver surgery and liver transplantation, that may increase the postoperative morbidity, mortality, tumor progression, and metastasis. The underlying mechanisms have been extensively investigated in recent years. Among these, oxidative stress, inflammatory responses, immunoreactions, and cell death are the most studied. Non-coding RNAs (ncRNAs) are defined as the RNAs that do not encode proteins, but can regulate gene expressions. In recent years, ncRNAs have emerged as research hotspots for various diseases. During the progression of HIRI, ncRNAs are differentially expressed, while these dysregulations of ncRNAs, in turn, have been verified to be related to the above pathological processes involved in HIRI. ncRNAs mainly contain microRNAs, long ncRNAs, and circular RNAs, some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity, and as therapeutic targets to attenuate HIRI. Here, we briefly summarize the common pathophysiology of HIRI, describe the current knowledge of ncRNAs involved in HIRI in animal and human studies, and discuss the potential of ncRNA-targeted therapeutic strategies. Given the scarcity of clinical trials, there is still a long way to go from pre-clinical to clinical application, and further studies are needed to uncover their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jia-Li Shao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Li-Juan Wang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Ji Xiao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jin-Feng Yang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
3
|
Bavarsad K, Farbood Y, Mard SA, Khoshnam SE, Dianat M, Jahangiri HM, Khorsandi LS, Goudarzi G, Sarkaki A. Effects of Gallic Acid on Memory Deficits and Electrophysiological Impairments Induced by Cerebral Ischemia/Reperfusion in Rats Following Exposure to Ambient Dust Storm. Neurochem Res 2023:10.1007/s11064-023-03953-5. [PMID: 37222948 DOI: 10.1007/s11064-023-03953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
We aimed to investigate the probable protective effects of gallic acid (GA) on cognitive deficits, hippocampal long term potentiation (LTP) impairments, and molecular changes induced by cerebral ischemia/reperfusion (I/R) in rats following exposure to ambient dust storm. After pretreatment with GA (100 mg/kg), or vehicle (Veh) (normal saline, 2 ml/kg) for ten days, and 60 minutes' exposure to dust storm including PM (PM, 2000-8000 g/m3) every day, 4-vessel occlusion (4VO) type of I/R was induced. Three days after I/R induction, we evaluated behavioral, electrophysiological, histopathological, molecular and brain tissue inflammatory cytokine changes. Our findings indicated that pretreatment with GA significantly reduced cognitive impairments caused by I/R (P < 0.05) and hippocampal LTP impairments caused by I/R after PM exposure (P < 0.001). Additionally, after exposure to PM, I/R significantly elevated the tumor necrosis factor α content (P < 0.01) and miR-124 level (P < 0.001) while pre-treatment with GA reduced the level of miR-124 (P < 0.001). Histopathological results also revealed that I/R and PM caused cell death in the hippocampus CA1 area (P < 0.001) and that GA decreased the rate of cell death (P < 0.001). Our findings show that GA can prevent brain inflammation, and thus cognitive and LTP deficits caused by I/R, PM exposure, or both.
Collapse
Affiliation(s)
- Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- National Institute for Medical Research Development "NIMAD", Tehran, Iran
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- National Institute for Medical Research Development "NIMAD", Tehran, Iran
| | - Seyed Ali Mard
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- National Institute for Medical Research Development "NIMAD", Tehran, Iran
| | - Seyed Esmaeil Khoshnam
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- National Institute for Medical Research Development "NIMAD", Tehran, Iran
| | - Mahin Dianat
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- National Institute for Medical Research Development "NIMAD", Tehran, Iran
| | - Hamzeh Mirshekari Jahangiri
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- National Institute for Medical Research Development "NIMAD", Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Laya Sadat Khorsandi
- National Institute for Medical Research Development "NIMAD", Tehran, Iran
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- National Institute for Medical Research Development "NIMAD", Tehran, Iran
- Department of Environmental Health Engineering, Environmental Technology Research Center, Jundishapur University of Medical Science, Ahvaz, Iran
| | - Alireza Sarkaki
- National Institute for Medical Research Development "NIMAD", Tehran, Iran.
- Medicinal Plants Research Center, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medica Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
5
|
Zhu SF, Yuan W, Du YL, Wang BL. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int 2023; 22:45-53. [PMID: 35934611 DOI: 10.1016/j.hbpd.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgeries, such as hepatectomy and liver transplantation. In recent years, several non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified as factors involved in the pathological progression of HIRI. In this review, we summarized the latest research on lncRNAs, miRNAs and the lncRNA-miRNA regulatory networks in HIRI. DATA SOURCES The PubMed and Web of Science databases were searched for articles published up to December 2021 using the following keywords: "hepatic ischemia-reperfusion injury", "lncRNA", "long non-coding RNA", "miRNA" and "microRNA". The bibliography of the selected articles was manually screened to identify additional studies. RESULTS The mechanism of HIRI is complex, and involves multiple lncRNAs and miRNAs. The roles of lncRNAs such as AK139328, CCAT1, MALAT1, TUG1 and NEAT1 have been established in HIRI. In addition, numerous miRNAs are associated with apoptosis, autophagy, oxidative stress and cellular inflammation that accompany HIRI pathogenesis. Based on the literature, we conclude that four lncRNA-miRNA regulatory networks mediate the pathological progression of HIRI. Furthermore, the expression levels of some lncRNAs and miRNAs undergo significant changes during the progression of HIRI, and thus are potential prognostic markers and therapeutic targets. CONCLUSIONS Complex lncRNA-miRNA-mRNA networks regulate HIRI progression through mutual activation and antagonism. It is necessary to screen for more HIRI-associated lncRNAs and miRNAs in order to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Shan-Fei Zhu
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Wei Yuan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Yong-Liang Du
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Bai-Lin Wang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China.
| |
Collapse
|
6
|
Khafagy HF, AbuSeada AN, Shash AM, Elayashy M, El-Araby RE, Sabry OM, Montasser AY, Mohamed MS, Ebied RS, Samhan YM. Effects of Desflurane exposure and Laparotomy on genomic biomarkers and hepatic histopathology in an experimentally induced liver injury model: A pilot study. EGYPTIAN JOURNAL OF ANAESTHESIA 2022. [DOI: 10.1080/11101849.2022.2069219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Hanan F. Khafagy
- Department of Anesthesia and Surgical Intensive Care, Theodor Bilharz Research Institute, Ministry of Higher Education and Scientific Research, Giza, Egypt
| | - AbdulRahman N. AbuSeada
- Department of Anesthesia and Surgical Intensive Care, Theodor Bilharz Research Institute, Ministry of Higher Education and Scientific Research, Giza, Egypt
| | - Ahmed M. Shash
- Department of Anesthesia, Faculty of Medicine, Cairo University, Ministry of Higher Education and Scientific Research, Cairo, Egypt
| | - Mohamed Elayashy
- Department of Anesthesia, Faculty of Medicine, Cairo University, Ministry of Higher Education and Scientific Research, Cairo, Egypt
| | - Rady E. El-Araby
- Molecular Biology, Central Lab, Theodor Bilharz Research Institute, Ministry of Higher Education and Scientific Research, Giza, Egypt
| | - Omar M. Sabry
- Department of Hematology, Theodor Bilharz Research Institute, Ministry of Higher Education and Scientific Research, Giza, Egypt
| | - Ahmed Y. Montasser
- Department of Pathology, Theodor Bilharz Research Institute, Ministry of Higher Education and Scientific Research, Giza, Egypt
| | - Mohamed S. Mohamed
- Experimental Laboratory Unit Theodor Bilharz Research Institute, Ministry of Higher Education and Scientific Research, Giza, Egypt
| | - Reeham S. Ebied
- Department of Anesthesia and Surgical Intensive Care, Theodor Bilharz Research Institute, Ministry of Higher Education and Scientific Research, Giza, Egypt
| | - Yasser M. Samhan
- Department of Anesthesia and Surgical Intensive Care, Theodor Bilharz Research Institute, Ministry of Higher Education and Scientific Research, Giza, Egypt
| |
Collapse
|
7
|
Celepli S, Çolak B, Celepli P, Bigat İ, Batur HG, Soysal F, Karakurt S, Hücümenoğlu S, Kısmet K, Şahin M. Effects of artichoke leaf extract on hepatic ischemia-reperfusion injury. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2021; 68:87-93. [PMID: 34909970 DOI: 10.1590/1806-9282.20210840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the hepatoprotective effect and mechanism of action of artichoke leaf extract in hepatic ischemia/reperfusion injury. METHODS Rats were divided into three groups such as sham, control, and artichoke leaf extract groups. Antioxidant enzyme activities and biochemical parameters were examined from the tissue and serum obtained from the subjects. Histopathological findings were scored semiquantitatively. RESULTS Statistically, the antioxidant activity was highest in the artichoke leaf extract group, the difference in biochemical parameters and C-reactive protein was significant compared with the control group, and the histopathological positive effects were found to be significantly higher. CONCLUSIONS As a result, artichoke leaf extract had a hepatoprotective effect and that this effect was related to the antioxidant and anti-inflammatory effects of artichoke.
Collapse
Affiliation(s)
- Salih Celepli
- Gülhane Training and Research Hospital, Department of General Surgery - Ankara, Turkey
| | - Bayram Çolak
- Selçuk University, Faculty of Medicine, Department of General Surgery - Konya, Turkey
| | - Pınar Celepli
- Ankara Training and Research Hospital, Department of Pathology - Ankara, Turkey
| | - İrem Bigat
- TOBB University of Economics & Technology, Department of Biomedical Engineering - Ankara, Turkey
| | - Hatice Gül Batur
- Selçuk University, Science Faculty, Biochemistry Department - Konya, Turkey
| | - Furkan Soysal
- Ankara Yıldırım Beyazıt University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering - Konya, Turkey
| | - Serdar Karakurt
- Selçuk University, Science Faculty, Biochemistry Department - Konya, Turkey
| | - Sema Hücümenoğlu
- Ankara Training and Research Hospital, Department of Pathology - Ankara, Turkey
| | - Kemal Kısmet
- Selçuk University, Faculty of Nursing, Department of Surgical Nursing - Konya, Turkey
| | - Mustafa Şahin
- Selçuk University, Faculty of Medicine, Department of General Surgery - Konya, Turkey
| |
Collapse
|
8
|
Li C, Qin Y, Ouyang T, Yao M, Zhang A, Luo P, Pan X. miR-122-5p Mediates Fluoride-Induced Osteoblast Activation by Targeting CDK4. Biol Trace Elem Res 2021; 199:1215-1227. [PMID: 32572801 DOI: 10.1007/s12011-020-02239-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Chronic intake of fluoride, existing in the environment, may cause endemic fluorosis, which is characterized by the occurrence of skeletal and dental fluorosis. However, the pathogenesis of fluorosis has not yet been elucidated. Abnormal osteoblast proliferation and activation have a pivotal role in bone turnover disorders which are linked to skeletal fluorosis. MicroRNAs are involved in fundamental cellular processes, including cell proliferation. Based on our previous study, population study and in vitro experiments were designed to understand the effect of miR-122-5p on osteoblast activation in skeletal fluorosis through targeting cyclin-dependent kinase 4 (CDK4). In human populations with coal-burning type fluoride exposure, the results showed that miR-122-5p was downregulated but CDK4 expression was upregulated and miR-122-5p was negatively correlated with CDK4 expression. Furthermore, in human osteoblasts treated with sodium fluoride, we demonstrated that miR-122-5p mediated osteoblast activation of skeletal fluorosis via upregulation of the CDK4 protein. In support of this, dual-luciferase reporter assay showed that miR-122-5p modulated CDK4 protein levels by targeting its 3'-untranslated region. These findings show, for the first time, that miR-122-5p may be involved in the cause and development of skeletal fluorosis by targeting CDK4.
Collapse
Affiliation(s)
- Chen Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Qin
- Guizhou Orthopedics Hospital, Guiyang, 550007, China
| | - Ting Ouyang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Maolin Yao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xueli Pan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021; 698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion injury (IRI) initiates from oxidative stress caused by lack of blood supply and subsequent reperfusion. It is often associated with sterile inflammation, cell death and microvascular dysfunction, which ultimately results in myocardial, cerebral and hepatic IRIs. Reportedly, deregulation of Nrf2 pathway plays a significant role in the oxidative stress-induced IRIs. Further, microRNAs (miRNAs/miRs) are proved to regulate the expression and activation of Nrf2 by targeting either the 3'-UTR or the upstream regulators of Nrf2. Additionally, compounds (crocin, ZnSO4 and ginsenoside Rg1) that modulate the levels of the Nrf2-regulating miRNAs were found to exhibit a protective effect against IRIs of different organs. Therefore, the current review briefs the impact of ischemia reperfusion (I/R) pathogenesis in various organs, role of miRNAs in the regulation of Nrf2 and the I/R protective effect of compounds that alter their expression.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
10
|
Akbari G. Emerging roles of microRNAs in intestinal ischemia/reperfusion-induced injury: a review. J Physiol Biochem 2020; 76:525-537. [PMID: 33140255 DOI: 10.1007/s13105-020-00772-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a serious pathological phenomenon in underlying hemorrhagic shock, trauma, strangulated intestinal obstruction, and acute mesenteric ischemia which associated with high morbidity and mortality. MicroRNAs (miRNAs, miRs) are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review discusses on the role of some miRNAs in underlying II/R injury. Some of these miRNAs can have protective action through agomiR or specific antagomiR, and others can have destructive effects in the basal level of II/R insult. Based on these literature reviews, II/R injury affects several miRNAs and their specific target genes. Some miRNAs upregulate under condition of II/R injury, and multiple miRNAs downregulate following II/R damage. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2020. It is shown a correlation between changes in the expression of miRNAs and autophagy, inflammation, oxidative stress, apoptosis, and epithelial barrier function. Taken together, agomiR or antagomiR of some miRNAs can be considered as one new target for the research and development of innovative drugs to the prevention or treatment of II/R damage.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medicinal Plants Research Center, Department of Physiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
11
|
Akbari G. Role of Zinc Supplementation on Ischemia/Reperfusion Injury in Various Organs. Biol Trace Elem Res 2020; 196:1-9. [PMID: 31828721 DOI: 10.1007/s12011-019-01892-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a serious condition which is associated with myocardial infarction, stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease, and sleep apnea and can lead to high morbidity and mortality. Salts of zinc (Zn) are commonly used by humans and have protective effects against gastric, renal, hepatic, muscle, myocardial, or neuronal ischemic injury. The present review evaluates molecular mechanisms underlying the protective effects of Zn supplement against I/R injury. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, and Scientific Information Database from 1991 to 2019. Zn supplementation increased the decreased parameters including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH), metallothionein (MT), protein sulfhydryl (P-SH), and nuclear factor-erythroid 2-related factor-2 (Nrf2) expression and decreased the increased elements such as endoplasmic reticulum (ER) stress, mitochondrial permeability transition pore (mPTP) opening, malondialdehyde (MDA), serum level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and microRNAs-(122 and 34a), apoptotic factors, and histopathological changes. Zn also increases phosphatidylinositol 3-kinase (PI3K)/Akt and glycogen synthase kinase-3β (GSK-3β) phosphorylation and preserves protein kinase C isoforms. It is suggested that Zn can be administered before elective surgeries for prevention of side effects of I/R injury.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
12
|
Li Y, Gao M, Xu LN, Yin LH, Qi Y, Peng JY. MicroRNA-142-3p attenuates hepatic ischemia/reperfusion injury via targeting of myristoylated alanine-rich C-kinase substrate. Pharmacol Res 2020; 156:104783. [PMID: 32224251 DOI: 10.1016/j.phrs.2020.104783] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
MiR-142-3p as one key molecule in oncogenesis and inflammation plays crucial roles in hepatic fibrosis, hepatocellular carcinoma and other liver disease. However, there have no literatures to report its effects on hepatic ischemia-reperfusion (HI/R) injury. In the present work, hypoxia reoxygenation (H/R) models on AML12 and HepG2 cells, and ischemia/reperfusion model in mice were established. The methods of real-time PCR, dual luciferase reporter, mimic, inhibitor, agomir, antagomir and siRNA transfection assays were used. The expression levels of miR-142-3p were decreased in model groups in vitro and in vivo compared with control group or Sham group, which directly targeted MARCKS to regulate its expression. Then, MARCKS activated p38/JNK signal, up-regulated NF-κB expression to accelerate inflammation, and inhibited PI3K/AKT signal to promote apoptosis. Moreover, miR-142-3p mimic in vitro and agomir in vivo lowered the expression levels of MARCKS, thereby alleviating apoptosis and inflammation to relieve HI/R injury. Furthermore, miR-142- 3p inhibitor in vitro and antagomir in vivo up-regulated the expression levels of MARCKS to aggravate HI/R damage via promoting inflammation and apoptosis. Consistently, MARCKS siRNA markedly inhibited HI/R injury by restraining apoptosis and inflamm- ation in mice. MiR-142-3p played a considerable part in adjusting HI/R injury by targeting MARCKS, and miR-142-3p/MARCKS should be a new therapeutic target for HI/R injury.
Collapse
Affiliation(s)
- Y Li
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - M Gao
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - L-N Xu
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - L-H Yin
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Y Qi
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - J-Y Peng
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China; National-Local Joint Engineering Research Center for Drug Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.
| |
Collapse
|
13
|
Cimen O, Eken H, Keskin Cimen F, Cekic AB, Kurt N, Ozbek Bilgin A, Suleyman B, Suleyman H, Mammadov R, Pehlivanoglu K, Kurnaz E. The effect of Liv-52 on liver ischemia reperfusion damage in rats. BMC Pharmacol Toxicol 2020; 21:2. [PMID: 31900219 PMCID: PMC6942351 DOI: 10.1186/s40360-019-0380-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Background Liver ischemia reperfusion (I/R) damage which is frequently seen in clinical hepatobiliary surgeries has no effective treatment for it. Liv-52, known to have hepatoprotective effects, is a natural antioxidant drug licensed by the Ministry of Health of India. The aim of our study is to investigate the effect of Liv-52 on liver damage induced by I/R in rats. Methods Albino Wistar male rats were divided into three groups; liver I/R (IR), 20 mg/kg Liv-52 + liver ischemia reperfusion (LIR) and sham operation applied to control group (HG). Liv-52 was administered to the LIR group (n = 6) 1 h prior to I/R application and distilled water was given orally to IR (n = 6) and HG (n = 6) groups as a solvent. Ischemia was determined as 1 h, and reperfusion was identified as 6 h in animals. Results Increased levels of alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase, malondialdehyde, myeloperoxidase, and decreased levels of superoxide dismutase, and glutathione related enzymes caused by I/R application have been converged to healthy group level with Liv-52 treatment and the damage in liver tissue has been improved histopathologically. Conclusions Liv-52 may be beneficial for preventing liver I/R damage in pre-surgery application.
Collapse
Affiliation(s)
- Orhan Cimen
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Hüseyin Eken
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Ferda Keskin Cimen
- Department of Pathology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Arif Burak Cekic
- Department of General Surgery, Faculty of Medicine, Karadeniz Technical University, 61000, Trabzon, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Asli Ozbek Bilgin
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey.
| | - Kamil Pehlivanoglu
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Eray Kurnaz
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| |
Collapse
|
14
|
Abdel-Gaber SA, Geddawy A, Moussa RA. The hepatoprotective effect of sitagliptin against hepatic ischemia reperfusion-induced injury in rats involves Nrf-2/HO-1 pathway. Pharmacol Rep 2019; 71:1044-1049. [PMID: 31600635 DOI: 10.1016/j.pharep.2019.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxidative stress and inflammation play a key role in the development of hepatic ischemia reperfusion (HIR)-induced injury. Nuclear factor-erythroid 2-related factor-2 (Nrf-2) is a main regulator of numerous genes, encoding cytoprotective molecules including heme oxygenase-1 (HO-1). Sitagliptin (Sit) is an incretin enhancer acting via inhibition of dipeptidyl peptidase-4 (DPP-4) enzyme. This study was undertaken to investigate the ability of Sit to prevent the hepatic pathological changes of HIR induced injury and to modify Nrf-2 and its target HO-1. METHODS Pringle's maneuver was used to induce total HIR in adult male rats that were randomly assigned into 4 groups. Group1 (sham-operated control), Group 2 (sham-operated + Sit-control group), Group 3 (HIR non-treated), and Group 4 (HIR + Sit). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities together with hepatic contents of malondialdhyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) and superoxide dismutase (SOD) activity were evaluated. Hepatic tissue mRNA of Nrf-2 and protein content of HO-1 along with histopathological examination and scoring of hepatic injury were performed. RESULTS Sit caused a significant reduction in ALT and AST activities together with attenuation of HIR-induced histopathological liver injury. Effect of Sit was associated with decreased hepatic level of MDA and NO with increased GSH level and SOD activity. Non-treated rats with HIR showed an increase in Nrf-2 mRNA expression and HO-1 content in hepatic tissue which was further increased by Sit treatment. CONCLUSIONS These results indicate that hepatoprotective activity of Sit against HIR is attributed at least in part to modulation of Nrf-2/ HO-1 signaling pathway.
Collapse
Affiliation(s)
- Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ayman Geddawy
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt; Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.
| | - Rabab A Moussa
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|