1
|
Bisla A, Honparkhe M, Srivastava N. A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia 2022; 54:e14589. [DOI: 10.1111/and.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amarjeet Bisla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Neeraj Srivastava
- Germ Plasm Centre, Division of Animal Reproduction ICAR‐Indian Veterinary Research Institute Bareilly India
| |
Collapse
|
2
|
Lee WY, Park HJ. Toxicity of cerium oxide nanoparticles on neonatal testicular development in mouse organ culture. Reprod Toxicol 2022; 111:120-128. [DOI: 10.1016/j.reprotox.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
3
|
Amiri G, Gholami M, Assadollahi V, Nemati A, Fathi F, Rostami T, Moloudi MR, Alasvand M. Effect of Cerium Oxide Nanoparticles on the Expression of Developmental and Apoptosis Genes of Testicular Tissue in 6-Day-Old NMRI Mice Fetuses. Biol Trace Elem Res 2022; 200:3265-3274. [PMID: 34599428 DOI: 10.1007/s12011-021-02939-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Cerium oxide (CeO2) has potential applications in medicine and various consumer products. This study investigated the effect of CeO2 on the expression of genes associated with apoptosis and testicular development in mouse embryos. The experimental groups of pregnant mice were injected intraperitoneally with CeO2 at a concentration of 10 mg/kg on days 7 and 14 of pregnancy. Six days after birth, the testicles of neonatal male mice were collected for mRNA expression determination using real-time PCR, protein expression analysis by immunohistochemistry, and apoptotic cell population determination using the TUNEL assay. The results showed that the mRNA expression of the Bax, Caspase-3, and Gsk3-β genes, unlike the Bcl2 gene, decreased significantly in the experimental group compared to the control group. The expression ratio of Bax/Bcl2 in the experimental group was lower than in the control group. A similar trend was observed in the population of apoptotic cells. In the experimental group, the expression levels of, Gata4, Sox8, and Rad54 at both the mRNA and protein levels increased significantly compared to the control group. Based on the results of this study, CeO2 at a concentration of 10 mg/kg, in addition to producing anti-apoptotic effects on the testicular cells of neonatal mice, can increase the expression of genes involved in testicular development and performance. The current experimental study proved the protective effects of 10 mg/kg CeO2 in developmental and apoptosis genes of testicular tissue in 6-day-old NMRI mice fetuses; however, more experiments are required to evaluate the possible side effects and interactions.
Collapse
Affiliation(s)
- Golzar Amiri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammadreza Gholami
- Medical Technology Research Center, Institute Health Technology Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahideh Assadollahi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afsaneh Nemati
- Medical Technology Research Center, Institute Health Technology Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Tamana Rostami
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Masoud Alasvand
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
Deval G, Boland S, Fournier T, Ferecatu I. On Placental Toxicology Studies and Cerium Dioxide Nanoparticles. Int J Mol Sci 2021; 22:ijms222212266. [PMID: 34830142 PMCID: PMC8624015 DOI: 10.3390/ijms222212266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
The human placenta is a transient organ essential for pregnancy maintenance, fetal development and growth. It has several functions, including that of a selective barrier against pathogens and xenobiotics from maternal blood. However, some pollutants can accumulate in the placenta or pass through with possible repercussions on pregnancy outcomes. Cerium dioxide nanoparticles (CeO2 NPs), also termed nanoceria, are an emerging pollutant whose impact on pregnancy is starting to be defined. CeO2 NPs are already used in different fields for industrial and commercial applications and have even been proposed for some biomedical applications. Since 2010, nanoceria have been subject to priority monitoring by the Organization for Economic Co-operation and Development in order to assess their toxicity. This review aims to summarize the current methods and models used for toxicology studies on the placental barrier, from the basic ones to the very latest, as well as to overview the most recent knowledge of the impact of CeO2 NPs on human health, and more specifically during the sensitive window of pregnancy. Further research is needed to highlight the relationship between environmental exposure to CeO2 and placental dysfunction with its implications for pregnancy outcome.
Collapse
Affiliation(s)
- Gaëlle Deval
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Sonja Boland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France;
| | - Thierry Fournier
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Ioana Ferecatu
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
- Correspondence: ; Tel.: +33-1-5373-9605
| |
Collapse
|
5
|
Hosseinalipour E, Karimipour M, Ahmadi A. Detrimental effects of cerium oxide nanoparticles on testis, sperm parameters quality, and in vitro fertilization in mice: An experimental study. Int J Reprod Biomed 2021; 19:801-810. [PMID: 34723059 PMCID: PMC8548755 DOI: 10.18502/ijrm.v19i9.9712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/08/2020] [Accepted: 12/19/2020] [Indexed: 12/03/2022] Open
Abstract
Background Cerium oxide nanoparticles (CeO2 NPs) as an important nanomaterial have a wide range of applications in many fields and human beings' exposure to this nanomaterial is unavoidable. The effects of CeO2 NPs on the male reproductive system are controversial. Objective To determine the effects of the administration of CeO2 NPs on the testis tissue, sperm parameters, and in vitro fertilization (IVF) in mice. Materials and Methods Twenty-four male mice were divided into three groups (n = 8/each): one control and two experimental groups receiving CeO2 NPs at doses of 50 and 100 mg/kg body weight, respectively, for 35 days. At the end of the experiment, the diameter of seminiferous tubules (SNTs), epithelial height of SNTs, spermiogenesis index in testes, sperm parameters (count, motility, viability, and morphology), sperm chromatin condensation, DNA integrity, and IVF assays were analyzed. Results Histological results showed that the tubular diameter, the epithelial height of the SNTs, and the spermiogenesis index were significantly decreased in the experimental groups receiving CeO2 NPs. All sperm parameters in the experimental groups were significantly reduced and, additionally, the percentages of immature sperms and sperms with DNA damage were significantly increased in groups treated with CeO2 NPs compared to the control. Furthermore, the rates of IVF and in vitro embryo development were decreased. Conclusion Collectively, the current study showed that oral administration of CeO2 NPs in mice had detrimental effects on the male reproductive system through inducing testicular tissue alterations, decreasing sperm parameters quality, and also diminishing the IVF rate and in vitro embryonic development.
Collapse
Affiliation(s)
- Elnaz Hosseinalipour
- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Reproductive Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Ahmadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Li M, Zhuang L, Zhang G, Lan C, Yan L, Liang R, Hao C, Li Z, Zhang J, Lu Q, Wang B. Association between exposure of light rare earth elements and outcomes of in vitro fertilization-embryo transfer in North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143106. [PMID: 33143924 DOI: 10.1016/j.scitotenv.2020.143106] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The adverse health effects of rare earth elements (REEs) on reproductive health remain a subject of debate, and few clinical observations are available. This study investigated the association between light REEs (LREEs) exposure and the outcome of in vitro fertilization-embryo transfer (IVF-ET). We recruited a total of 305 women undergoing IVF-ET in Beijing City and Shandong Province of northern China. Their demographic information and lifestyle characteristics were collected using questionnaires at enrollment. Fasting blood samples were collected on the day before the IVF-ET treatment cycle began. Serum concentrations of the LREEs of concern were analyzed using inductively coupled plasma-mass spectrometry, and four LREEs were measured with a high detection rate, including lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd). We found that a higher serum La concentration was associated with a 30% increased likelihood of clinical pregnancy failure [relative risk (RR) = 1.30, 95% confidence interval (CI): 1.00-1.67] and a 230% increased likelihood of preclinical spontaneous abortion (RR = 3.30, 95% CI: 1.57-6.94). There was a negative correlation between serum La concentration and the number of good-quality oocytes. For the other LREEs, no statistically significant associations were observed. We concluded that a high serum La concentration may have an adverse effect on IVF-ET outcomes.
Collapse
Affiliation(s)
- Mengshi Li
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, PR China
| | - Guohuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Changxin Lan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Lailai Yan
- Central Laboratory of School of Public Health, Peking University, Beijing 100191, PR China
| | - Rong Liang
- Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, PR China
| | - Cuifang Hao
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, PR China
| | - Zhiwen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Jingxu Zhang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Qun Lu
- Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, PR China.
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China.
| |
Collapse
|
7
|
Nemati A, Beyranvand F, Assadollahi V, Salahshoor MR, Alasvand M, Gholami MR. The effect of different concentrations of cerium oxide during pregnancy on ovarian follicle development in neonatal mice. Birth Defects Res 2020; 113:349-358. [PMID: 33283456 DOI: 10.1002/bdr2.1844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Cerium is a member of the rare metals group and widely used in drug delivery, gene therapy, molecular imaging and medicine. In this study, we investigated the effect of different doses of Cerium (IV) oxide (CeO2 ) during pregnancy on neonatal mice ovaries, as well as its effect on blood biochemical parameters. METHODS Thirty pregnant NMRI mice were divided into five groups: Control and 4 groups treated with CeO2 (10, 25, 80, 250 mg/kg.bw i.p) at the GD7 and GD14. The ovarian histological of neonatal (2 and 6 day-olds), as well as blood serum of neonates at 15-dpp were analyzed. RESULTS Count of ovarian primordial follicles in neonates at 2 dpp showed a significant decrease in the groups treated with 80 and 250 mg/kg.bw doses of CeO2 . There was also a significant decrease in ovarian primordial and primary follicles in neonates at 6-dpp at 250 mg/kg.bw doses of CeO2 in the control (P < 0.05). There was no significant difference in serum levels of malondialdehyde and total antioxidant capacity between the experimental and control groups. CONCLUSIONS Our results suggest that the effects of CeO2 on the ovarian tissue of neonatal mice during pregnancy may be dose-dependent.
Collapse
Affiliation(s)
- Afsaneh Nemati
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Beyranvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Assadollahi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Masoud Alasvand
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Gholami
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
A Stereological Study of the Toxic Effects of Cerium Oxide during Pregnancy on Kidney Tissues in Neonatal NMRI Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9132724. [PMID: 32685101 PMCID: PMC7330649 DOI: 10.1155/2020/9132724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
Background Both antioxidant and prooxidant activities have been previously reported for cerium oxide (CeO2). The aim of this study was to investigate the effects of CeO2 at different doses on changes in kidney tissues and markers in neonatal mice. Methods We randomly divided 30 pregnant NMRI mice into five groups (n = 6 per group)-a control group and four groups treated with intraperitoneal (i.p.) administration of different doses of CeO2 (10, 25, 80, or 250 mg/kg body weight (bw)) on gestation days (GD) 7 and GD14. At the end of the treatment period, we analyzed the kidney tissues and serum samples. The levels of two serum redox markers, malondialdehyde (MDA) and ferric reducing/antioxidant power (FRAP), were determined. Data were analyzed using one-way ANOVA and Tukey's test, and a P value of <0.05 was considered significant. Results The mean total volumes of the renal corpuscle, glomeruli, and Bowman's capsule membranes significantly increased, and there was a significant decrease in the mean total volume of Bowman's space in the high-dose CeO2 group compared to that in the control group. No statistically significant differences existed in the serum levels of MDA and FRAP in the treated and control groups. Conclusion Our results suggest that high doses of CeO2 impair fetal renal development in pregnant mice, which results in kidney damage. Therefore, CeO2 administration during pregnancy could have dose-dependent adverse effects on the developing kidneys in neonates.
Collapse
|