1
|
Liu HF, Pan XW, Li HQ, Zhang XN, Zhao XH. Amino Acid Composition of a Chum Salmon ( Oncorhynchus keta) Skin Gelatin Hydrolysate and Its Antiapoptotic Effects on Etoposide-Induced Osteoblasts. Foods 2023; 12:2419. [PMID: 37372630 DOI: 10.3390/foods12122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
A gelatin hydrolysate with a hydrolysis degree of 13.7% was generated using the skin gelatin of chum salmon (Oncorhynchus keta) and papain-catalyzed enzymatic hydrolysis. The results of analysis demonstrated that four amino acids, namely Ala, Gly, Pro, and 4-Hyp, were the most abundant in the obtained gelatin hydrolysate with measured molar percentages ranging from 7.2% to 35.4%; more importantly, the four amino acids accounted for 2/3 of the total measured amino acids. However, two amino acids, Cys and Tyr, were not detected in the generated gelatin hydrolysate. The experimental results indicated that the gelatin hydrolysate at a dose of 50 µg/mL could combat etoposide-induced apoptosis in human fetal osteoblasts (hFOB 1.19 cells), causing a decrease in the total apoptotic cells from 31.6% to 13.6% (via apoptotic prevention) or 13.3% to 11.8% (via apoptotic reversal). Meanwhile, the osteoblasts exposed to the gelatin hydrolysate showed expression changes for 157 genes (expression folds > 1.5-fold), among which JNKK, JNK1, and JNK3 were from the JNK family with a 1.5-2.7-fold downregulated expression. Furthermore, the protein expressions of JNKK, JNK1, JNK3, and Bax in the treated osteoblasts showed a 1.25-1.41 fold down-regulation, whereas JNK2 expression was not detected in the osteoblasts. It is thus suggested that gelatin hydrolysate is rich in the four amino acids and has an in vitro antiapoptotic effect on etoposide-stimulated osteoblasts via mitochondrial-mediated JNKK/JNK(1,3)/Bax downregulation.
Collapse
Affiliation(s)
- Hong-Fang Liu
- Harbin Comprehensive Inspection and Detection Centre for Product Quality, Harbin 150036, China
| | - Xiao-Wen Pan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hua-Qiang Li
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiao-Nan Zhang
- School of Life Science, Jiaying University, Meizhou 514015, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Melatonin Repairs Osteoporotic Bone Defects in Iron-Overloaded Rats through PI3K/AKT/GSK-3 β/P70S6k Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7718155. [PMID: 36703914 PMCID: PMC9873465 DOI: 10.1155/2023/7718155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/05/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
It was found recently that iron overload can cause osteoporosis in rats. Through in vitro and in vivo experimentations, the purpose of the present study was to validate and confirm the inhibitory effects of melatonin on iron death of osteoporosis and its role in bone microstructure improvements. Melatonin (100 mol/L) was administered to MC3T3-E1 cells induced by iron overload in vitro for 48 hours. The expression of cleaved caspase-3 and cleaved PARP and the production of ROS (reactive oxygen species) and mitochondrial damage were all exacerbated by iron overload. On the other hand, melatonin restored these impacts in MC3T3-E1 cells produced by iron overload. By evaluating the expression of PI3K/AKT/GSK-3β/P70S6k signaling pathway-related proteins (RUNX2, BMP2, ALP, and OCN) using RT-PCR and Western blot, osteogenic-related proteins were identified. Alizarin red S and alkaline phosphatase were utilized to evaluate the osteogenic potential of MC3T3-E1 cells. Melatonin significantly improved the osteogenic ability and phosphorylation rates of PI3K, AKT, GSK-3β, and P70S6k in iron overload-induced MC3T3-E1 cells. In vivo, melatonin treated iron overload-induced osteoporotic bone defect in rats. Rat skeletal microstructure was observed using micro-CT and bone tissue pathological section staining. ELISA was utilized to identify OCN, PINP, CTX-I, and SI in the serum of rats. We discovered that melatonin increased bone trabecular regeneration and repair in osteoporotic bone defects caused by iron overload. In conclusion, melatonin enhanced the osteogenic ability of iron overload-induced MC3T3-E1 cells by activating the PI3K/AKT/GSK-3β/P70S6k signaling pathway and promoting the healing of iron overload-induced osteoporotic bone defects in rats.
Collapse
|
3
|
Nalika N, Waseem M, Kaushik P, Salman M, Andrabi SS, Parvez S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci 2023:121403. [PMID: 36669677 DOI: 10.1016/j.lfs.2023.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIM Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 μM) and Mel (100 μM) at 25 °C for 1 h was given prior to TNPs (50 μg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.
Collapse
Affiliation(s)
- Nandini Nalika
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammad Waseem
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Salman
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Syed Suhail Andrabi
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
4
|
Turkez H, Yıldırım S, Sahin E, Arslan ME, Emsen B, Tozlu OO, Alak G, Ucar A, Tatar A, Hacimuftuoglu A, Keles MS, Geyikoglu F, Atamanalp M, Saruhan F, Mardinoglu A. Boron Compounds Exhibit Protective Effects against Aluminum-Induced Neurotoxicity and Genotoxicity: In Vitro and In Vivo Study. TOXICS 2022; 10:428. [PMID: 36006107 PMCID: PMC9413983 DOI: 10.3390/toxics10080428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023]
Abstract
Genetic, neuropathological and biochemical investigations have revealed meaningful relationships between aluminum (Al) exposure and neurotoxic and hematotoxic damage. Hence, intensive efforts are being made to minimize the harmful effects of Al. Moreover, boron compounds are used in a broad mix of industries, from cosmetics and pharmaceuticals to agriculture. They affect critical biological functions in cellular events and enzymatic reactions, as well as endocrinal and mineral metabolisms. There are limited dose-related data about boric acid (BA) and other boron compounds, including colemanite (Col), ulexite (UX) and borax (BX), which have commercial prominence. In this study, we evaluate boron compounds' genetic, cytological, biochemical and pathological effects against aluminum chloride (AlCl3)-induced hematotoxicity and neurotoxicity on different cell and animal model systems. First, we perform genotoxicity studies on in vivo rat bone marrow cells and peripheric human blood cultures. To analyze DNA and chromosome damage, we use single cell gel electrophoresis (SCGE or comet assay) and micronucleus (MN) and chromosome aberration (CA) assays. The nuclear division index (NDI) is used to monitor cytostasis. Second, we examine the biochemical parameters (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total antioxidant capacity (TAC) and total oxidative status (TOS)) to determine oxidative changes in blood and brain. Next, we assess the histopathological alterations by using light and electron microscopes. Our results show that Al increases oxidative stress and genetic damage in blood and brain in vivo and in vitro studies. Al also led to severe histopathological and ultrastructural alterations in the brain. However, the boron compounds alone did not cause adverse changes based on the above-studied parameters. Moreover, these compounds exhibit different levels of beneficial effects by removing the harmful impact of Al. The antioxidant, antigenotoxic and cytoprotective effects of boron compounds against Al-induced damage indicate that boron may have a high potential for use in medical purposes in humans. In conclusion, our analysis suggests that boron compounds (especially BA, BX and UX) can be administered to subjects to prevent neurodegenerative and hematological disorders at determined doses.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Atatürk University, 25240 Erzurum, Turkey;
| | - Elvan Sahin
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, 54050 Sakarya, Turkey;
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey; (M.E.A.); (O.O.T.)
| | - Bugrahan Emsen
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey;
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey; (M.E.A.); (O.O.T.)
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240 Erzurum, Turkey; (G.A.); (A.U.); (M.A.)
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240 Erzurum, Turkey; (G.A.); (A.U.); (M.A.)
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey;
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey; (A.H.); (F.S.)
| | - Mevlut Sait Keles
- Department of Biochemistry, Medical Faculty, Uskudar University, 34664 Istanbul, Turkey;
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, 25240 Erzurum, Turkey;
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240 Erzurum, Turkey; (G.A.); (A.U.); (M.A.)
| | - Fatih Saruhan
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey; (A.H.); (F.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, 114 28 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
5
|
Marques MR, de Assis PHG, Azeredo PS, Fleury JA, Costa JR, Gomes LS, Lima DS, Ribeiro NCDS, Biancardi MF, Dos Santos FCA. Aluminum intake in the neonatal phase disrupts endochondral ossification in rodents. J Trace Elem Med Biol 2022; 72:126962. [PMID: 35358782 DOI: 10.1016/j.jtemb.2022.126962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study evaluated the effects of aluminum (Al) intake on endochondral ossification during the neonatal phase. METHOD Twelve male newborn Gerbils (Meriones unguiculatus) were randomly divided into control (C) and aluminum (Al) groups (n = 6 animals/group). From the 1st to 15th day of life, gerbils received an AlCl3 solution (10 mg/kg/day) via gavage. The control group received only the saline solution. On the 16th day, their tibias were processed for paraffin embedding and were submitted to histomorphometric, histochemical, and immunohistochemical analyses. RESULTS In the epiphyseal cartilage Al did not affect the proteoglycan content or cell proliferation; however, it increased matrix metalloprotease-2 (MMP-2) immunostaining and the hypertrophic layer thickness. In bone, Al decreased trabeculae number, trabecular width, cortical bone width, and proliferation. Furthermore, the relative frequency of bone matrix and fibrillar collagen decreased 3.9% and 16.2%, respectively. The number of osteoclasts and osteocalcin digital optical density (D.O.D) remained the same. CONCLUSION The results suggest that Al intake during the neonatal period impairs endochondral ossification by affecting epiphyseal cartilage and bone architecture.
Collapse
Affiliation(s)
- Mara Rubia Marques
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil.
| | - Pedro Henrique Graciano de Assis
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Patrícia Santos Azeredo
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Jaqueline Aguiar Fleury
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Janaina Ribeiro Costa
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Liana Silva Gomes
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Danilo Silva Lima
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Naiara Cristina de Souza Ribeiro
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Manoel Francisco Biancardi
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Fernanda Cristina Alcântara Dos Santos
- Laboratório de Microscopia Aplicada à Reprodução - (LaMARe) - Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Câmpus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| |
Collapse
|
6
|
Gao W, Li R, Ye M, Zhang L, Zheng J, Yang Y, Wei X, Zhao Q. The circadian clock has roles in mesenchymal stem cell fate decision. Stem Cell Res Ther 2022; 13:200. [PMID: 35578353 PMCID: PMC9109355 DOI: 10.1186/s13287-022-02878-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 02/08/2023] Open
Abstract
The circadian clock refers to the intrinsic biological rhythms of physiological functions and behaviours. It synergises with the solar cycle and has profound effects on normal metabolism and organismal fitness. Recent studies have suggested that the circadian clock exerts great influence on the differentiation of stem cells. Here, we focus on the close relationship between the circadian clock and mesenchymal stem cell fate decisions in the skeletal system. The underlying mechanisms include hormone signals and the activation and repression of different transcription factors under circadian regulation. Additionally, the clock interacts with epigenetic modifiers and non-coding RNAs and is even involved in chromatin remodelling. Although the specificity and safety of circadian therapy need to be further studied, the circadian regulation of stem cells can be regarded as a promising candidate for health improvement and disease prevention.
Collapse
Affiliation(s)
- Wenzhen Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meilin Ye
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, 250012, China
| | - Lanxin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiawen Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuqing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Domazetovic V, Falsetti I, Ciuffi S, Iantomasi T, Marcucci G, Vincenzini MT, Brandi ML. Effect of Oxidative Stress-Induced Apoptosis on Active FGF23 Levels in MLO-Y4 Cells: The Protective Role of 17-β-Estradiol. Int J Mol Sci 2022; 23:ijms23042103. [PMID: 35216216 PMCID: PMC8879671 DOI: 10.3390/ijms23042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex control of FGF23 production and local bone remodeling functions. FGF23 was assayed using ELISA kit in the presence or absence of 17β–estradiol in starved MLO-Y4 osteocytes. In these cells, a relationship between oxidative stress-induced apoptosis and up-regulation of active FGF23 levels due to MAP Kinases activation with involvement of the transcriptional factor (NF-kB) has been demonstrated. The active FGF23 increase can be due to up-regulation of its expression and post-transcriptional modifications. 17β–estradiol prevents the increase of FGF23 by inhibiting JNK and NF-kB activation, osteocyte apoptosis and by the down-regulation of osteoclastogenic factors, such as sclerostin. No alteration in the levels of dentin matrix protein 1, a FGF23 negative regulator, has been determined. The results of this study identify biological targets on which drugs and estrogen may act to control active FGF23 levels in oxidative stress-related bone and non-bone inflammatory diseases.
Collapse
Affiliation(s)
- Vladana Domazetovic
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Teresa Vincenzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
8
|
Chen Z, Zhao C, Liu P, Huang H, Zhang S, Wang X. Anti-Apoptosis and Autophagy Effects of Melatonin Protect Rat Chondrocytes against Oxidative Stress via Regulation of AMPK/Foxo3 Pathways. Cartilage 2021; 13:1041S-1053S. [PMID: 34775836 PMCID: PMC8804746 DOI: 10.1177/19476035211038748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Emerging evidence has indicated that excessive reactive oxygen species (ROS) have detrimental effects on osteoarthritis (OA). This study aimed to elucidate the effects of melatonin (MT), an antioxidant indolamine secreted from the pineal gland, on chondrocyte senescence and cartilage degeneration, thereby clarifying the underlying mechanisms of ROS-induced OA pathogenesis. DESIGN Hydrogen peroxide (H2O2) was used to induce oxidative stress in rat chondrocytes. ROS levels were evaluated using cytometry and immunofluorescence. Cell viability was detected using the Cell Counting Kit-8 (CCK-8) assay. Western blotting and qPCR (Quantiative Real-Time Polymerase Chain Reaction) were used to examine apoptosis and autophagy. For in vivo experiments, male Sprague-Dawley rats were randomly divided into a sham-operated group, DMM (destabilization of the medial meniscus) surgery group, and surgery groups that received melatonin. Knee joints were collected and stained for histological analysis. RESULTS The data demonstrated that melatonin treatment significantly suppressed H2O2-induced matrix degradation and apoptosis, and maintained mitochondrial redox homeostasis. In addition, an enhancement of autophagic flux was observed through western blotting. These findings corresponded with activation of the AMPK/Foxo3 signaling pathways upon melatonin treatment. Histological staining and transmission electron microscopy (TEM) micrographs also demonstrated that melatonin alleviated cartilage ossification and chondrocyte hypertrophy in vivo. CONCLUSIONS Our results indicated that melatonin protected chondrocytes via mitochondrial redox homeostasis and autophagy. The effects of melatonin on senescence may apply to other age-related diseases. Thus, melatonin may have multiple potential therapeutic applications.
Collapse
Affiliation(s)
- Zhaoxun Chen
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Chen Zhao
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Pengcheng Liu
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Haohan Huang
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China,Xiaoqing Wang, Shanghai Key Laboratory of
Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s
Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhizaoju
Road, Shanghai 200011, People’s Republic of China.
| | - Xiaoqing Wang
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China,Shuhong Zhang, Shanghai Key Laboratory of
Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s
Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhizaoju
Road, Shanghai 200011, People’s Republic of China.
| |
Collapse
|
9
|
Munmun F, Witt-Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res 2021; 71:e12749. [PMID: 34085304 DOI: 10.1111/jpi.12749] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Melatonin is the primary circadian output signal from the brain and is mainly synthesized in pinealocytes. The rhythm and secretion of melatonin are under the control of an endogenous oscillator located in the SCN or the master biological clock. Disruptions in circadian rhythms by shift work, aging, or light at night are associated with bone loss and increased fracture risk. Restoration of nocturnal melatonin peaks to normal levels or therapeutic levels through timed melatonin supplementation has been demonstrated to provide bone-protective actions in various models. Melatonin is a unique molecule with diverse molecular actions targeting melatonin receptors located on the plasma membrane or mitochondria or acting independently of receptors through its actions as an antioxidant or free radical scavenger to stimulate osteoblastogenesis, inhibit osteoclastogenesis, and improve bone density. Its additional actions on entraining circadian rhythms and improving quality of life in an aging population coupled with its safety profile make it an ideal therapeutic candidate for protecting against bone loss in susceptible populations. The intent of this review is to provide a focused discussion on bone loss and disorders of the bone as it relates to melatonin and conditions that modify melatonin levels with the hope that future therapies include those that include melatonin and correct those factors that modify melatonin levels like circadian disruption.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Liu M, Wu X, Cui Y, Liu P, Xiao B, Zhang X, Zhang J, Sun Z, Song M, Shao B, Li Y. Mitophagy and apoptosis mediated by ROS participate in AlCl 3-induced MC3T3-E1 cell dysfunction. Food Chem Toxicol 2021; 155:112388. [PMID: 34242719 DOI: 10.1016/j.fct.2021.112388] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
Aluminum (Al), as a common environmental pollutant, causes osteoblast (OB) dysfunction and then leads to Al-related bone diseases (ARBD). One of the mechanisms of ARBD is oxidative stress, which leads to an increase in the production of reactive oxygen species (ROS). ROS can induce mitochondrial damage, thereby inducing mitophagy and apoptosis. But whether mitophagy and apoptosis mediated by ROS, and the role of ROS in AlCl3-induced MC3T3-E1 cell dysfunction is still unclear. In this study, MC3T3-E1 cells used 0 mM Al (control group), 2 mM Al (Al group), 5 mM N-acetyl cysteine (NAC) (NAC group), 2 mM Al and 5 mM NAC (Al + NAC group) for 24 h. We found AlCl3-induced MC3T3-E1 cell dysfunction accompanied by oxidative stress, apoptosis, and mitophagy. While NAC, a ROS scavenger treatment, restored cell function and alleviated the mitophagy and apoptosis. These results suggested that mitophagy and apoptosis mediated by ROS participate in AlCl3-induced MC3T3-E1 cell dysfunction.
Collapse
Affiliation(s)
- Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Xia Wu
- College of Food Science, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Pengli Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Zhuo Sun
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
11
|
An N, Zhao Y, Lan H, Zhang M, Yin Y, Yi C. SEZ6L2 knockdown impairs tumour growth by promoting caspase-dependent apoptosis in colorectal cancer. J Cell Mol Med 2020; 24:4223-4232. [PMID: 32105413 PMCID: PMC7171412 DOI: 10.1111/jcmm.15082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/12/2020] [Accepted: 02/08/2020] [Indexed: 02/05/2023] Open
Abstract
Seizure‐related 6 homolog (mouse)‐like 2 (SEZ6L2) was shown to be involved in transcription of a type 1 transmembrane protein for regulating cell fate. Until now, the expression and function of SEZ6L2 in various cancers, including colorectal cancer (CRC), were unclear. In the present study, we determined the expression of SEZ6L2 in a tissue microarray from patients with CRC and then, analysed the correlation between SEZ6L2 expression and the prognosis of the patients. Furthermore, the potential function of SEZ6L2 in CRC was determined using cell counting kit, colony formation assay and xenograft model in vitro and in vivo. Flow cytometry, Western blotting, immunohistochemical staining and a blocking experiment were employed to investigate the underlying mechanism of SEZ6L2 regulating CRC growth. Our results indicated that SEZ6L2 was significantly up‐regulated in tumour tissues of patients with CRC compared with adjacent normal tissues. Up‐regulation of SEZ6L2 was correlated with a poor prognosis in patients with CRC. In vitro experiments suggested that the knockdown of SEZ6L2 inhibits CRC cell growth and colony formation, but it has no significant impact on the invasion. The antitumour effects of shSEZ6L2 were also confirmed by a xenograft model. Investigations of the mechanisms indicated that the knockdown of SEZ6L2 impairs the growth of the CRC cells by inducing caspase‐dependent apoptosis, which was mediated by mitochondria‐related proteins. Furthermore, SEZ6L2 expression was inversely correlated with the expression of cytochrome C in malignant tissues in patients with CRC. Collectively, the present study indicates that SEZ6L2 is a potential prognosis biomarker and therapy target for CRC.
Collapse
Affiliation(s)
- Ning An
- Department of Abdominal Cancer, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China.,Cancer Center, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yaqin Zhao
- Department of Abdominal Cancer, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| | - Haitao Lan
- Cancer Center, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zhang
- Cancer Center, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Yin
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Cheng Yi
- Department of Abdominal Cancer, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Jalili P, Huet S, Lanceleur R, Jarry G, Hegarat LL, Nesslany F, Hogeveen K, Fessard V. Genotoxicity of Aluminum and Aluminum Oxide Nanomaterials in Rats Following Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E305. [PMID: 32053952 PMCID: PMC7075173 DOI: 10.3390/nano10020305] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
Abstract
Due to several gaps remaining in the toxicological evaluation of nanomaterials (NMs), consumers and public health agencies have shown increasing concern for human health protection. In addition to aluminum (Al) microparticles, Al-containing nanomaterials (Al NMs) have been applied by food industry as additives and contact materials. Due to the limited amount of literature on the toxicity of Al NMs, this study aimed to evaluate the in vivo genotoxic potential of Al0 and Al2O3 NMs after acute oral exposure. Male Sprague-Dawley rats were administered three successive gavages at 6, 12.5 and 25 mg/kg bw. A comparison with AlCl3 was done in order to assess the potential effect of dissolution into Al ions. Both DNA strand breaks and oxidative DNA damage were investigated in six organs/tissues (duodenum, liver, kidney, spleen, blood and bone marrow) with the alkaline and the Fpg-modified comet assays. Concomitantly, chromosomal damage was investigated in bone marrow and colon with the micronucleus assay. The comet assay only showed DNA damage with Al2O3 NMs in bone marrow (BM), while AlCl3 induced slight but non-significant oxidative DNA damage in blood. No increase of chromosomal mutations was observed after treatment with the two Al MNs either in the BM or in the colons of rats.
Collapse
Affiliation(s)
- Pégah Jalili
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Sylvie Huet
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Rachelle Lanceleur
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Gérard Jarry
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Ludovic Le Hegarat
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Fabrice Nesslany
- Institut Pasteur de Lille, Laboratoire de toxicologie génétique, 1 Rue du Professeur Calmette, 59019 Lille CEDEX, France;
| | - Kevin Hogeveen
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Valérie Fessard
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| |
Collapse
|