1
|
Dogan T, Yıldırım BA, Terim Kapakin KA, Kiliçliogli M, Senocak EA. Protective effects of crocin against gentamicin-induced damage in rat testicular tissue: Modulating the levels of NF-κB/TLR-4 and Bax/Bcl-2/caspase-3 signaling pathways. Food Chem Toxicol 2025; 200:115407. [PMID: 40127811 DOI: 10.1016/j.fct.2025.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
This study investigated the protective effects of crocin (CRO) on gentamicin (GM)-induced testicular toxicity in adult rats, focusing on oxidative stress, apoptosis, and inflammatory pathways such as Nuclear Factor Kappa B (NF-κB)/Toll-Like Receptor 4 (TLR-4) and Bcl-2-associated X protein (Bax)/B-cell lymphoma 2 (Bcl-2)/Caspase-3. Thirty-six male Sprague Dawley rats were divided into six groups: saline only, 25 mg/kg CRO, 50 mg/kg CRO, 80 mg/kg GM, 80 mg/kg GM + 25 mg/kg CRO, 80 mg/kg GM + 50 mg/kg CRO. Treatments were administered intraperitoneally for 8 days. GM increased malondialdehyde (MDA) levels, ischemia-modified albumin (IMA) levels and reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in testicular tissue, indicating oxidative stress. Histopathology showed testicular degeneration. It also elevated Bax, Caspase-3, NF-κB, and TLR-4 expression while decreasing Bcl-2 levels, promoting apoptosis and inflammation. CRO treatment counteracted these effects by enhancing antioxidant enzyme activity, restoring GSH levels, and reducing MDA. Furthermore, CRO exhibited antiapoptotic and anti-inflammatory properties by modulating Bax/Bcl-2 and Caspase-3, and downregulating NF-κB/TLR-4 pathways. This study underscores crocin's protective effects against gentamicin-induced testicular toxicity through the modulation of key signaling pathways, suggesting its potential as a therapeutic strategy for aminoglycoside-induced reproductive damage.
Collapse
Affiliation(s)
- Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkiye.
| | - Betul Apaydın Yıldırım
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkiye.
| | | | - Metin Kiliçliogli
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkiye.
| | - Esra Aktas Senocak
- Departmnt of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkiye.
| |
Collapse
|
2
|
Wang X, Zhou Y, Xie D, Yin F, Liang Y, Luo X. Melatonin intervention to prevent nanomaterial exposure-induced damages: A systematic review and meta-analysis of in vitro and in vivo studies. J Appl Toxicol 2025; 45:179-199. [PMID: 39090837 DOI: 10.1002/jat.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Given its antioxidant, anti-inflammatory, and antiapoptotic properties, melatonin (MEL), a health-caring food to improve sleep disorders, is hypothesized to protect against nanomaterial exposure-induced toxicity. However, the conclusion derived from different studies seemed inconsistent. A meta-analysis of all available preclinical studies was performed to examine the effects of MEL on nanomaterial-induced damages. Eighteen relevant studies were retrieved through searching five electronic databases up to December 2023. The meta-analysis showed that relative to control, MEL treatment significantly increased cell viability (standardized mean difference [SMD = 1.27]) and alleviated liver function (lowered AST [SMD = -3.89] and ALT [SMD = -5.89]), bone formation (enhanced BV/TV [SMD = 4.13] and lessened eroded bone surface [SMD = -5.40]), and brain nerve (inhibition of AChE activity [SMD = -3.60]) damages in animals. The protective mechanisms of MEL against damages caused by nanomaterial exposure were associated with its antiapoptotic (decreased Bax/Bcl-2 ratio [SMD = -4.50] and caspase-3 levels [dose <100 μM: SMD = -3.66]), antioxidant (decreased MDA [in vitro: SMD = -2.84; in vivo: SMD = -4.27]), and anti-inflammatory (downregulated TNF-α [in vitro: SMD = -5.41; in vivo: SMD = -3.21] and IL-6 [in vitro: SMD = -5.90; in vivo: SMD = -2.81]) capabilities. In conclusion, our study suggests that MEL should be supplemented to prevent damages in populations exposed to nanomaterials.
Collapse
Affiliation(s)
- Xuejiao Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, China
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Fei Yin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Moretti E, Signorini C. Antioxidants in Male and Animal Reproduction: Applications and Critical Issues. Antioxidants (Basel) 2024; 13:1283. [PMID: 39594425 PMCID: PMC11591086 DOI: 10.3390/antiox13111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The Special Issue "Antioxidants in Male Human and Animal Reproduction: In Vitro and In Vivo Studies", published by Antioxidants and led by us (https://www [...].
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
4
|
Dong R, Li L, Chang H, Song G, Liu S. Study on the mechanisms of defective spermatogenesis induced by TiO 2 NPs based on 3D blood-testis barrier microfluidic chip. Toxicology 2024; 507:153888. [PMID: 39019315 DOI: 10.1016/j.tox.2024.153888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can reduce sperm number, but the mechanisms of defective spermatogenesis induced by TiO2 NPs have not been studied through cell-cell interactions at present. A kind of biomimetic three-dimensional blood-testis barrier microfluidic chip capable of intercellular communication was constructed with soft lithography techniques, including Sertoli cell (TM4), spermatogonia (GC-1) and vascular endothelial cell units, to study the mechanisms of TiO2 NPs-induced defective spermatogenesis. TM4 and GC-1 cells cultured in TiO2 NPs exposure and control chips were collected for transcriptomics and metabonomics analysis, and key proteins and metabolites in changed biological processes were validated. In TM4 cells, TiO2 NPs suppressed glucose metabolism, especially lactate production, which reduced energy substrate supply for spermatogenesis. TiO2 NPs also decreased the levels of key proteins and metabolites of lactate production. In GC-1 cells, TiO2 NPs disturbed chemokine signaling pathways regulating cell proliferation and interfered with glutathione metabolism. The Cxcl13, Stat3 and p-Stat3 levels and cell proliferation rate were decreased, and the GSR, GPX4 and GSH contents were increased in GC-1 cells in chips under TiO2 NPs treatment. The decrease in energy substrate supply for spermatogenesis and inhibition of spermatogonia proliferation could be the main mechanisms of defective spermatogenesis induced by TiO2 NPs.
Collapse
Affiliation(s)
- Ruoyun Dong
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Li Li
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hongmei Chang
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Guanling Song
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Cheng X, Jiang T, Huang Q, Ji L, Li J, Kong X, Zhu X, He X, Deng X, Wu T, Yu H, Shi Y, Liu L, Zhao X, Wang X, Chen H, Yu J. Exposure to Titanium Dioxide Nanoparticles Leads to Specific Disorders of Spermatid Elongation via Multiple Metabolic Pathways in Drosophila Testes. ACS OMEGA 2024; 9:23613-23623. [PMID: 38854533 PMCID: PMC11154731 DOI: 10.1021/acsomega.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been extensively utilized in various applications. However, the regulatory mechanism behind the reproductive toxicity induced by TiO2 NP exposure remains largely elusive. In this study, we employed a Drosophila model to assess potential testicular injuries during spermatogenesis and conducted bulk RNA-Seq analysis to elucidate the underlying mechanisms. Our results reveal that while prolonged exposure to lower concentrations of TiO2 NPs (0.45 mg/mL) for 30 days did not manifest reproductive toxicity, exposure at concentrations of 0.9 and 1.8 mg/mL significantly impaired spermatid elongation in Drosophila testes. Notably, bulk RNA-seq analysis revealed that TiO2 NP exposure affected multiple metabolic pathways including carbohydrate metabolism and cytochrome P450. Importantly, the intervention of glutathione (GSH) significantly protected against reproductive toxicity induced by TiO2 NP exposure, as it restored the number of Orb-positive spermatid clusters in Drosophila testes. Our study provides novel insights into the specific detrimental effects of TiO2 NP exposure on spermatid elongation through multiple metabolic alterations in Drosophila testes and highlights the protective role of GSH in countering this toxicity.
Collapse
Affiliation(s)
- Xinmeng Cheng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Ting Jiang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuru Huang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Li Ji
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiuwen Kong
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaoqi Zhu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xuxin He
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaonan Deng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Tong Wu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Hao Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yi Shi
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Lin Liu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinyuan Zhao
- Department
of Occupational Medicine and Environmental Toxicology, Nantong Key
Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaorong Wang
- Center
for Reproductive Medicine, Affiliated Maternity
and Child Health Care Hospital of Nantong University, Nantong 226018, China
- Nantong
Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong 226018, China
- Nantong
Key Laboratory of Genetics and Reproductive Medicine, Nantong 226018, China
| | - Hao Chen
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jun Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
7
|
Bu H, Wang B, Wu Y, Li P, Cui Y, Jiang X, Yu X, Liu B, Tang M. Curcumin strengthens a spontaneous self-protective mechanism-SP1/PRDX6 pathway, against di-n-butyl phthalate-induced testicular ferroptosis damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122165-122181. [PMID: 37966654 DOI: 10.1007/s11356-023-30962-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
As one of the common plasticizers, di-n-butyl phthalate (DBP) has been using in various daily consumer products worldwide. Since it is easily released from products and exists in the environment for a long time, it has a lasting impact on human health, especially male reproductive health. However, the detailed mechanism of testicular damage from DBP and the protection strategy are still not clear enough. In this study, we found that DBP could induce dose-dependent ferroptosis in testicular tissue. Mechanism dissection indicates that DBP can upregulate SP1 expression, which could directly transcriptionally upregulate PRDX6, a negative regulator of ferroptosis. Overexpression of PRDX6 or adding SP1 agonist curcumin could suppress the DBP-induced ferroptosis on testicular cells. In vivo, rats were given 500 mg/kg/day DBP orally for 3 weeks; elevated levels of ferroptosis were detected in testicular tissue. When the above-mentioned doses of DBP and curcumin at a dose of 300 mg/kg/day were administered intragastrically simultaneously, the testicular ferroptosis induced by DBP was alleviated. Immunohistochemistry and quantitative real-time PCR of testis tissue showed that the expression of PRDX6 was upregulated under the action of DBP and curcumin. These findings suggest a spontaneous self-protection mechanism of testicular tissue from DBP damage by upregulating SP1 and PRDX6. However, it is not strong enough to resist the DBP-induced ferroptosis. Curcumin can strengthen this self-protection mechanism and weaken the level of ferroptosis induced by DBP. This study may help us to develop a novel therapeutic option with curcumin to protect the testicular tissue from ferroptosis and function impairment by DBP.
Collapse
Affiliation(s)
- Hengtao Bu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Bao Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Yulin Wu
- Jiangsu Health Development Research Center, Nanjing, 210036, Jiangsu, China
- National Health and Family Planning Commission Contraceptives Adverse Reaction Surveillance Center, Nanjing, 210036, Jiangsu, China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Yankang Cui
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuping Jiang
- Department of Urology, Yixing People's Hospital, Yixing, 214200, China
| | - Xiaowen Yu
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210100, Jiangsu, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
8
|
Kang J, Li Y, Ma Z, Wang Y, Zhu W, Jiang G. Protective effects of lycopene against zearalenone-induced reproductive toxicity in early pregnancy through anti-inflammatory, antioxidant and anti-apoptotic effects. Food Chem Toxicol 2023; 179:113936. [PMID: 37429407 DOI: 10.1016/j.fct.2023.113936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Zearalenone is a mycotoxin that is widely present in feed and raw materials and can cause severe reproductive toxicity. Lycopene is a natural carotenoid with antioxidant and anti-inflammatory pharmacological effects, but the protective effects of lycopene against zearalenone-induced uterine damage have not been reported. The aim of this study was to investigate the protective effect of lycopene treatment in early pregnancy on zearalenone-induced uterine damage and pregnancy impairment and its mechanism. Reproductive toxicity was induced by consecutive gavages of zearalenone at 5 mg/kg body weight during gestational days (GDs) 0-10 and in the presence or absence of oral administration of lycopene (20 mg/kg BW). The results showed that lycopene may alleviate zearalenone-induced pathological uterine histological damage and disturbances in oestradiol (E2), follicle-stimulating hormone (FSH), progesterone (P) and luteinizing hormone (LH) secretion. Lycopene increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) production, providing protection against zearalenone-induced oxidative stress in the uterus. Additionally, lycopene significantly reduced levels of pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), and elevated levels of the anti-inflammatory factor interleukin 10 (IL-10), inhibiting the zearalenone-induced inflammatory response. In addition, lycopene improved the homeostasis of uterine cell proliferation and death via the mitochondrial apoptosis pathway. These data provide strong evidence that lycopene can be further developed into a potential new drug for the prevention or treatment of zearalenone-induced reproductive toxicity.
Collapse
Affiliation(s)
- Jungang Kang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Yang Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Zhanfei Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Yabo Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Weifeng Zhu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Guojun Jiang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
9
|
Ileriturk M, Kandemir O, Akaras N, Simsek H, Genc A, Kandemir FM. Hesperidin has a protective effect on paclitaxel-induced testicular toxicity through regulating oxidative stress, apoptosis, inflammation and endoplasmic reticulum stress. Reprod Toxicol 2023; 118:108369. [PMID: 36966900 DOI: 10.1016/j.reprotox.2023.108369] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Paclitaxel (PTX) is widely used to treat a number of malignancies, although it has toxic side effects. Hesperidin (HES) has a wide range of biological and pharmacological properties, including anti-inflammatory and antioxidant abilities. This research aims to investigate the role of HES in PTX-induced testicular toxicity. For 5 days, 2 mg/kg/bw i.p. of PTX was administered to induce testicular toxicity. Rats were administered oral dosages of 100 and 200 mg/kg/bw HES for 10 days after PTX injection. The mechanisms of inflammation, apoptosis, endoplasmic reticulum (ER) stress, and oxidants were investigated using biochemical, genetic, and histological techniques. As a result of PTX administration, decreased antioxidant enzyme (superoxide dismutase, catalase, and glutathione peroxidase) activities and increased malondialdehyde level were regulated, and the severity of oxidative stress was reduced. NF-κB, IL-1β and TNF-α levels, which are among the increased inflammation parameters caused by PTX, decreased with HES administration. Although AKT2 gene expression decreased in PTX administered rats, it was determined that HES administration up-regulated AKT2 mRNA expression. Anti-apoptotic Bcl-2 decreased with PTX administration, and apoptotic Bax and Caspase-3 increased while HES administration reverted these effects towards control level. As a result of toxicity, the increase in ATF6, PERK, IRE1α, GRP78 levels caused prolonged ER stress, and this activity was diminished with HES and tended to regress. While all data were evaluated, Paclitaxel caused damage by increasing inflammation, apoptosis, ER stress and oxidant levels in testicular tissue, and Hesperidin showed a protective effect by correcting the deterioration in these levels.
Collapse
Affiliation(s)
- Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkey.
| | - Ozge Kandemir
- Aksaray Technical Sciences Vocational School, Aksaray University, Aksaray, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hasan Simsek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Aydin Genc
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| |
Collapse
|
10
|
Minghui F, Ran S, Yuxue J, Minjia S. Toxic effects of titanium dioxide nanoparticles on reproduction in mammals. Front Bioeng Biotechnol 2023; 11:1183592. [PMID: 37251560 PMCID: PMC10213439 DOI: 10.3389/fbioe.2023.1183592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Titanium dioxide nanoparticles (nano-TiO2) are widely used in food, textiles, coatings and personal care products; however, they cause environmental and health concerns. Nano-TiO2 can accumulate in the reproductive organs of mammals in different ways, affect the development of the ovum and sperm, damage reproductive organs and harm the growth and development of offspring. The oxidative stress response in germ cells, irregular cell apoptosis, inflammation, genotoxicity and hormone synthesis disorder are the main mechanisms of nano-TiO2 toxicity. Possible measures to reduce the harmful effects of nano-TiO2 on humans and nontarget organisms have emerged as an underexplored topic requiring further investigation.
Collapse
|
11
|
Wang Q, Wu X, Zhang J, Song M, Du J, Cui Y, Li Y. Role of ROS/JAK2/STAT3 signaling pathway in di-n-butyl phthalate-induced testosterone synthesis inhibition and antagonism of lycopene. Food Chem Toxicol 2023; 175:113741. [PMID: 36958386 DOI: 10.1016/j.fct.2023.113741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Di-n-butyl phthalate (DBP) causes adverse effects on male reproduction, especially testosterone synthesis inhibition. However, the specific mechanism of DBP-induced testosterone synthesis inhibition and its effective intervention measures of prevention and treatment are scarce presently. Lycopene (LYC) plays beneficial roles in male infertility because of its antioxidant activity. Nevertheless, it is unclear whether LYC could prevent DBP-induced male reproductive toxicity. By in vitro and in vivo investigations, this study demonstrated that DBP activated ROS/JAK2/STAT3 signaling pathway, promoted mitophagy and apoptosis, which in turn inhibited testosterone synthesis. Additionally, another major finding was that LYC supplement could reverse the above change, presenting as the restraint of ROS/JAK2/STAT3 signaling pathway, reduction of mitophagy and apoptosis, and improvement of testosterone synthesis. Our study facilitates deeper understandings of the mechanism in DBP-induced testosterone synthesis inhibition, and identifies LYC as the effective prevention and control strategies for DBP poisoning.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xia Wu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Ekhlasian A, Eftekhar E, Daei S, Abbasalipourkabir R, Nourian A, Ziamajidi N. The antioxidant and anti-apoptotic properties of vitamins A, C and E in heart tissue of rats exposed to zinc oxide nanoparticles. Mol Biol Rep 2023; 50:2357-2365. [PMID: 36580195 DOI: 10.1007/s11033-022-08103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The rapidly increasing applications of zinc oxide nanoparticles (ZnO NPs) in various industries have led to growing concerns about their damaging influence on human health. The present research was designed to determine the protective action of vitamins (Vits) A, C and E on the heart toxicity induced by ZnO NPs. METHODS Fifty-four male Wistar rats were allocated into 9 groups of 6 and then exposed to ZnO NPs (200 mg/kg), water (Control1), olive oil (Control2), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg) and three groups were co-treated with ZnO and one of the Vits A, C or E. The oxidative stress situation was evaluated by measuring oxidative stress markers and the tissue antioxidant enzyme activity. Besides, the mRNA expression of Bcl-2 and Bax and caspase 3,7 activity were assessed. A histopathological examination was also performed to determine the rate of cardiac injury. RESULTS The results indicated that co-administration of ZnO NPs and the aforementioned Vits significantly reduced the total oxidant status and lipid peroxidation relative to the ZnO group (P < 0.05). Furthermore, the supplementation of vitamins, notably Vit E, decreased the ZnO NPs-induced oxidative damage by enhancing the activity of antioxidant enzymes compared to the ZnO NPs-fed rats (P < 0.05). Data also showed the mitigating effects of Vits against ZnO NPs-mediated apoptosis by suppressing the ratio of Bax/Bcl-2 expression and caspase 3,7 activity. CONCLUSION This study highlights the protective role of Vits A, C and E against ZnO NPs cardiotoxicity, though at different levels of effectiveness.
Collapse
Affiliation(s)
- Alireza Ekhlasian
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Eftekhar
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran.
| |
Collapse
|
13
|
Chang H, Li L, Deng Y, Song G, Wang Y. Protective effects of lycopene on TiO 2 nanoparticle-induced damage in the liver of mice. J Appl Toxicol 2023; 43:913-928. [PMID: 36632672 DOI: 10.1002/jat.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2 ) is one of the most widely used and produced nanomaterials. Studies have demonstrated that nano-TiO2 could induce hepatotoxicity through oxidative stress, and lycopene has strong antioxidant capacity. The present study aimed to explore if lycopene protects the liver of mice from nano-TiO2 damage. Ninety-six ICR mice were randomly divided into eight groups. They were control group, nano-TiO2 -treated group (50 mg/kg BW), lycopene-treated groups (5, 20, and 40 mg/kg BW), and 50 mg/kg BW nano-TiO2 - and lycopene-co-treated groups (nano-TiO2 + 5 mg/kg BW of lycopene, nano-TiO2 + 20 mg/kg BW of lycopene, nano-TiO2 + 40 mg/kg BW of lycopene). After treated by gavage for 30 days, the histopathology of the liver was observed. Liver function was evaluated using changes in serum biochemical indicators of the liver (AST, ALT, ALP); and the level of ROS was indirectly reflected by the level of SOD, GSH-Px, MDA, GSH, and T-AOC. TUNEL assay was performed to examine the apoptosis of hepatocytes. Proteins of p53, cleaved-caspase 9, cleaved-caspase 3, Bcl-2, and Bax as well as p38 were detected. Results showed that lycopene alleviated the liver pathological damage and reduced the injury to liver function induced by nano-TiO2 , as well as decreased nano-TiO2 -induced ROS. Meanwhile, lycopene mitigated apoptosis resulting from nano-TiO2 , accompanied by the reversed expression of apoptosis-related proteins. Furthermore, lycopene significantly reversed the upregulation of p-p38 induced by nano-TiO2 . In conclusion, this study demonstrated that nano-TiO2 resulted in hepatocyte apoptosis through ROS/ROS-p38 MAPK pathway and led to liver function injury. Lycopene protected mice liver against the hepatotoxicity of nano-TiO2 through antioxidant property.
Collapse
Affiliation(s)
- Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yaxin Deng
- Shiyan centers for disease control and prevention, Shiyan, 442000, Hubei, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yan Wang
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
14
|
Chang H, Wang Q, Meng X, Chen X, Deng Y, Li L, Yang Y, Song G, Jia H. Effect of Titanium Dioxide Nanoparticles on Mammalian Cell Cycle In Vitro: A Systematic Review and Meta-Analysis. Chem Res Toxicol 2022; 35:1435-1456. [PMID: 35998370 DOI: 10.1021/acs.chemrestox.1c00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although most studies that explore the cytotoxicity of titanium dioxide nanoparticles (nano-TiO2) have focused on cell viability and oxidative stress, the cell cycle, a basic process of cell life, can also be affected. However, the results on the effects of nano-TiO2 on mammalian cell cycle are still inconsistent. A systematic review and meta-analysis were therefore performed in this research based on the effects of nano-TiO2 on the mammalian cell cycle in vitro to explore whether nano-TiO2 can induce cell cycle arrest. Meanwhile, the impact of physicochemical properties of nano-TiO2 on the cell cycle in vitro was investigated, and the response of normal cells and cancer cells was compared. A total of 33 articles met the eligibility criteria after screening. We used Review Manager 5.4 and Stata 15.1 for analysis. The results showed an increased percentage of cells in the sub-G1 phase and an upregulation of the p53 gene after being exposed to nano-TiO2. Nevertheless, nano-TiO2 had no effect on cell percentage in other phases of the cell cycle. Furthermore, subgroup analysis revealed that the cell percentage in both the sub-G1 phase of normal cells and S phase of cancer cells were significantly increased under anatase-form nano-TiO2 treatment. Moreover, nano-TiO2 with a particle size <25 nm or exposure duration of nano-TiO2 more than 24 h induced an increased percentage of normal cells in the sub-G1 phase. In addition, the cell cycle of cancer cells was arrested in the S phase no matter if the exposure duration of nano-TiO2 was more than 24 h or the exposure concentration was over 50 μg/mL. In conclusion, this study demonstrated that nano-TiO2 disrupted the cell cycle in vitro. The cell cycle arrest induced by nano-TiO2 varies with cell status and physicochemical properties of nano-TiO2.
Collapse
Affiliation(s)
- Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 210019 Nanjing, China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huaimiao Jia
- Department of Endemic Disease, Shihezi Center for Disease Control and Prevention, Shihezi 832003, Xinjiang, China
| |
Collapse
|
15
|
Iftikhar A, Akhtar MF, Saleem A, Riaz A, Zehravi M, Rahman MH, Md Ashraf G. Comparative Potential of Zinc Sulfate, L-Carnitine, Lycopene, and Coenzyme Q10 on Cadmium-Induced Male Infertility. Int J Endocrinol 2022; 2022:6266613. [PMID: 35814917 PMCID: PMC9262569 DOI: 10.1155/2022/6266613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
The human exposure to toxic chemicals and heavy metals is one of the main predisposing factors contributing to male infertility. Acute exposure to cadmium chloride results in testicular damage and infertility. The purpose of the present study was to investigate and compare the curative effect of coenzyme Q10 (CoQ10), lycopene, L-carnitine (LC), and zinc sulfate against the cadmium-induced infertility in male Wistar rats. Cadmium chloride (0.4 mg/kg/day) was orally administered to rats for three consecutive days. Then, oral administration of different treatments (i.e., LC 100 mg/kg, CoQ10 20 mg/kg, lycopene 4 mg/kg, zinc sulfate 6 mg/kg, and a combination LC-CoQ10 at 500/50 mg/kg) was carried out for 30 days. The impact of different treatments on semen parameters, such as sperm count and motility, testicular antioxidants, and serum testosterone, was determined. Furthermore, the morphology of epididymis sperms and histopathology of rat testes were also assessed. Cadmium exposure decreased the sperm count, progressive sperm motility, testosterone, superoxide dismutase (SOD), and catalase and reduced glutathione (GSH). It also caused banana sperm tail, bent sperm head, vacuolization of seminiferous tubules, and oligospermia in rat testes. All treatments with nutraceuticals improved sperm count, sperm morphology, serum testosterone, vacuolization of seminiferous tubules, and oligospermia in diseased rats. Treatment with lycopene, LC, and LC-CoQ10 improved progressive sperm motility and other parameters and increased SOD, GSH, and CAT in the rat testes. CoQ10 also increased SOD activity in rat testes' tissue homogenates. It is concluded from the current study that all nutraceuticals partially improved reproductive toxicity of cadmium. The administration of lycopene and a high-dose combination of LC-CoQ10 were more efficacious in treating cadmium-induced infertility than other treatments. Treatment of cadmium-exposed rats with lycopene, LC, CoQ10, and LC-CoQ10 improved sperm count and motility through reduction of testicular oxidative stress and improving serum testosterone.
Collapse
Affiliation(s)
- Ayesha Iftikhar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amjad Riaz
- Department of Thriogenology, University of Veterinary and Animal Science, Lahore, Pakistan
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 26426, Republic of Korea
| | - Ghulam Md Ashraf
- Preclinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7244677. [PMID: 34820054 PMCID: PMC8608524 DOI: 10.1155/2021/7244677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
17
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: https://doi.org/10.1155/2021/7244677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|