1
|
Liu Y, Wu H, Zhou G, Zhang D, Yang Q, Li Y, Yang X, Sun J. Role of M6a Methylation in Myocardial Ischemia-Reperfusion Injury and Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:918-928. [PMID: 39026038 DOI: 10.1007/s12012-024-09898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, with acute myocardial infarction and anticancer drug-induced cardiotoxicity being the significant factors. The most effective treatment for acute myocardial infarction is rapid restoration of coronary blood flow by thrombolytic therapy or percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury (MI/RI) after reperfusion therapy is common in acute myocardial infarction, thus affecting the prognosis of patients with acute myocardial infarction. There is no effective treatment for MI/RI. Anthracyclines such as Doxorubicin (DOX) have limited clinical use due to their cardiotoxicity, and the mechanism of DOX-induced cardiac injury is complex and not yet fully understood. N6-methyladenosine (m6A) plays a crucial role in many biological processes. Emerging evidence suggests that m6A methylation plays a critical regulatory role in MI/RI and DOX-induced cardiotoxicity (DIC), suggesting that m6A may serve as a novel biomarker and therapeutic target for MI/RI and DIC. M6A methylation may mediate the pathophysiological processes of MI/RI and DIC by regulating cellular autophagy, apoptosis, oxidative stress, and inflammatory response. In this paper, we first focus on the relationship between m6A methylation and MI/RI, then further elucidate that m6A methylation may mediate the pathophysiological process of MI/RI through the regulation of cellular autophagy, apoptosis, oxidative stress, and inflammatory response. Finally, briefly outline the roles played by m6A in DIC, which will provide a new methodology and direction for the research and treatment of MI/RI and DIC.
Collapse
Affiliation(s)
- Yanfang Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Hui Wu
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China.
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Gang Zhou
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Dong Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Qingzhuo Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yi Li
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Xiaoting Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jianfeng Sun
- Department of Vascular Surgery, The First College of Medical Science, Yichang Central People's Hospital, China Three Gorges University, Hubei, 443000, China
| |
Collapse
|
2
|
Ding B, Jiang L, Zhang N, Zhou L, Luo H, Wang H, Chen X, Gao Y, Zhao Z, Wang C, Wang Z, Guo Z, Wang Y. Santalum album L. alleviates cardiac function injury in heart failure by synergistically inhibiting inflammation, oxidative stress and apoptosis through multiple components. Chin Med 2024; 19:98. [PMID: 39010069 PMCID: PMC11251102 DOI: 10.1186/s13020-024-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a complex cardiovascular syndrome with high mortality. Santalum album L. (SAL) is a traditional Chinese medicine broadly applied for various diseases treatment including HF. However, the potential active compounds and molecular mechanisms of SAL in HF treatment are not well understood. METHODS The active compounds and possible mechanisms of action of SAL were analyzed and validated by a systems pharmacology framework and an ISO-induced mouse HF model. RESULTS We initially confirmed that SAL alleviates heart damage in ISO-induced HF model. A total of 17 potentially active components in SAL were identified, with Luteolin (Lut) and Syringaldehyde (SYD) in SAL been identified as the most effective combination through probabilistic ensemble aggregation (PEA) analysis. These compounds, individually and in their combination (COMB), showed significant therapeutic effects on HF by targeting multiple pathways involved in anti-oxidation, anti-inflammation, and anti-apoptosis. The active ingredients in SAL effectively suppressed inflammatory mediators and pro-apoptotic proteins while enhancing the expression of anti-apoptotic factors and antioxidant markers. Furthermore, the synergistic effects of SAL on YAP and PI3K-AKT signaling pathways were further elucidated. CONCLUSIONS Mechanistically, the anti-HF effect of SAL is responsible for the synergistic effect of anti-inflammation, antioxidation and anti-apoptosis, delineating a multi-targeted therapeutic strategy for HF.
Collapse
Affiliation(s)
- Bojiao Ding
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Li Jiang
- Key Laboratory of Phytomedicinal Resources Utilization, Ministry of Education, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Na Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Li Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Huiying Luo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Haiqing Wang
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China
| | - Xuetong Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China
| | - Yuxin Gao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Zezhou Zhao
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
- Key Laboratory of Phytomedicinal Resources Utilization, Ministry of Education, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chao Wang
- National Key Laboratory On Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222002, Jiangsu, China
| | - Zhenzhong Wang
- National Key Laboratory On Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222002, Jiangsu, China
| | - Zihu Guo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China.
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China.
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China.
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China.
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China.
- College of Pharmacy, Heze University, Heze, 274015, Shandong, China.
| |
Collapse
|
3
|
Ding W, Fan JH, Zhong LR, Wang NX, Liu LH, Zhang HB, Wang L, Wang MQ, He BL, Wei AY. N-acetylcysteine ameliorates erectile dysfunction in rats with hyperlipidemia by inhibiting oxidative stress and corpus cavernosum smooth muscle cells phenotypic modulation. Asian J Androl 2024; 26:99-106. [PMID: 37534881 PMCID: PMC10846835 DOI: 10.4103/aja202324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
Hyperlipidemia is a major risk factor for erectile dysfunction (ED). Oxidative stress and phenotypic modulation of corpus cavernosum smooth muscle cells (CCSMCs) are the key pathological factors of ED. N-acetylcysteine (NAC) can inhibit oxidative stress; however, whether NAC can alleviate pathological variations in the corpus cavernosum and promote erectile function recovery in hyperlipidemic rats remains unclear. A hyperlipidemia model was established using 27 eight-week-old male Sprague-Dawley (SD) rats fed a high-fat and high-cholesterol diet (hyperlipidemic rats, HR). In addition, 9 male SD rats were fed a normal diet to serve as controls (NC). HR rats were divided into three groups: HR, HR+normal saline (NS), and HR+NAC (n = 9 for each group; NS or NAC intraperitoneal injections were administered daily for 16 weeks). Subsequently, the lipid profiles, erectile function, oxidative stress, phenotypic modulation markers of CCSMCs, and tissue histology were analyzed. The experimental results revealed that erectile function was significantly impaired in the HR and HR + NS groups, but enhanced in the HR + NAC group. Abnormal lipid levels, over-activated oxidative stress, and multi-organ lesions observed in the HR and HR + NS groups were improved in the HR + NAC group. Moreover, the HR group showed significant phenotypic modulation of CCSMCs, which was also inhibited by NAC treatment. This report focuses on the therapeutic effect of NAC in restoring erectile function using a hyperlipidemic rat model by preventing CCSMC phenotypic modulation and attenuating oxidative stress.
Collapse
Affiliation(s)
- Wei Ding
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Jun-Hong Fan
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Li-Ren Zhong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Nan-Xiong Wang
- Department of Urology, Shenzhen Immigration Inspection General Station Hospital, Shenzhen 518000, China
| | - Lu-Hao Liu
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Hai-Bo Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Li Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Ming-Qiang Wang
- Department of Endocrinology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Bing-Lin He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - An-Yang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
4
|
Refaie MMM, Fouli Gaber Ibrahim M, Fawzy MA, Abdel-Hakeem EA, Shaaban Mahmoud Abd El Rahman E, Zenhom NM, Shehata S. Molecular mechanisms mediate roflumilast protective effect against isoprenaline-induced myocardial injury. Immunopharmacol Immunotoxicol 2023; 45:650-662. [PMID: 37335038 DOI: 10.1080/08923973.2023.2222228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Myocardial necrosis is one of the most common cardiac and pathological diseases. Unfortunately, using the available medical treatment is not sufficient to rescue the myocardium. So that, we aimed in our model to study the possible cardioprotective effect of roflumilast (ROF) in an experimental model of induced myocardial injury using a toxic dose of isoprenaline (ISO) and detecting the role of vascular endothelial growth factor/endothelial nitric oxide synthase (VEGF/eNOS) and cyclic guanosine monophosphate/cyclic adenosine monophosphate/ sirtuin1 (cGMP/cAMP/SIRT1) signaling cascade. MATERIALS AND METHODS Animals were divided into five groups; control, ISO given group (150 mg/kg) i.p. on the 4th and 5th day, 3 ROF co-administered groups in different doses (0.25, 0.5, 1 mg/kg/day) for 5 days. RESULTS Our data revealed that ISO could induce cardiac toxicity as manifested by significant increases in troponin I, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and cleaved caspase-3 with toxic histopathological changes. Meanwhile, there were significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, eNOS, cGMP, cAMP and SIRT1. However, co-administration of ROF showed significant improvement and normalization of ISO induced cardiac damage. CONCLUSION We concluded that ROF successfully reduced ISO induced myocardial injury and this could be attributed to modulation of PDE4, VEGF/eNOS and cGMP/cAMP/SIRT1 signaling pathways with antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | | | | | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
5
|
Abdellatif SY, Fares NH, Elsharkawy SH, Mahmoud YI. Calanus oil attenuates isoproterenol-induced cardiac hypertrophy by regulating myocardial remodeling and oxidative stress. Ultrastruct Pathol 2023; 47:12-21. [PMID: 36588172 DOI: 10.1080/01913123.2022.2163016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calanus oil, an oil extracted from the marine crustacean Calanus finmarchicus, is one of the richest sources of omega-3 and poly-unsaturated fatty acids. Although calanus oil has been shown to have a significant anti-hypertensive, anti-inflammatory, anti-fibrotic and anti-obesity effects in various cardiovascular diseases, but little is known about its effect on pathological cardiac hypertrophy. Thus, the present study was carried out to evaluate the therapeutic effect of calanus oil on cardiac hypertrophy. Cardiac hypertrophy was induced by subcutaneous injections with isoproterenol (5 mg/kg b.w) for 14 consecutive days. Calanus oil (400 mg/kg) was given orally for 4 weeks. Cardiac pathological remodeling was evaluated by echocardiography, after which morphometric, biochemical, histological and ultrastructural analyses were performed. Calanus oil treatment significantly ameliorated isoproterenol-induced structural and functional alterations in echocardiography. Calanus oil also reduced the relative heart weight, significantly decreased the elevated cardiac enzymes (LDH and CK-MB) and the lipid peroxidation marker (MDA), augmented the myocardial antioxidant status (TAC), and ameliorated the histopathological and ultrastructural changes in cardiac tissues and prevented interstitial collagen deposition. The present study, for the first time, provided morphometric, biochemical, histological and ultrastructural evidences supporting the promising anti-hypertrophic effect of calanus oil against ISO-induced cardiac hypertrophy. This anti-hypertrophic effect of calanus oil is via regulating myocardial remodeling and oxidative stress. Therefore, it could be used as potential pharmacological intervention in the management of cardiac hypertrophy.
Collapse
Affiliation(s)
| | - Nagui H Fares
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Samar H Elsharkawy
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Yomna I Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Song F, Lin J, Zhang H, Guo Y, Mao Y, Liu Z, Li G, Wang Y. Long-Term Sleep Deprivation-Induced Myocardial Remodeling and Mitochondrial Dysfunction in Mice Were Attenuated by Lipoic Acid and N-Acetylcysteine. Pharmaceuticals (Basel) 2022; 16:51. [PMID: 36678548 PMCID: PMC9866495 DOI: 10.3390/ph16010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The impact of long-term sleep deprivation on the heart and its underlying mechanisms are poorly understood. The present study aimed to investigate the impact of chronic sleep deprivation (CSD) on the heart and mitochondrial function and explore an effective drug for treating CSD-induced heart dysfunction. We used a modified method to induce CSD in mice; lipoic acid (LA) and N-acetylcysteine (NAC) were used to treat CSD mice. Echocardiography, hematoxylin-eosin (H&E) staining, Sirius red staining, and immunohistochemistry were used to determine heart function and cardiac fibrosis. The serum levels of brain natriuretic peptide (BNP), superoxide Dismutase (SOD), micro malondialdehyde (MDA), and glutathione (GSH) were measured to determine cardiovascular and oxidative stress-related damage. Transmission electron microscopy was used to investigate mitochondrial damage. RNA-seq and Western blotting were used to explore related pathways. We found that the left ventricular ejection fraction (LVEF) and fraction shortening (LVFS) values were significantly decreased and myocardial hypertrophy was induced, accompanied by damaged mitochondria, elevated reactive oxygen species (ROS), and reduced SOD levels. RNA-sequence analysis of the heart tissue showed that various differentially expressed genes in the metabolic pathway were enriched. Sirtuin 1 (Sirt1) and Glutathione S-transferase A3 (Gsta3) may be responsible for CSD-induced heart and mitochondrial dysfunction. Pharmacological inhibition of ROS by treating CSD mice with LA and NAC effectively reduced heart damage and mitochondrial dysfunction by regulating Sirt1 and Gsta3 expression. Our data contribute to understanding the pathways of CSD-induced heart dysfunction, and pharmacological targeting to ROS may represent a strategy to prevent CSD-induced heart damage.
Collapse
Affiliation(s)
- Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Jiale Lin
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Houjian Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Yuli Guo
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Yijie Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang’an Hospital and Xiamen Eye Center Affiliated to Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| |
Collapse
|
7
|
Du Y, Demillard LJ, Ren J. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sci 2021; 287:120106. [PMID: 34756930 DOI: 10.1016/j.lfs.2021.120106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/20/2023]
Abstract
Cerebrovascular diseases such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage provoke cardiac complications such as heart failure, neurogenic stress-related cardiomyopathy and Takotsubo cardiomyopathy. With regards to the pathophysiology of stroke-induced heart injury, several mechanisms have been postulated to contribute to this complex interaction between brain and heart, including damage from gut dysbiosis, immune and systematic inflammatory responses, microvesicle- and microRNA-mediated vascular injury and damage from a surge of catecholamines. All these cerebrovascular diseases may trigger pronounced catecholamine surges through diverse ways, including stimulation of hypothalamic-pituitary adrenal axis, dysregulation of autonomic system, and secretion of adrenocorticotropic hormone. Primary catecholamines involved in this pathophysiological response include norepinephrine (NE) and epinephrine. Both are important neurotransmitters that connect the nervous system with the heart, leading to cardiac damage via myocardial ischemia, calcium (Ca2+) overload, oxidative stress, and mitochondrial dysfunction. In this review, we will aim to summarize the molecular mechanisms behind catecholamine-induced cardiotoxicity including Ca2+ overload, oxidative stress, apoptosis, cardiac hypertrophy, interstitial fibrosis, and inflammation. In addition, we will focus on how synchronization among these pathways evokes cardiotoxicity.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Laurie J Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Li HH, Bao LS, Deng SM, Liu L, Cheng J, Chen X, Pan YX, Zhang JS, Chu WY. Investigation of Proteus vulgaris and Elizabethkingia meningoseptica invasion on muscle oxidative stress and autophagy in Chinese soft-shelled turtle (Pelodiscus sinensis). Sci Rep 2021; 11:3657. [PMID: 33574492 PMCID: PMC7878920 DOI: 10.1038/s41598-021-83388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/02/2021] [Indexed: 01/30/2023] Open
Abstract
Muscle is an important structural tissue in aquatic animals and it is susceptible to bacterial and fungal infection, which could affect flesh quality and health. In this study, Chinese soft-shelled turtles were artificially infected with two pathogens, Proteus vulgaris and Elizabethkingia meningoseptica and the effects on muscle nutritional characteristics, oxidative stress and autophagy were assayed. Upon infection, the muscle nutritional composition and muscle fiber structure were notably influenced. Meanwhile, the mRNA expression of Nrf2 was down-regulated and Keap1 up-regulated, thus resulting in a decrease in antioxidant capacity and oxidative stress. However, with N-acetylcysteine treatment, the level of oxidative stress was decreased, accompanied by significant increases in antioxidant enzyme activities and the mRNA levels of SOD, CAT, GSTCD, and GSTO1. Interestingly, there was a significant increase in autophagy in the muscle tissue after the pathogen infection, but this increase could be reduced by N-acetylcysteine treatment. Our findings suggest that muscle nutritional characteristics were dramatically changed after pathogen infection, and oxidative stress and autophagy were induced by pathogen infection. However, N-acetylcysteine treatment could compromise the process perhaps by decreasing the ROS level and regulating Nrf2-antioxidant signaling pathways.
Collapse
Affiliation(s)
- Hong-Hui Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, China
| | - Ling-Sheng Bao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | | | - Li Liu
- Hunan Fisheries Science Institute, Changsha, China
| | - Jia Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xiao Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Ya-Xiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jian-She Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China.
| | - Wu-Ying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China.
| |
Collapse
|
9
|
He F, Zheng G, Hou J, Hu Q, Ling Q, Wu G, Zhao H, Yang J, Wang Y, Jiang L, Tang W, Yang Z. N-acetylcysteine alleviates post-resuscitation myocardial dysfunction and improves survival outcomes via partly inhibiting NLRP3 inflammasome induced-pyroptosis. JOURNAL OF INFLAMMATION-LONDON 2020; 17:25. [PMID: 32782443 PMCID: PMC7409674 DOI: 10.1186/s12950-020-00255-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Background NOD-like receptor 3 (NLRP3) inflammasome is necessary to initiate acute sterile inflammation. Increasing evidence indicates the activation of NLRP3 inflammasome induced pyroptosis is closely related to reactive oxygen species (ROS) in the sterile inflammatory response triggered by ischemia/reperfusion (I/R) injury. N-acetylcysteine (NAC) is an antioxidant and plays a protective role in local myocardial I/R injury, while its effect on post-resuscitation myocardial dysfunction, as well as its mechanisms, remain elusive. In this study, we aimed to investigate the effect of NAC on post-resuscitation myocardial dysfunction in a cardiac arrest rat model, and whether its underlying mechanism may be linked to ROS and NLRP3 inflammasome-induced pyroptosis. Methods The rats were randomized into three groups: (1) sham group, (2) cardiopulmonary resuscitation (CPR) group, and (3) CPR + NAC group. CPR group and CPR + NAC group went through the induction of ventricular fibrillation (VF) and resuscitation. After return of spontaneous circulation (ROSC), rats in the CPR and CPR + NAC groups were again randomly divided into two subgroups, ROSC 6 h and ROSC 72 h, for further analysis. Hemodynamic measurements and myocardial function were measured by echocardiography, and western blot was used to detect the expression of proteins. Results Results showed that after treatment with NAC, there was significantly better myocardial function and survival duration; protein expression levels of NLRP3, adaptor apoptosis-associated speck-like protein (ASC), Cleaved-Caspase-1 and gasdermin D (GSDMD) in myocardial tissues were significantly decreased; and inflammatory cytokines levels were reduced. The marker of oxidative stress malondialdehyde (MDA) decreased and superoxide dismutase (SOD) increased with NAC treatment. Conclusions NAC improved myocardial dysfunction and prolonged animal survival duration in a rat model of cardiac arrest. Moreover, possibly by partly inhibiting ROS-mediated NLRP3 inflammasome-induced pryoptosis.
Collapse
Affiliation(s)
- Fenglian He
- The Second Hospital of Anhui Medical University, Hefei, 230032 China
| | - Guanghui Zheng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Jingying Hou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Qiaohua Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Qin Ling
- Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Gongfa Wu
- Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Hui Zhao
- The Second Hospital of Anhui Medical University, Hefei, 230032 China
| | - Jin Yang
- The Second Hospital of Anhui Medical University, Hefei, 230032 China
| | - Yue Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Longyuan Jiang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Wanchun Tang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China.,Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China.,Zeng Cheng District People's Hospital of Guang Zhou, Guangzhou, 511300 China
| |
Collapse
|
10
|
Cardioprotective effect of thymol against adrenaline-induced myocardial injury in rats. Heliyon 2020; 6:e04431. [PMID: 32715125 PMCID: PMC7378581 DOI: 10.1016/j.heliyon.2020.e04431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease represents a vital global disease burden. This study aims to assess the possible cardioprotective effect of thymol against adrenaline-induced myocardial injury (MI) in rats. Furthermore the effect of thymol on cardiac function biomarkers, electrocardiogram (ECG) alterations, oxidative stress, inflammation, apoptosis and histopathological changes was assessed. MI was induced by adrenaline (2 mg/kg, s.c.) injected as a single dose for 2 consecutive days (24 h apart). Normal and control groups received the vehicle for 21 consecutive days. The other 3 groups were orally administered thymol (15, 30, 60 mg/kg) for 21 consecutive days and on day 22, adrenaline was injected as a single dose for 2 consecutive days. Then ECG examination, biochemical, histopathological, immunohistochemical analyses were carried out. Thymol reversed adrenaline-induced reduction of heart rate, prolongation of RR interval and elevation of ST interval. Thymol pretreatment significantly reduced serum aspartate dehydrogenase (AST), lactate dehydrogenase (LDH), and creatine kinase (CK) levels in MI rats. Oral pretreatment with thymol increased reduced glutathione (GSH), reduced malondialdehyde (MDA), nuclear factor-kappa B (NF-κB), and interleukin-1β (IL-1β) cardiac contents in MI rats. Additionally, thymol administration significantly decreased protein expression of caspase-3, increased Bcl-2 protein expression in cardiac tissue and ameliorated histopathological changes. This study reveals that thymol exerted cardioprotective effect against adrenaline-induced MI in rats evidenced by improving cardiac function, attenuating ECG and histopathological changes which may be partly mediated through its anti-oxidant, anti-inflammatory and anti-apoptotic effect.
Collapse
|
11
|
Durço AO, de Souza DS, Heimfarth L, Miguel-Dos-Santos R, Rabelo TK, Oliveira Barreto TD, Rhana P, Santos Santana MN, Braga WF, Santos Cruz JD, Lauton-Santos S, Santana-Filho VJD, Barreto RDSS, Guimarães AG, Alvarez-Leite JI, Quintans Júnior LJ, Vasconcelos CMLD, Santos MRVD, Barreto AS. d-Limonene Ameliorates Myocardial Infarction Injury by Reducing Reactive Oxygen Species and Cell Apoptosis in a Murine Model. JOURNAL OF NATURAL PRODUCTS 2019; 82:3010-3019. [PMID: 31710486 DOI: 10.1021/acs.jnatprod.9b00523] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Myocardial infarction (MI) leads to high mortality, and pharmacological or percutaneous primary interventions do not significantly inhibit ischemia/reperfusion injuries, particularly those caused by oxidative stress. Recently, research groups have evaluated several naturally occurring antioxidant compounds for possible use as therapeutic alternatives to traditional treatments. Studies have demonstrated that d-limonene (DL), a monoterpene of citrus fruits, possesses antioxidant and cardiovascular properties. Thus, this work sought to elucidate the mechanisms of protection of DL in an isoproterenol-induced murine MI model. It was observed that DL (10 μmol) attenuated 40% of the ST elevation, reduced the infarct area, prevented histological alterations, abolished completely oxidative stress damage, restored superoxide dismutase activity, and suppressed pro-apoptotic enzymes. In conclusion, the present study demonstrated that DL produces cardioprotective effects from isoproterenol-induced myocardial infarction in Swiss mice through suppression of apoptosis.
Collapse
Affiliation(s)
- Aimée Obolari Durço
- Department of Health Education , Federal University of Sergipe , Lagarto 49100-000 , Brazil
| | - Diego Santos de Souza
- Department of Physiology , Federal University of Sergipe , São Cristovão 49100-000 , Brazil
| | - Luana Heimfarth
- Department of Physiology , Federal University of Sergipe , São Cristovão 49100-000 , Brazil
| | | | - Thallita Kelly Rabelo
- Department of Health Education , Federal University of Sergipe , Lagarto 49100-000 , Brazil
| | - Tatiane de Oliveira Barreto
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| | - Paula Rhana
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| | | | - Weslley Fernandes Braga
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| | - Jader Dos Santos Cruz
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| | - Sandra Lauton-Santos
- Department of Physiology , Federal University of Sergipe , São Cristovão 49100-000 , Brazil
| | | | | | | | | | | | | | | | - André Sales Barreto
- Department of Health Education , Federal University of Sergipe , Lagarto 49100-000 , Brazil
| |
Collapse
|
12
|
Boşgelmez Iİ, Güvendik G. Beneficial Effects of N-Acetyl-L-cysteine or Taurine Pre- or Post-treatments in the Heart, Spleen, Lung, and Testis of Hexavalent Chromium-Exposed Mice. Biol Trace Elem Res 2019; 190:437-445. [PMID: 30417263 DOI: 10.1007/s12011-018-1571-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Hexavalent chromium[Cr(VI)] compounds may induce toxic effects, possibly via reactive intermediates and radicals formed during Cr(VI) reduction. In this study, we probed the possible effects of N-acetyl-L-cysteine (NAC) and taurine pre- or post-treatments on Cr(VI)-induced changes in lipid peroxidation and nonprotein thiols (NPSH) in mice heart, lung, spleen, and testis tissues. The mice were randomly assigned to six groups, consisting of control, Cr(VI)-exposed (20 mg Cr/kg, intraperitoneal ,ip), NAC (200 mg/kg, ip) as pre-treatment and post-treatment, and taurine (1 g/kg, ip) pre-treatment and post-treatment groups. Lipid peroxidation and NPSH levels were determined and the results were compared with regard to tissue- and antioxidant-specific basis. Exposure to Cr(VI) significantly increased lipid peroxidation in all tissues as compared to the control (p < 0.05); and consistent with this data, NPSH levels were significantly decreased (p < 0.05). Notably, administration of NAC and taurine, either before or after Cr(VI) exposure, was able to ameliorate the lipid peroxidation (p < 0.05) in all tissues. In the case of NPSH content, while the decline could be alleviated by both NAC and taurine pre- and post-treatments in the spleen, diverging results were obtained in other tissues. The effects of Cr(VI) on the lung thiols were abolished by pre-treatment with NAC and taurine; however, post-treatments could not exert significant effect. While thiol depletion in the heart was totally replenished by NAC and taurine administrations, NAC pre-treatment was partially more effective than post-treatment. In contrast with lipid peroxidation data, NAC treatment could not provide a statistically significant beneficial effect on NPSH content of the testis, whereas the effect in this tissue by taurine was profound. Thus, these data highlight the importance of tissue-specific factors and the critical role of administration time. Overall, our data suggest that NAC and taurine may have potential in prevention of Cr(VI)-induced toxicity in the heart, lung, spleen, and testis tissues.
Collapse
Affiliation(s)
- I İpek Boşgelmez
- Department of Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey.
| | - Gülin Güvendik
- Department of Toxicology, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
13
|
Si-Miao-Yong-An decoction ameliorates cardiac function through restoring the equilibrium of SOD and NOX2 in heart failure mice. Pharmacol Res 2019; 146:104318. [DOI: 10.1016/j.phrs.2019.104318] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 06/16/2019] [Indexed: 11/19/2022]
|
14
|
Maior GIS, Mascena GV, Marquis VWPB, Figueiredo Filho CA, Paz ARD, Moura LCRV, Brandt CT. Role of moxifloxacin-dexamethasone in cardiac histomorphometric findings among Wistar rats from infected mothers. Acta Cir Bras 2018; 33:744-752. [PMID: 30328906 DOI: 10.1590/s0102-865020180090000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate cardiac changes in young rats, whose mothers underwent autogenic fecal peritonitis, during organogenesis phase and to evaluate the role of intravenous administration of moxifloxacin and dexamethasone in preventing infection-related cardiac changes. METHODS A prospective histomorphometric study was performed on 29 hearts of Wistar four-month old rats. Animals were divided into three groups: Negative Control Group (NCG) included 9 subjects from healthy mothers; Positive Control Group (PCG) included 10 subjects from mothers with fecal peritonitis (intra-abdominal injection of 10% autogenic fecal suspension in the gestational period) and did not receive any treatment; and Intervention Group (IG), with 10 animals whose infected mothers received moxifloxacin and dexamethasone treatment 24 hours after induction of fecal peritonitis. RESULTS Nuclear count was higher in the IG group as compared to PCG (p = 0.0016) and in NCG as compared to PCG (p = 0.0380). There was no significant difference in nuclear counts between NCG and IG. CONCLUSION Induced autogenic fecal peritonitis in pregnant Wistar rats determined myocardial changes in young rats that could be avoided by the early administration of intravenous moxifloxacin and dexamethasone.
Collapse
Affiliation(s)
- Gustavo Ithamar Souto Maior
- Fellow PhD degree, Postgraduate Program in Tropical Medicine, Health Sciences Center, Universidade Federal de Pernambuco (UFPE), Recife-PE, Brazil. Acquisition and interpretation of data, manuscript writing
| | - Guilherme Veras Mascena
- Fellow PhD degree, Postgraduate Program in Surgery, Health Sciences Center, UFPE, Recife-PE, Brazil. Statistical analysis, critical revision
| | | | - Carlos Alberto Figueiredo Filho
- Fellow PhD degree, Postgraduate Program in Tropical Medicine, Health Sciences Center, UFPE, Recife-PE, Brazil. Acquisition of data, critical revision
| | - Alexandre Rolim da Paz
- Fellow PhD degree, Postgraduate Program in Pathology, Health Sciences Center, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil. Acquisition and interpretation of data
| | - Líbia Cristina Rocha Vilela Moura
- PhD, Head, Postgraduate Program in Tropical Medicine, Health Sciences Center, UFPE, Recife-PE, Brazil. Interpretation of data, final approval
| | - Carlos Teixeira Brandt
- PhD, Head, Postgraduate Program in Surgery, Health Sciences Center, UFPE, Recife-PE, Brazil. Interpretation of data, critical revision
| |
Collapse
|