1
|
Bada L, Butt HS, Quezada E, Picos A, Wangensteen H, Inngjerdingen KT, Gil-Longo J, Viña D. Antitumor Activity, Mechanisms of Action and Phytochemical Profiling of Sub-Fractions Obtained from Ulex gallii Planch. (Fabaceae): A Medicinal Plant from Galicia (Spain). Molecules 2025; 30:972. [PMID: 40005281 PMCID: PMC11858089 DOI: 10.3390/molecules30040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
The plant kingdom serves as a valuable resource for cancer drug development. This study explored the antitumor activity of different sub-fractions (hexane, dichloromethane and methanol) of U. gallii (gorse) methanol extract in glioblastoma (U-87MG and U-373MG) and neuroblastoma (SH-SY5Y) cell lines, along with their phytochemical profiles. Cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and cell cycle arrest and apoptosis were assessed through flow cytometry and by measuring reactive oxygen species (ROS) and protein expression levels. D7 and D8 dichloromethane sub-fractions significantly reduced cell viability, triggered early apoptosis in SH-SY5Y and U-87MG cells and specifically increased ROS levels in U-87MG cells. Western blot analyses showed that D7 increased p53, caspase-3, caspase-8 and γH2AX expression in SH-SY5Y and U-87MG cells, while D8 specifically elevated p53 in SH-SY5Y cells and caspase-3 in both cell lines. In U-373 cells, D7 and D8 markedly reduced cell viability, with D8 inducing necrosis. Morphological changes indicative of apoptosis were also observed in all cell lines. Bioinformatic analysis of UHPLC-MS and GC-MS data tentatively identified 20 metabolites in D7 and 15 in D8, primarily flavonoids. HPLC-DAD confirmed isoprunetin and genistein as the most abundant in D7 and D8, respectively, both isolated and identified by NMR spectroscopy. Most of the flavonoids identified have been reported as antitumor agents, suggesting that these compounds may be responsible for the observed pharmacological activity.
Collapse
Affiliation(s)
- Lucía Bada
- Group of Pharmacology of Chronic Diseases (CD Pharma), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.B.); (A.P.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| | - Hussain Shakeel Butt
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (H.S.B.); (H.W.); (K.T.I.)
| | - Elías Quezada
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| | - Aitor Picos
- Group of Pharmacology of Chronic Diseases (CD Pharma), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.B.); (A.P.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (H.S.B.); (H.W.); (K.T.I.)
| | - Kari Tvete Inngjerdingen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (H.S.B.); (H.W.); (K.T.I.)
| | - José Gil-Longo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| | - Dolores Viña
- Group of Pharmacology of Chronic Diseases (CD Pharma), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.B.); (A.P.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| |
Collapse
|
2
|
Shamsi H, Yari R, Salehzadeh A. Biosynthesized BiFe 2O 4@Ag nanoparticles mediated Scenedesmus obliquus induce apoptosis in AGS gastric cancer cell line. Sci Rep 2024; 14:10284. [PMID: 38704421 PMCID: PMC11069558 DOI: 10.1038/s41598-024-57157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/14/2024] [Indexed: 05/06/2024] Open
Abstract
The use of magnetic metal nanoparticles has been considered in cancer treatment studies. In this study, BiFe2O4@Ag nanoparticles were synthesized biologically by Scenedesmus obliquus for the first time and their anticancer mechanism in a gastric cancer cell line was characterized. The physicochemical properties of the nanoparticles were evaluated by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic Light Scattering (DLS), and zeta potential analyses. Cell viability and nuclear damage were investigated by the MTT and Hoechst staining assays, respectively. Flow cytometry analysis was performed to determine the frequency of the necrotic and apoptotic cells as well as cell cycle analysis of the nanoparticles-treated cells. Physicochemical characterization showed that the synthesized particles were spherical, without impurities, in a size range of 38-83 nm, with DLS size and zeta potential of 295.7 nm and -27.7 mV, respectively. BiFe2O4@Ag nanoparticles were considerably more toxic for the gastric cancer cells (AGS cell line) than HEK293 normal cells with IC50 of 67 and 117 µg/ml, respectively. Treatment of AGS cells with the nanoparticles led to a remarkable increase in the percentage of late apoptosis (38.5 folds) and cell necrosis (13.4 folds) and caused cell cycle arrest, mainly at the S phase. Also, nuclear fragmentation and apoptotic bodies were observed in the gastric cancer cells treated with the nanoparticles. This study represents BiFe2O4@Ag as a novel anticancer candidate against gastric cancer that can induce cell apoptosis through DNA damage and inhibition of cell cycle progression.
Collapse
Affiliation(s)
- Hossein Shamsi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Reza Yari
- Department of Biology, Borujerd Branch, Islamic Azad University, Borujerd, Iran.
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
3
|
Ferritinophagy-Mediated ROS Production Contributed to Proliferation Inhibition, Apoptosis, and Ferroptosis Induction in Action of Mechanism of 2-Pyridylhydrazone Dithiocarbamate Acetate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5594059. [PMID: 34691357 PMCID: PMC8531783 DOI: 10.1155/2021/5594059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) production is involved in the mechanism of action of a number of drugs, but the biological effects of ROS remain to be clarified. Furthermore, ferroptosis involves iron-dependent ROS production that may be derived from ferritinophagy; however, the association between ferroptosis and ferritinophagy has not been fully established. The present study demonstrated that dithiocarbamate derivatives (iron chelators) exhibited antineoplastic properties involving ferritinophagy induction, but whether the underlying mechanisms involved ferroptosis was unknown. To gain insight into the underlying mechanism, a dithiocarbamate derivative, 2-pyridylhydrazone dithiocarbamate s-acetic acid (PdtaA), was prepared. An MTT assay demonstrated that PdtaA inhibited proliferation involving ROS production (IC50 = 23.0 ± 1.5 μM for HepG2 cells). A preliminary mechanistic study revealed that PdtaA induced both apoptosis and cell cycle arrest. Notably, PdtaA also induced ferroptosis via downregulation of GPx4 and xCT, which was first reported for a dithiocarbamate derivative. Moreover, these cellular events were associated with ROS production. To explore the origin of ROS, expression of the ferritinophagy-related genes, ferritin, and nuclear receptor coactivator (NCOA4) were measured. Immunofluorescence and western blotting analysis indicated that PdtaA-induced ferritinophagy may contribute to ROS production. To investigate the role of ferritinophagy, autophagy inhibitor 3-methyladenin or genetic knockdown of NCOA4 was employed to inhibit ferritinophagy, which significantly neutralized the action of PdtaA in both apoptosis and ferroptosis. Taken together, PdtaA-induced cell cycle arrest, apoptosis, and ferroptosis were associated with ferritinophagy.
Collapse
|
4
|
Pan Z, Luo Y, Xia Y, Zhang X, Qin Y, Liu W, Li M, Liu X, Zheng Q, Li D. Cinobufagin induces cell cycle arrest at the S phase and promotes apoptosis in nasopharyngeal carcinoma cells. Biomed Pharmacother 2019; 122:109763. [PMID: 31918288 DOI: 10.1016/j.biopha.2019.109763] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
Abstract
Emerging evidence suggests that cinobufagin, an active ingredient in Venenum Bufonis, inhibits cell proliferation in several tumor cells. However, the anti-tumor effect of cinobufagin on nasopharyngeal carcinoma and the underlying molecular mechanisms are still unclear. In this study, we found that cinobufagin significantly inhibits the proliferation of nasopharyngeal carcinoma HK-1 cells. Further analyses demonstrated that cinobufagin induces cell cycle arrest at the S phase in HK-1 cells through downregulating the levels of CDK2 and cyclin E. Moreover, cinobufagin significantly downregulates the protein level of Bcl-2 and upregulates the levels of Bax, subsequently increasing the levels of cytoplasmic cytochrome c, Apaf-1, cleaved PARP1, cleaved caspase-3, and cleaved caspase-9, leading to HK-1 apoptosis. Furthermore, we found that cinobufagin significantly increases ROS levels and decreases the mitochondrial membrane potential in HK-1 cells. Collectively, these data imply that cinobufagin induces cell cycle arrest at the S phase and induces apoptosis through increasing ROS levels, thereby inhibiting cell proliferation in HK-1 cells. Therefore, cinobufagin is a promising bioactive agent that may contribute to the development of treatment strategies of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Yongchuan Luo
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; Intravenous Drug Distribution Center, Department of Pharmacy, Yantai Affiliated Hosptial of Binzhou Medical University, 264100, Yantai, China
| | - Yuan Xia
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Xin Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Yao Qin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Wenjing Liu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Xiaona Liu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| |
Collapse
|
5
|
Garige M, Sharma S. Cellular deficiency of Werner syndrome protein or RECQ1 promotes genotoxic potential of hydroquinone and benzo[a]pyrene exposure. Int J Toxicol 2014; 33:373-81. [PMID: 25228686 DOI: 10.1177/1091581814547422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The 5 known RecQ helicases in humans (RECQ1, BLM, WRN, RECQL4, and RECQ5) have demonstrated roles in diverse genome maintenance mechanisms but their functions in safeguarding the genome from environmental toxicants are poorly understood. Here, we have evaluated a potential role of WRN (mutated in Werner syndrome) and RECQ1 (the most abundant homolog of WRN) in hydroquinone (HQ)- and benzo[a]pyrene (BaP)-induced genotoxicity. Silencing of WRN or RECQ1 expression in HeLa cells increased their sensitivity to HQ and BaP but elicited distinct DNA damage response. The RECQ1-depleted cells exhibited increased replication protein A phosphorylation, Chk1 activation, and DNA double-strand breaks (DSBs) as compared to control or WRN-depleted cells following exposure to BaP treatment. The BaP-induced DSBs in RECQ1-depleted cells were dependent on DNA-dependent protein kinase activity. Notably, loss of WRN in RECQ1-depleted cells ameliorated BaP toxicity. Collectively, our results provide first indication of nonredundant participation of WRN and RECQ1 in protection from the potentially carcinogenic effects of BaP and HQ.
Collapse
Affiliation(s)
- Mamatha Garige
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, USA
| |
Collapse
|
6
|
Barkley LR, Palle K, Durando M, Day TA, Gurkar A, Kakusho N, Li J, Masai H, Vaziri C. c-Jun N-terminal kinase-mediated Rad18 phosphorylation facilitates Polη recruitment to stalled replication forks. Mol Biol Cell 2012; 23:1943-54. [PMID: 22456510 PMCID: PMC3350557 DOI: 10.1091/mbc.e11-10-0829] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The E3 ubiquitin ligase Rad18 chaperones DNA polymerase η (Polη) to sites of UV-induced DNA damage and monoubiquitinates proliferating cell nuclear antigen (PCNA), facilitating engagement of Polη with stalled replication forks and promoting translesion synthesis (TLS). It is unclear how Rad18 activities are coordinated with other elements of the DNA damage response. We show here that Ser-409 residing in the Polη-binding motif of Rad18 is phosphorylated in a checkpoint kinase 1-dependent manner in genotoxin-treated cells. Recombinant Rad18 was phosphorylated specifically at S409 by c-Jun N-terminal kinase (JNK) in vitro. In UV-treated cells, Rad18 S409 phosphorylation was inhibited by a pharmacological JNK inhibitor. Conversely, ectopic expression of JNK and its upstream kinase mitogen-activated protein kinase kinase 4 led to DNA damage-independent Rad18 S409 phosphorylation. These results identify Rad18 as a novel JNK substrate. A Rad18 mutant harboring a Ser → Ala substitution at S409 was compromised for Polη association and did not redistribute Polη to nuclear foci or promote Polη-PCNA interaction efficiently relative to wild-type Rad18. Rad18 S409A also failed to fully complement the UV sensitivity of Rad18-depleted cells. Taken together, these results show that Rad18 phosphorylation by JNK represents a novel mechanism for promoting TLS and DNA damage tolerance.
Collapse
Affiliation(s)
- Laura R Barkley
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Exposure to polycyclic aromatic hydrocarbons: bulky DNA adducts and cellular responses. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:107-31. [PMID: 22945568 DOI: 10.1007/978-3-7643-8340-4_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmental and dietary carcinogens such as polycyclic aromatic hydrocarbons (PAHs) have been intensively studied for decades. Although the genotoxicity of these compounds is well characterized (i.e., formation of bulky PAH-DNA adducts), molecular details on the DNA damage response triggered by PAHs in cells and tissues remain to be clarified. The conversion of hazardous PAHs into carcinogenic intermediates depends on enzyme-catalyzed biotransformation. Certain cytochrome P450-dependent monooxygenases (CYPs) play a pivotal role in PAH metabolism. In particular, CYP1A1 and 1B1 catalyze oxidation of PAHs toward primary epoxide species that can further be converted into multiple follow-up products, both nonenzymatically and enzymatically. Distinct functions between these major CYP enzymes have only been appreciated since transgenic animal models had been derived. Electrophilic PAH metabolites are capable of forming stable DNA adducts or to promote depurination at damaged nucleotide sites. During the following DNA replication cycle, bulky PAH-DNA adducts may be converted into mutations, thereby affecting hot spot sites in regulatory important genes such as Ras, p53, and others. Depending on the degree of DNA distortion and cell cycle progression, PAH-DNA adducts trigger nucleotide excision repair (NER) and various DNA damage responses that might include TP53-dependent apoptosis in certain cell types. In fact, cellular responses to bulky PAH-DNA damage are complex because distinct signaling branches such as ATM/ATR, NER, TP53, but also MAP kinases, interact and cooperate to determine the overall outcome to cellular injuries initiated by PAH-DNA adducts. Further, PAHs and other xenobiotics can also confer DNA damage via an alternative route of metabolic activation, which leads to the generation of PAH semiquinone radicals and reactive oxygen species (ROS). One-electron oxidations mediated by peroxidases or other enzymes can result in PAH radical cations that mainly form unstable DNA adducts subjected to depurination. In addition, generation of ROS can also trigger multiple cellular signaling pathways not directly related to mutagenic or cytotoxic effects, including those mediated by NFκB, SAPK/JNK, and p38. In recent years, it became clear that PAHs may also be involved in inflammatory diseases, autoimmune disorders, or atherosclerosis. Further research is under way to better characterize the significance of such newly recognized systemic effects of PAHs and to reconsider risk assessment for human health.
Collapse
|
8
|
Song IY, Palle K, Gurkar A, Tateishi S, Kupfer GM, Vaziri C. Rad18-mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway. J Biol Chem 2010; 285:31525-36. [PMID: 20675655 DOI: 10.1074/jbc.m110.138206] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fanconi anemia (FA) is a cancer susceptibility syndrome characterized by sensitivity to DNA-damaging agents. The FA proteins (FANCs) are implicated in DNA repair, although the precise mechanisms by which FANCs process DNA lesions are not fully understood. An epistatic relationship between the FA pathway and translesion synthesis (TLS, a post-replication DNA repair mechanism) has been suggested, but the basis for cross-talk between the FA and TLS pathways is poorly understood. We show here that ectopic overexpression of the E3 ubiquitin ligase Rad18 (a central regulator of TLS) induces DNA damage-independent mono-ubiquitination of proliferating cell nuclear antigen (PCNA) (a known Rad18 substrate) and FANCD2. Conversely, DNA damage-induced mono-ubiquitination of both PCNA and FANCD2 is attenuated in Rad18-deficient cells, demonstrating that Rad18 contributes to activation of the FA pathway. WT Rad18 but not an E3 ubiquitin ligase-deficient Rad18 C28F mutant fully complements both PCNA ubiquitination and FANCD2 activation in Rad18-depleted cells. Rad18-induced mono-ubiquitination of FANCD2 is not observed in FA core complex-deficient cells, demonstrating that Rad18 E3 ligase activity alone is insufficient for FANCD2 ubiquitylation. Instead, Rad18 promotes FA core complex-dependent FANCD2 ubiquitination in a manner that is secondary to PCNA mono-ubiquitination. Taken together, these results demonstrate a novel Rad18-dependent mechanism that couples activation of the FA pathway with TLS.
Collapse
Affiliation(s)
- Ihn Young Song
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
9
|
Viswesh V, Gates K, Sun D. Characterization of DNA damage induced by a natural product antitumor antibiotic leinamycin in human cancer cells. Chem Res Toxicol 2010; 23:99-107. [PMID: 20017514 DOI: 10.1021/tx900301r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leinamycin is a structurally novel Streptomyces-derived natural product that displays very potent activity against various human cancer cell lines (IC(50) values in the low nanomolar range). Previous in vitro biochemical studies have revealed that leinamycin alkylates DNA, generates apurinic (AP) sites and reactive oxygen species (ROS), and causes DNA strand breaks. However, it is not clear whether these events occur inside cells. In the present study, we have determined the endogenous amount of AP sites and DNA strand breaks in genomic DNA and the amount of oxidative stress in a human pancreatic carcinoma cell line, MiaPaCa, treated with leinamycin by utilizing the aldehyde-reactive probe assay, the comet assay, and fluorescent probes, respectively. We demonstrated that AP sites are formed rapidly following exposure to leinamycin, and the number of AP sites was increased up to seven-fold in a dose-dependent manner. However, only 25-50% of these sites remain 2 h after media containing drug molecules were aspirated and replaced with fresh media. We also observed leinamycin-induced ROS generation and a concomitant increase in apoptosis of MiaPaCa cells. Because both AP sites and ROS have the potential to generate strand breaks in cellular DNA, the comet assay was utilized to detect damage to nuclear DNA in leinamycin-treated MiaPaCa cell cultures. Both alkaline and neutral electrophoretic analysis revealed that leinamycin produces both single- and double-stranded DNA damage in drug-treated cells in a dose-dependent manner. Taken together, the results suggest that rapid conversion of leinamycin-guanine (N7) adducts into AP sites to produce DNA strand breaks, in synergy with leinamycin-derived ROS, accounts for the exceedingly potent biological activity of this natural product.
Collapse
Affiliation(s)
- Velliyur Viswesh
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
10
|
Ohmori H, Hanafusa T, Ohashi E, Vaziri C. Separate roles of structured and unstructured regions of Y-family DNA polymerases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 78:99-146. [PMID: 20663485 PMCID: PMC3103052 DOI: 10.1016/s1876-1623(08)78004-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
All organisms have multiple DNA polymerases specialized for translesion DNA synthesis (TLS) on damaged DNA templates. Mammalian TLS DNA polymerases include Pol eta, Pol iota, Pol kappa, and Rev1 (all classified as "Y-family" members) and Pol zeta (a "B-family" member). Y-family DNA polymerases have highly structured catalytic domains; however, some of these proteins adopt different structures when bound to DNA (such as archaeal Dpo4 and human Pol kappa), while others maintain similar structures independently of DNA binding (such as archaeal Dbh and Saccharomyces cerevisiae Pol eta). DNA binding-induced structural conversions of TLS polymerases depend on flexible regions present within the catalytic domains. In contrast, noncatalytic regions of Y-family proteins, which contain multiple domains and motifs for interactions with other proteins, are predicted to be mostly unstructured, except for short regions corresponding to ubiquitin-binding domains. In this review we discuss how the organization of structured and unstructured regions in TLS polymerases is relevant to their regulation and function during lesion bypass.
Collapse
Affiliation(s)
- Haruo Ohmori
- Institute For Virus Research, Kyoto University, 53 Shogoin-Kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomo Hanafusa
- Institute For Virus Research, Kyoto University, 53 Shogoin-Kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiji Ohashi
- Department of Biology, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Cyrus Vaziri
- Department of Pathology, University of North Carolina, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
11
|
Akagi JI, Masutani C, Kataoka Y, Kan T, Ohashi E, Mori T, Ohmori H, Hanaoka F. Interaction with DNA polymerase η is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells. DNA Repair (Amst) 2009; 8:585-99. [DOI: 10.1016/j.dnarep.2008.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/27/2008] [Accepted: 12/09/2008] [Indexed: 01/26/2023]
|
12
|
Ohashi E, Hanafusa T, Kamei K, Song I, Tomida J, Hashimoto H, Vaziri C, Ohmori H. Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function. Genes Cells 2009; 14:101-11. [PMID: 19170759 PMCID: PMC3103050 DOI: 10.1111/j.1365-2443.2008.01255.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
When a replicative DNA polymerase (Pol) is stalled by damaged DNA, a "polymerase switch" recruits specialized translesion synthesis (TLS) DNA polymerase(s) to sites of damage. Mammalian cells have several TLS DNA polymerases, including the four Y-family enzymes (Poleta, Poliota, Polkappa and REV1) that share multiple primary sequence motifs, but show preferential bypass of different DNA lesions. REV1 interacts with Poleta, Poliota, and Polkappa and therefore appears to play a central role during TLS in vivo. Here we have investigated the molecular basis for interactions between REV1 and Polkappa. We have identified novel REV1-interacting regions (RIRs) present in Polkappa, Poliota and Poleta. Within the RIRs, the presence of two consecutive phenylalanines (FF) is essential for REV1-binding. The consensus sequence for REV1-binding is denoted by x-x-x-F-F-y-y-y-y (x, no specific residue and y, no specific residue but not proline). Our results identify structural requirements that are necessary for FF-flanking residues to confer interactions with REV1. A Polkappa mutant lacking REV1-binding activity did not complement the genotoxin-sensitivity of Polk-null mouse embryonic fibroblast cells, thereby demonstrating that the REV1-interaction is essential for Polkappa function in vivo.
Collapse
Affiliation(s)
- Eiji Ohashi
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Tomo Hanafusa
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Keijiro Kamei
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Ihnyoung Song
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Junya Tomida
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Hashimoto
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama 230-0046, Japan
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Haruo Ohmori
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Herrick J, Bensimon A. Introduction to molecular combing: genomics, DNA replication, and cancer. Methods Mol Biol 2009; 521:71-101. [PMID: 19563102 DOI: 10.1007/978-1-60327-815-7_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sequencing of the human genome inaugurated a new era in both fundamental and applied genetics. At the same time, the emergence of new technologies for probing the genome has transformed the field of pharmaco-genetics and made personalized genomic profiling and high-throughput screening of new therapeutic agents all but a matter of routine. One of these technologies, molecular combing, has served to bridge the technical gap between the examination of gross chromosomal abnormalities and sequence-specific alterations. Molecular combing provides a new perspective on the structure and dynamics of the human genome at the whole genome and sub-chromosomal levels with a resolution ranging from a few kilobases up to a megabase and more. Originally developed to study genetic rearrangements and to map genes for positional cloning, recent advances have extended the spectrum of its applications to studying the real-time dynamics of the replication of the genome. Understanding how the genome is replicated is essential for elucidating the mechanisms that both maintain genome integrity and result in the instabilities leading to human genetic disease and cancer. In the following, we will examine recent discoveries and advances due to the application of molecular combing to new areas of research in the fields of molecular cytogenetics and cancer genomics.
Collapse
|
14
|
Herrick J, Bensimon A. Global regulation of genome duplication in eukaryotes: an overview from the epifluorescence microscope. Chromosoma 2008; 117:243-60. [PMID: 18197411 DOI: 10.1007/s00412-007-0145-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 01/15/2023]
Abstract
In eukaryotes, DNA replication is initiated along each chromosome at multiple sites called replication origins. Locally, each replication origin is "licensed" or specified at the end of the M and the beginning of the G1 phases of the cell cycle. During the S phase when DNA synthesis takes place, origins are activated in stages corresponding to early and late-replicating domains. The staged and progressive activation of replication origins reflects the need to maintain a strict balance between the number of active replication forks and the rate at which DNA synthesis proceeds. This suggests that origin densities (frequency of initiation) and replication fork movement (rates of elongation) must be coregulated to guarantee the efficient and complete duplication of each subchromosomal domain. Emerging evidence supports this proposal and suggests that the ATM/ATR intra-S phase checkpoint plays an important role in the coregulation of initiation frequencies and rates of elongation. In this paper, we review recent results concerning the mechanisms governing the global regulation of DNA replication and discuss the roles these mechanisms play in maintaining genome stability during both a normal and perturbed S phase.
Collapse
Affiliation(s)
- John Herrick
- Genomic Vision, 29, rue Faubourg St. Jacques, Paris 75014, France.
| | | |
Collapse
|