1
|
Islam MT, Malik A, Alshememry AK, Chowdhury R, Bhuia MS, Fatima S, Hossen MS, Rakib AI, Mollah F, Akbor MS, Bappi MH, Saim MA, Islam MT. Anxiolytic Effect of Sesamol, Possibly Through the GABAkine Interaction Pathway. Drug Dev Res 2024; 85:e70028. [PMID: 39635782 DOI: 10.1002/ddr.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Plant-based components have helped generate novel lead molecules and scaffolds for anxiety research in psychopharmacology. The present study examined the anxiolytic properties of sesamol (SES), a phenolic lignan derived from Sesamum indicum, employing both in vivo and computational methods to understand its mechanisms of action. In this experiment, adult Swiss albino mice received various doses of SES (25 and 50 mg/kg, p.o.) orally. Afterward, a series of behavioral assessments, including open field, swing, hole cross, and light-dark testing, were conducted. The impact of the GABAergic agonist diazepam (DZP-1 mg/kg, i.p.) along with the antagonist flumazenil (FLU-0.1 mg/kg, i.p.) has been studied as provided concurrently with the SES-50 group. Computational studies were performed to comprehend the interaction between SES and GABAA receptor subunits (α2 and α3). The results of our investigation revealed that SES dose-dependently and significantly (p < 0.05) reduced the number of square crosses, hole crosses, swings, grooming, and rearing along with a reduction of light residence time in animals. When combined with DZP, SES-50 significantly reduced all these parameters, while altering with FLU-0.1. The molecular docking analysis showed that the SES has a relatively good binding score (-5.03 ± 0.15 and -5.25 ± 0.23 kcal/mol) with GABAA receptor α2 and α3 subunits, respectively. The SES triggers anxiolytic effects via GABAA receptor α2 and α3 subunit interactions. Furthermore, precise and comprehensive preclinical research must be considered to validate potential SES targets for anxiolytic impact, clinical trial efficacy, and safety.
Collapse
Affiliation(s)
- Md Tahajul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah K Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Md Samim Hossen
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Faysal Mollah
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Mehedi Hasan Bappi
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Abu Saim
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
2
|
Huang Z, Wu Z, Gu X, Ji L. Diagnosis, toxicological mechanism, and detoxification for hepatotoxicity induced by pyrrolizidine alkaloids from herbal medicines or other plants. Crit Rev Toxicol 2024; 54:123-133. [PMID: 38411492 DOI: 10.1080/10408444.2024.2310597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Pyrrolizidine alkaloids (PAs) are one type of phytotoxins distributed in various plants, including many medicinal herbs. Many organs might suffer injuries from the intake of PAs, and the liver is the most susceptible one. The diagnosis, toxicological mechanism, and detoxification of PAs-induced hepatotoxicity have been studied for several decades, which is of great significance for its prevention, diagnosis, and therapy. When the liver was exposed to PAs, liver sinusoidal endothelial cells (LSECs) loss, hemorrhage, liver parenchymal cells death, nodular regeneration, Kupffer cells activation, and fibrogenesis occurred. These pathological changes classified the PAs-induced liver injury as acute, sub-acute, and chronic type. PAs metabolic activation, mitochondria injury, glutathione (GSH) depletion, inflammation, and LSECs damage-induced activation of the coagulation system were well recognized to play critical roles in the pathological process of PAs-induced hepatotoxicity. A lot of natural compounds like glycyrrhizic acid, (-)-epicatechin, quercetin, baicalein, chlorogenic acid, and so on were demonstrated to be effective in alleviating PAs-induced liver injury, which rendered them huge potential to be developed into therapeutic drugs for PAs poisoning in clinics. This review presents updated information about the diagnosis, toxicological mechanism, and detoxification studies on PAs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Kaushik S, Bhargava P, Sharma J, Arava S, Nag TC, Arya DS, Bhatia J. Sesamol attenuates bleomycin-induced pulmonary toxicity and fibrosis in experimental animals. J Biochem Mol Toxicol 2023; 37:e23472. [PMID: 37462223 DOI: 10.1002/jbt.23472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 11/10/2023]
Abstract
Sesamol, a lignan obtained from roasted seeds of Sesamum indicum, has high antioxidant and anti-inflammatory activity. In this study, we have investigated the effect of sesamol on Bleomycin (BLM) induced pulmonary toxicity as well as fibrosis in Wistar rats. Lung toxicity was induced by administration of BLM, 0.015 U/g ip, twice weekly for 28 days whereas lung fibrosis was induced by BLM, 0.015 U/g ip, every 5th day for 49 days. Sesamol administration was started 7 days before first dose of BLM in both the models. It was observed that sesamol 50 mg/kg most effectively attenuated pulmonary toxicity by reducing oxidative stress, inflammation and apoptosis. This dose was further evaluated for its anti-fibrotic effect. It was observed that there was a significant reduction in fibrosis. Lung collagen content was markedly reduced. Furthermore, expression of pro-fibrotic proteins, TGF-β/SMAD and α-SMA, was reduced and that of anti-fibrotic protein, AMPK, was markedly increased. Even though the combination of sesamol with pirfenidone exhibited no additional protection than either drug alone, it is evident from our study that our test drug, sesamol is comparable in efficacy to pirfenidone. Thus, sesamol has promising therapeutic potential in treatment of pulmonary toxicity and fibrosis.
Collapse
Affiliation(s)
- Swati Kaushik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Poorva Bhargava
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Jatin Sharma
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir S Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. PLANTS (BASEL, SWITZERLAND) 2023; 12:1168. [PMID: 36904028 PMCID: PMC10005287 DOI: 10.3390/plants12051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
5
|
Wang W, Chen Y, Yin Y, Wang X, Ye X, Jiang K, Zhang Y, Zhang J, Zhang W, Zhuge Y, Chen L, Peng C, Xiong A, Yang L, Wang Z. A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch Toxicol 2022; 96:2003-2019. [PMID: 35357534 PMCID: PMC9151551 DOI: 10.1007/s00204-022-03281-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Hepatic sinusoidal obstruction disease (HSOS) is a rare but life-threatening vascular liver disease. However, its underlying mechanism and molecular changes in HSOS are largely unknown, thus greatly hindering the development of its effective treatment. Hepatic sinusoidal endothelial cells (HSECs) are the primary and essential target for HSOS. A tandem mass tag-based shotgun proteomics study was performed using primary cultured HSECs from mice with HSOS induced by senecionine, a representative toxic pyrrolizidine alkaloid (PA). Dynamic changes in proteome were found at the initial period of damage and the essential role of thrombospondin 1 (TSP1) was highlighted in PA-induced HSOS. TSP1 over-expression was further confirmed in human HSECs and liver samples from patients with PA-induced HSOS. LSKL peptide, a known TSP1 inhibitor, protected mice from senecionine-induced HSOS. In addition, TSP1 was found to be covalently modified by dehydropyrrolizidine alkaloids in human HSECs and mouse livers upon senecionine treatment, thus to form the pyrrole-protein adduct. These findings provide useful information on early changes in HSECs upon PA treatment and uncover TSP1 overexpression as a contributor in PA-induced HSOS.
Collapse
Affiliation(s)
- Weiqian Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Yan Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Xunjiang Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xuanling Ye
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Kaiyuan Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yi Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Jiwei Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wei Zhang
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Li Chen
- Department of Gastroenterology, School of Medicine, Ruijin Hospital, Shanghai JiaoTong University, Shanghai, 201801, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China.
| | - Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| |
Collapse
|
6
|
Chen J, Wang Y, Liu W, Zhang F, Li J, Yang H, Bi Y. Effects of free fatty acids and peroxide on thermal loss of sesamol and formation of its transformation products in soybean oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Huang Z, Chen M, Wei M, Lu B, Wu X, Wang Z, Ji L. Liver Inflammatory Injury Initiated by DAMPs-TLR4-MyD88/TRIF-NFκB Signaling Pathway Is Involved in Monocrotaline-Induced HSOS. Toxicol Sci 2020; 172:385-397. [PMID: 31504964 DOI: 10.1093/toxsci/kfz193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) causes considerable morbidity and mortality in clinic. Up to now, the molecular mechanisms involved in the development of HSOS still remain unclear. Here, we report that hepatic inflammation initiated by damage-associated molecular patterns (DAMPs) plays a critical role in the development of HSOS. Monocrotaline (MCT) belongs to pyrrolizidine alkaloids. Monocrotaline-induced HSOS in mice and rats was evidenced by the increased serum alanine/aspartate aminotransferase (ALT/AST) activities, the elevated hepatic metalloproteinase 9 (MMP9) expression, and results from liver histological evaluation and scanning electron microscope observation. However, MCT-induced HSOS was markedly attenuated in myeloid differentiation primary response gene 88 (MyD88), TIR-domain-containing adapter-inducing interferon-β (TRIF) and toll like receptor 4 (TLR4) knock-out mice. Monocrotaline increased liver myeloperoxidase activity, serum contents of proinflammatory cytokines, hepatic aggregation of immune cells, and nuclear accumulation of nuclear factor κB (NFκB). However, these inflammatory responses induced by MCT were all diminished in MyD88, TRIF, and TLR4 knock-out mice. Monocrotaline elevated serum contents of DAMPs including high mobility group box 1 (HMGB1) and heat shock protein 60 (HSP60) both in mice and in rats. HSOS was markedly exacerbated and serum contents of HMGB1 and HSP60 were elevated in nuclear factor erythroid 2-related factor 2 (Nrf2) knock-out mice treated with MCT. Our findings indicate that hepatic inflammatory injury mediated by DAMPs-initiated TLR4-MyD88/TRIF-NFκB inflammatory signal pathway plays an important role in HSOS development.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minwei Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojun Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
8
|
Chen M, Zhang C, Zhang J, Kai G, Lu B, Huang Z, Ji L. The involvement of DAMPs-mediated inflammation in cyclophosphamide-induced liver injury and the protection of liquiritigenin and liquiritin. Eur J Pharmacol 2019; 856:172421. [DOI: 10.1016/j.ejphar.2019.172421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
|
9
|
Kumar A, Palek R, Liska V. A Critical Analysis of Experimental Animal Models of Sinusoidal Obstruction Syndrome. J Clin Exp Hepatol 2019; 9:345-353. [PMID: 31360027 PMCID: PMC6637067 DOI: 10.1016/j.jceh.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/07/2018] [Indexed: 02/08/2023] Open
Abstract
Given the high mortality rate and clinical impact associated with sinusoidal obstruction syndrome (SOS), many studies have attempted to better characterize the disease and potential treatment strategies. However, the unpredictability of SOS onset represents a major obstacle when developing reproducible and controlled clinical trials in humans. Similarly, although in vitro studies have elucidated many of the molecular and cellular mechanisms of SOS, they often lack clinical relevance and translatability, highlighting the importance of experimental in vivo research. Animal models have greatly varied in the approach used to induce SOS in accordance with the numerous causes of human disease. Thus far, the most common and prevalent model is the monocrotaline-induced model in rats, which has served as the basis for both new diagnostic and treatment studies and has been revised over the last 20 years to optimize its use. Furthermore, radiotherapy, oxaliplatin-based chemotherapy, and even hematopoietic stem cell transplantation have been recently used to better replicate human SOS in animals. Nevertheless, because of the novelty of such research, further studies should be conducted to better understand the reproducibility and applicability of these newer models. Thus, this review seeks to summarize the methods and results of experimental in vivo models of SOS and compare the efficacy of these various adaptations.
Collapse
Key Words
- BM SPC, Bone Marrow Endothelial Progenitor Cell
- CRLM, Colorectal Liver Metastases
- CV, Central Vein
- HSCT, Hematopoietic Stem Cell Transplantation
- HVOD, Hepatic Veno-Occlusive Disease
- MCT, Monocrotaline
- MMP-9, Matrix Metalloproteinase-9
- NO, Nitric Oxide
- PA, Pyrrolizidine Alkaloid
- RILD, Radiation-Induced Liver Disease
- SEC, Sinusoidal Endothelial Cell
- SOS, Sinusoidal Obstruction Syndrome
- blue liver disease
- in vivo
- monocrotaline
- oxaliplatin
- veno-occlusive disease
Collapse
Affiliation(s)
- Arvind Kumar
- Biomedical Center, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic,Department of Surgery, Charles University, Faculty of Medicine in Pilsen, Teaching Hospital Pilsen, Pilsen, Czech Republic
| | - Richard Palek
- Biomedical Center, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic,Department of Surgery, Charles University, Faculty of Medicine in Pilsen, Teaching Hospital Pilsen, Pilsen, Czech Republic
| | - Vaclav Liska
- Biomedical Center, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic,Department of Surgery, Charles University, Faculty of Medicine in Pilsen, Teaching Hospital Pilsen, Pilsen, Czech Republic,Address for correspondence: Vaclav Liska, Biomedical Center, Charles University, Faculty of Medicine in Pilsen, Alej Svobody 1655/76 323 00, Pilsen, Czech Republic.
| |
Collapse
|
10
|
Khorrami S, Daneshmandi S, Mosayeb G. Sesame seeds essential oil and Sesamol modulate the pro-inflammatory function of macrophages and dendritic cells and promote Th2 response. Med J Islam Repub Iran 2018; 32:98. [PMID: 30788333 PMCID: PMC6377006 DOI: 10.14196/mjiri.32.98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Herbal medicine is becoming progressively accepted treatment for management of different diseases worldwide. Recognition of the active ingredients and mechanisms of herbal medicine against the immune system and related anomalies is highly favorable. This experimental study aimed to investigate the effects of Sesame (Sesamum indicum L.) essential oil and sesamol as effective components on mouse splenocytes subsets, macrophages and dendritic cells (DCs). Methods: Effective components of sesame were extracted and used to treat splenocytes, PHA (5μg/ml) and LPS (10 μg/ml) stimulated splenocytes, macrophages and DCs in different concentration (0.01-100 μg/ml). The cell proliferation/viability was measured using the MTT assay and nitrite levels were measured by the diazotization method. Moreover, TNF-α and IL-1β cytokines concentration were assayed by ELISA. Treated DCs also analysed for maturation marker levels and cytokine production. Results: Analysis of the results indicated that sesame components suppress PHA-stimulated splenocytes with no effect on LPS-stimulated subsets. Furthermore, the sesame ingredients reduced the release of IFN-γ and increased secretion of IL-4 from lymphocytes. Macrophages viability was not affected and production of NO, TNF-α, and IL-1β were inhibited using sesame essential oil and sesamol. DCs phenotype skewed to immature and release of TNF-α and IL-1β were abrogated form DCs. Conclusion: These results indicate that sesame essential oil and its effective component as sesamol may capable of suppressing the response of cellular immunity with the domination of Th2 responses and also could modulate macrophages and the dendritic cells proinflammatory functions.
Collapse
Affiliation(s)
- Samaneh Khorrami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious disease, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Daneshmandi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghasem Mosayeb
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
11
|
Huang Z, Sheng Y, Chen M, Hao Z, Hu F, Ji L. Liquiritigenin and liquiritin alleviated MCT-induced HSOS by activating Nrf2 antioxidative defense system. Toxicol Appl Pharmacol 2018; 355:18-27. [PMID: 29908794 DOI: 10.1016/j.taap.2018.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022]
|
12
|
Miyata T, Tajima H, Hirata M, Nakanuma SI, Makino I, Hayashi H, Oyama K, Miyashita T, Takamura H, Ninomiya I, Fushida S, Iseki S, Harada SI, Wakayama T, Ohta T. Phosphodiesterase III inhibitor attenuates rat sinusoidal obstruction syndrome through inhibition of platelet aggregation in Disse's space. J Gastroenterol Hepatol 2018; 33:950-957. [PMID: 28960464 DOI: 10.1111/jgh.14004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM Sinusoidal obstruction syndrome (SOS) is a serious drug-induced liver injury. However, the pathophysiology of the disease remains unclear. This study investigated the effects of cilostazol (CZ), a phosphodiesterase III inhibitor, in a monocrotaline (MCT)-induced rat model of SOS. METHODS Male Wistar rats were administrated MCT to induce SOS. Rats were divided into control, MCT, and MCT + CZ groups. In the MCT + CZ group, CZ was administered at 48 h, 24 h, and 30 min prior to and 8 h and 24 h after MCT administration. The MCT group was treated with water instead of CZ. At 48 h after MCT administration, blood and liver samples were collected to assess biochemistry and liver histology. Expression of rat endothelial cell antigen, CD34, CD41, P-selectin, and caspase-3 in the liver were analyzed. Plasminogen activator inhibitor-1 (PAI-1) in hepatocytes was analyzed using western blotting and polymerase chain reaction. RESULTS In the MCT group, macroscopic findings showed a dark-red liver surface. Histological findings showed sinusoidal dilatation, coagulative necrosis of hepatocytes, and endothelial damage of the central vein. These changes were attenuated in the MCT + CZ group. Elevated serum transaminase and decreased platelet counts were observed in the MCT + CZ group compared with those in the MCT group. Treatment with CZ reduced MCT-induced damage to the liver sinusoidal endothelial cells, inhibited extravasated platelet aggregation, and suppressed hepatocyte apoptosis around the central vein. CZ attenuated hepatic PAI-1 protein and mRNA levels. CONCLUSIONS Cilostazol attenuated MCT-induced SOS by preventing damage to liver sinusoidal endothelial cells and extravasated platelet aggregation. Hepatic PAI-1 levels were suppressed with CZ treatment.
Collapse
Affiliation(s)
- Takashi Miyata
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miki Hirata
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shin-Ichi Nakanuma
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hironori Hayashi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shoichi Iseki
- Department of Histology and Embryology, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shin-Ichi Harada
- Center for Biomedical Research, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomohiko Wakayama
- Department of Histology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
13
|
Quercetin and baicalein suppress monocrotaline-induced hepatic sinusoidal obstruction syndrome in rats. Eur J Pharmacol 2017; 795:160-168. [DOI: 10.1016/j.ejphar.2016.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
|
14
|
Zheng Z, Shi L, Sheng Y, Zhang J, Lu B, Ji L. Chlorogenic acid suppresses monocrotaline-induced sinusoidal obstruction syndrome: The potential contribution of NFκB, Egr1, Nrf2, MAPKs and PI3K signals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:80-89. [PMID: 27438897 DOI: 10.1016/j.etap.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Hepatic sinusoidal obstruction syndrome (SOS) is a highly lethal liver disease. This study aims to observe the protection and its engaged mechanism of chlorogenic acid (CGA) against monocrotaline (MCT)-induced SOS. Results of detecting liver ascites, measuring serum transaminases, liver histological evaluation and scanning electron microscope observation all demonstrated that CGA prevented MCT-induced SOS in rats. CGA reduced MCT-induced increased liver myeloperoxidase (MPO) activity, tumor necrosis factor (TNF)α and interleukin (IL)-1β mRNA expression, toll-like receptor (TLR)-2,3,6,9 expression, and nuclear factor κB (NFκB) transcriptional activation. CGA also decreased MCT-induced early growth response1 (Egr1) activation. CGA reduced MCT-induced elevated liver malondialdehyde (MDA) amount and enhanced nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). CGA blocked MCT-induced PI3K and MAPKs activation. In conclusion, this study demonstrates the protection of CGA against MCT-induced SOS. Transcriptional factor NFκB, Egr1 and Nrf2-regulated inflammation, coagulation-fibrinolysis, and antioxidant, and PI3K and MAPKs all contribute to such protection.
Collapse
Affiliation(s)
- Zhiyong Zheng
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines, SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Liang Shi
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines, SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jiaqi Zhang
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines, SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Bin Lu
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines, SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lili Ji
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines, SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
15
|
Singh N, Khullar N, Kakkar V, Kaur IP. Hepatoprotective effects of sesamol loaded solid lipid nanoparticles in carbon tetrachloride induced sub-chronic hepatotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:520-532. [PMID: 25410024 DOI: 10.1002/tox.22064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
Sesamol is a phenolic component of sesame seed oil, which has been established as an antioxidant and also possesses potential for hepatoprotection. However, its protective role in carbon tetrachloride (CCl4 ) induced sub-chronic hepatotoxicity has not been studied. Limited oral bioavailability (BA) and rapid elimination (as conjugates) in rats is reported for sesamol. Considering its significant antioxidant potential and compromised BA, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its hepatoprotective bioactivity. S-SLNs prepared by microemulsification method were nearly spherical in shape with an average particle size of 120.30 nm and their oral administration at 8 mg/kg body weight (BW) showed significantly (p < 0.001) better hepatoprotection than free sesamol (FS) and a well established hepatoprotective antioxidant silymarin [SILY (25 mg/kg BW); p < 0.05) in CCl4 induced sub-chronic liver injury in rats. Evaluations were done in terms of histological changes in the liver tissue, liver injury markers (serum alanine aminotransferase, serum aspartate aminotransferase, and serum lactate dehydrogenase); oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and proinflammatory response marker (tumor necrosis factor-alpha).
Collapse
Affiliation(s)
- Neha Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Neeraj Khullar
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
16
|
Feng G, Long Y, Peng J, Li Q, Cui Z. Transcriptomic characterization of the dorsal lobes after hepatectomy of the ventral lobe in zebrafish. BMC Genomics 2015; 16:979. [PMID: 26584608 PMCID: PMC4653908 DOI: 10.1186/s12864-015-2145-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023] Open
Abstract
Background The liver possesses an ability of compensatory growth after removing three of five lobes in mammals or one of three lobes in zebrafish. The reenter of hepatocytes into the cell cycle is one of the hallmarks for the initiation of liver compensatory growth, but cellular and molecular mechanisms underlying the activation of hepatocytes remain largely unknown. Results To better understand the process, transcriptional profiles of the remaining liver dorsal lobes in female zebrafish were generated with RNA-seq. About 44 million raw reads were obtained from three sequencing libraries and 71 % of raw reads were mapped to the reference genome of zebrafish. A total number of 5652 genes were differentially expressed in at least one of two time points during the compensatory growth of liver dorsal lobes and classified into different functional categories. A number of genes encoding angiogenesis-related growth factors/ligands and apoptosis-associated cytokines were strongly expressed at 6-h time point after the removal of the ventral lobe. Gene ontology enrichment analysis of genes up-regulated during early stages of liver compensatory growth revealed that small GTPase-mediated signal transduction, RNA processing and intracellular protein transport were the most highly overrepresented biological processes and SNARE interactions in vesicular transport, proteasome and basal transcription factors were the most highly enriched pathways. Moreover, 477 genes differently expressed during liver compensatory growth of both female zebrafish and mice were involved in the response to stimulus, DNA replication, metabolic processes of fatty acid, lipid and steroid, multicellular organismal homeostasis and extracellular matrix constituent secretion. Conclusions Multiple biological processes and signaling pathways are immediately activated in remaining dorsal lobes of female zebrafish right after removal of the ventral lobe and these findings provide crucial clues for further identification of cis-elements and trans-factors that are extensively involved in the initiation of liver compensatory growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2145-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guohui Feng
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong Long
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Jinrong Peng
- Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Qing Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Zongbin Cui
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
17
|
Periasamy S, Hsu DZ, Fu YH, Liu MY. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation. EXCLI JOURNAL 2015; 14:672-83. [PMID: 26648820 PMCID: PMC4669910 DOI: 10.17179/excli2015-245] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/22/2015] [Indexed: 12/15/2022]
Abstract
Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic injuries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and α-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1β at 24 h and IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF-α and IL-1β were significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep deprivation-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implication of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects cardiovascular and gastrointestinal health.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Yu-Hsuan Fu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
18
|
Singh N, Khullar N, Kakkar V, Kaur IP. Sesamol loaded solid lipid nanoparticles: a promising intervention for control of carbon tetrachloride induced hepatotoxicity. Altern Ther Health Med 2015; 15:142. [PMID: 25935744 PMCID: PMC4456697 DOI: 10.1186/s12906-015-0655-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/17/2015] [Indexed: 02/08/2023]
Abstract
Background Sesamol, a component of sesame seed oil, exhibited significant antioxidant activity in a battery of in vitro and ex vivo tests including lipid peroxidation induced in rat liver homogenates. Latter established its potential for hepatoprotection. However, limited oral bioavailability, fast elimination (as conjugates) and tendency towards gastric irritation/toxicity (especially forestomach of rodents) may limit its usefulness. Presently, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its biopharmaceutical performance and compared the efficacy with that of free sesamol and silymarin, a well established hepatoprotectant, against carbon tetrachloride induced hepatic injury in rats, post induction. A self recovery group in which no treatment was given was used to observe the self-healing capacity of liver. Methods S-SLNs prepared by microemulsification method were administered to rats post-treatment with CCl4 (1 ml/kg body weight (BW) twice weekly for 2 weeks, followed by 1.5 ml/kg BW twice weekly for the subsequent 2 weeks). Liver damage and recovery on treatment was assessed in terms of histopathology, serum injury markers (alanine aminotransferase, aspartate aminotransferase), oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and a pro-inflammatory response marker (tumor necrosis factor alpha). Result S-SLNs (120.30 nm) at a dose of 8 mg/kg BW showed significantly better hepatoprotection than corresponding dose of free sesamol (FS; p < 0.001). Effects achieved with S-SLNs were comparable with silymarin (SILY), administered at a dose of 25 mg/kg BW. Self recovery group confirmed absence of regenerative capacity of hepatic tissue, post injury. Conclusion Use of lipidic nanocarrier system for sesamol improved its efficiency to control hepatic injury. Enhanced effect is probably due to: a) improved oral bioavailability, b) controlled and prolonged effect of entrapped sesamol and iii) reduction in irritation and toxicity, if any, upon oral administration. S-SLNs may be considered as a therapeutic option for hepatic ailments as effectiveness post induction of liver injury, is demonstrated presently.
Collapse
|
19
|
Duarte S, Baber J, Fujii T, Coito AJ. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol 2015; 44-46:147-56. [PMID: 25599939 PMCID: PMC4495728 DOI: 10.1016/j.matbio.2015.01.004] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/18/2023]
Abstract
The liver is a large highly vascularized organ with a central function in metabolic homeostasis, detoxification, and immunity. Due to its roles, the liver is frequently exposed to various insults which can cause cell death and hepatic dysfunction. Alternatively, the liver has a remarkable ability to self-repair and regenerate after injury. Liver injury and regeneration have both been linked to complex extracellular matrix (ECM) related pathways. While normal degradation of ECM components is an important feature of tissue repair and remodeling, irregular ECM turnover contributes to a variety of liver diseases. Matrix metalloproteinases (MMPs) are the main enzymes implicated in ECM degradation. MMPs not only remodel the ECM, but also regulate immune responses. In this review, we highlight some of the MMP-attributed roles in acute and chronic liver injury and emphasize the need for further experimentation to better understand their functions during hepatic physiological conditions and disease progression.
Collapse
Affiliation(s)
- Sergio Duarte
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - John Baber
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Takehiro Fujii
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Ana J Coito
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Liu CT, Periasamy S, Chang CC, Mo FE, Liu MY. Sesame Oil Therapeutically Ameliorates Cardiac Hypertrophy by Regulating Hypokalemia in Hypertensive Rats. JPEN J Parenter Enteral Nutr 2014; 38:750-757. [DOI: 10.1177/0148607113491781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
| | - Srinivasan Periasamy
- Department of Environmental and Occupational Health
- Research Center for Environment and Occupational Health and Preventive Medicine
| | - Chih-Ching Chang
- Department of Environmental and Occupational Health
- Research Center for Environment and Occupational Health and Preventive Medicine
| | - Fan-E Mo
- Department of Cell Biology and Anatomy, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health
- Research Center for Environment and Occupational Health and Preventive Medicine
| |
Collapse
|
21
|
Morine Y, Shimada M, Utsunomiya T. Evaluation and management of hepatic injury induced by oxaliplatin-based chemotherapy in patients with hepatic resection for colorectal liver metastasis. Hepatol Res 2014; 44:59-69. [PMID: 23551330 DOI: 10.1111/hepr.12107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 12/23/2022]
Abstract
Patients with colorectal liver metastasis (CRLM) can be cured with surgical resection. Recent advances in systemic chemotherapy, including molecular target agents, can be used to introduce "conversion surgery" and achieve R0 resection even in patients with initially unresectable CRLM. Furthermore, neoadjuvant chemotherapy also tries to be applied in patients with resectable CRLM to maximize the remnant liver and reduce the residual micrometastasis before surgery. The development of chemotherapy-induced hepatic injuries is increasingly being recognized, including sinusoidal obstructive syndrome (SOS), steatosis, steatohepatitis and biliary sclerosis. Especially, oxaliplatin (L-OHP)-based chemotherapy in clinical settings appears to be primarily associated with SOS. Various reports have tried to demonstrate the rationale of the correlation between L-OHP-based chemotherapy and SOS for the following hepatic surgery. While we can recognize that this pathophysiological disadvantage leads to hepatic dysfunction and the increasing postoperative morbidity, the essential part of this problem including clinical disadvantage, onset mechanism, evaluation systems, and targeted agents for prevention and treatment of SOS continue to be unclear. In this review, we summarize the current experience with hepatic injury induced by L-OHP-based chemotherapy, focusing on SOS-based on clinical and experimental data, in order to assist in the resolution of these identified factors. Finally, the need for reliable methods to identify the risk of SOS, to evaluate SOS status and to predict the safety of surgical treatment in patients with chemotherapy prior to surgery will be emphasized.
Collapse
Affiliation(s)
- Yuji Morine
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | |
Collapse
|
22
|
Sesame oil attenuates nutritional fibrosing steatohepatitis by modulating matrix metalloproteinases-2, 9 and PPAR-γ. J Nutr Biochem 2013; 25:337-44. [PMID: 24445078 DOI: 10.1016/j.jnutbio.2013.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 11/15/2013] [Accepted: 11/15/2013] [Indexed: 12/22/2022]
Abstract
Sesame oil is a nutrient-rich antioxidant popular in alternative medicine. It contains sesamin, sesamol, and sesamolin, all of which contribute to its improved liver function in various animal model studies. However, its effect on nutritional fibrosing steatohepatitis is unclear. We investigated therapeutic sesame oil on matrix metalloproteinases-2, 9 (MMP-2, 9) in nutritional fibrosing steatohepatitic mice. C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 35 days to induce fibrosing steatohepatitis. Sesame oil was treated from 29-35th day. Body weight, steatosis, aspartate transaminase, alanine transaminase, peroxisome proliferator-activated receptor (PPAR)-γ, α-smooth muscle actin (α-SMA), MMP-2, 9, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 were assessed after 35 days. All tested parameters except TIMP-1 and PPAR-γ were higher in MCD fed mice than in normal control mice. Mice fed with MCD diet for 4 weeks showed severe liver injury with steatosis, necrotic-inflammation, and fibrosis. In sesame-oil (4 ml)-treated mice, all tested parameters except TIMP-1, α-SMA, and PPAR-γ were significantly attenuated compared with MCD fed mice. Sesame oil inhibited MMP-2, 9 activities, but up-regulated TIMP-1 expression in MCD fed mice. In addition, a histological analysis of liver tissue samples showed that sesame oil provided significant protection against fibrosis. We conclude that therapeutic sesame oil protects against fibrosing steatohepatitis by inhibiting MMP-2, 9 activities, up-regulating TIMP-1 expression, and PPAR-γ.
Collapse
|
23
|
Periasamy S, Chien SP, Chang PC, Hsu DZ, Liu MY. Sesame oil mitigates nutritional steatohepatitis via attenuation of oxidative stress and inflammation: a tale of two-hit hypothesis. J Nutr Biochem 2013; 25:232-40. [PMID: 24445049 DOI: 10.1016/j.jnutbio.2013.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease, the most common chronic liver disorder worldwide, comprises conditions from steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. NASH is associated with an increased risk of hepatocellular carcinoma. Sesame oil, a healthful food, increases resistance to oxidative stress, inflammation and protects against multiple organ injury in various animal models. We investigated the protective effect of sesame oil against nutritional steatohepatitis in mice. C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 28 days to induce NASH. Sesame oil (1 and 2 ml/kg) was treated from 22nd to 28th day. Body weight, steatosis, triglycerides, aspartate transaminase, alanine transaminase, nitric oxide, malondialdehyde, tumor necrosis factor-α, interlukin-6, interleukin-1β, leptin, and transforming growth factor-β1 (TGF-β1) were assessed after 28 days. All tested parameters were higher in MCD-fed mice than in normal control mice. Mice fed with MCD diet for 4 weeks showed severe liver injury with steatosis, oxidative stress, and necrotic inflammation. In sesame-oil-treated mice, all tested parameters were significantly attenuated compared with MCD-alone mice. Sesame oil inhibited oxidative stress, inflammatory cytokines, leptin, and TGF-β1 in MCD-fed mice. In addition, histological analysis showed that sesame oil provided significant protection against fibrotic collagen. We conclude that sesame oil protects against steatohepatitic fibrosis by decreasing oxidative stress, inflammatory cytokines, leptin and TGF-β1.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan
| | - Se-Ping Chien
- Department of Living Science, Tainan University of Technology, Tainan 71002, Taiwan
| | - Po-Cheng Chang
- Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan.
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan.
| |
Collapse
|
24
|
Protective effect of 3,4-methylenedioxyphenol (sesamol) on stress-related mucosal disease in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:481827. [PMID: 23984371 PMCID: PMC3741923 DOI: 10.1155/2013/481827] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 12/13/2022]
Abstract
Stress-related mucosal disease (SRMD) causes considerable morbidity and mortality in critically ill patients. 3,4-Methylenedioxyphenol (sesamol) has been reported to have potent antioxidative and anti-inflammatory properties. The aim of this study was to investigate the effect of sesamol on water immersion restraint- (WIR-) induced SRMD in rats. Rat gastric ulcer and hemorrhage were induced by WIR. Rats were pretreated orally with various doses of sesamol (0.1, 0.3, and 1 mg/kg, resp.) 30 min before WIR. Gastric mucosal ulceration, hemoglobin, lipid peroxidation, mucus secretion, proinflammatory cytokines, and nuclear factor (NF)-κB levels were determined 4 h after WIR. In addition, the infiltration of neutrophil and macrophage into gastric mucosa was also determined after WIR. Water immersion restraint increased gastric mucosal ulcer and hemorrhage, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels but failed to affect mucosal lipid peroxidation and mucus secretion compared with non-WIR. Sesamol significantly decreased gastric ulceration and hemorrhage and inhibited mucosal TNF-α, IL-1β, and IL-6 production and NF-κB activity in WIR-treated rats. In addition, increased myeloperoxidase and CD68 levels in gastric mucosa were found in WIR-treated rats compared to non-WIR rats. Sesamol did not affect myeloperoxidase but decreased CD68 levels in mucosa in WIR-treated rats. Sesamol may protect against SRMD by inhibiting gastric mucosal proinflammatory cytokines in rats.
Collapse
|
25
|
Chandrasekaran VRM, Hsu DZ, Liu MY. Beneficial effect of sesame oil on heavy metal toxicity. JPEN J Parenter Enteral Nutr 2013; 38:179-85. [PMID: 23744838 DOI: 10.1177/0148607113490960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heavy metals become toxic when they are not metabolized by the body and accumulate in the soft tissue. Chelation therapy is mainly for the management of heavy metal-induced toxicity; however, it usually causes adverse effects or completely blocks the vital function of the particular metal chelated. Much attention has been paid to the development of chelating agents from natural sources to counteract lead- and iron-induced hepatic and renal damage. Sesame oil (a natural edible oil) and sesamol (an active antioxidant) are potently beneficial for treating lead- and iron-induced hepatic and renal toxicity and have no adverse effects. Sesame oil and sesamol significantly inhibit iron-induced lipid peroxidation by inhibiting the xanthine oxidase, nitric oxide, superoxide anion, and hydroxyl radical generation. In addition, sesame oil is a potent inhibitor of proinflammatory mediators, and it attenuates lead-induced hepatic damage by inhibiting nitric oxide, tumor necrosis factor-α, and interleukin-1β levels. Because metal chelating therapy is associated with adverse effects, treating heavy metal toxicity in addition with sesame oil and sesamol may be better alternatives. This review deals with the possible use and beneficial effects of sesame oil and sesamol during heavy metal toxicity treatment.
Collapse
|
26
|
Periasamy S, Hsu D, Chandrasekaran VRM, Liu M. Sesame Oil Accelerates Healing of 2,4,6‐Trinitrobenzenesulfonic Acid–Induced Acute Colitis by Attenuating Inflammation and Fibrosis. JPEN J Parenter Enteral Nutr 2012; 37:674-82. [DOI: 10.1177/0148607112468768] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Dur‐Zong Hsu
- Department of Environmental and Occupational Health
| | | | - Ming‐Yie Liu
- Department of Environmental and Occupational Health
- Research Center for Environmental and Occupational Health and Preventive Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| |
Collapse
|
27
|
Ezzat T, Dhar DK, Olde Damink SWM. Sinusoidal obstruction syndrome: correct dosing of monocrotaline and the validity of the rat model. J Surg Oncol 2012; 107:448-9. [PMID: 22991282 DOI: 10.1002/jso.23265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 11/07/2022]
|
28
|
Periasamy S, Liu MY. Sinusoidal injury induction: monocrotaline dose and hepatic sinusoidal injury in rats not correlated. J Surg Oncol 2012; 107:447. [PMID: 22949392 DOI: 10.1002/jso.23251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/28/2022]
|
29
|
Periasamy S, Yang SS, Chen SY, Chang CC, Liu MY. Prophylactic Sesame Oil Attenuates Sinusoidal Obstruction Syndrome by Inhibiting Matrix Metalloproteinase–9 and Oxidative Stress. JPEN J Parenter Enteral Nutr 2012; 37:529-37. [DOI: 10.1177/0148607112454299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Periasamy S, Chien SP, Liu MY. Therapeutic Oral Sesame Oil Is Ineffectual Against Monocrotaline-Induced Sinusoidal Obstruction Syndrome in Rats. JPEN J Parenter Enteral Nutr 2012; 37:129-33. [DOI: 10.1177/0148607112445795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Ming-Yie Liu
- National Cheng Kung University Medical College, Tainan, Taiwan
- National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
31
|
Srinivasan P, Liu MY. Comparative potential therapeutic effect of sesame oil and peanut oil against acute monocrotaline (Crotalaria) poisoning in a rat model. J Vet Intern Med 2012; 26:491-9. [PMID: 22443367 DOI: 10.1111/j.1939-1676.2012.00909.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/31/2012] [Accepted: 02/10/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Many Crotalaria plant species contain hepatotoxic pyrrolizidine alkaloids (such as monocrotaline) that can cause acute and chronic poisoning in cattle and other animals. HYPOTHESIS Peanut oil, atropine sulfate, and antidiarrheal agents are used to treat acute monocrotaline poisoning. The effect of sesame on acute monocrotaline poisoning has never been investigated. ANIMALS Fifty male Sprague-Dawley rats were used for toxicity studies. METHODS Experiment 1: Group I, control. Groups II-IV were given monocrotaline (205.2 mg/kg) and euthanized 6, 12, and 24 hours later. Experiment 2: Group I, control. Group II monocrotaline alone (205.2 mg/kg). Groups III-VI were given monocrotaline (205.2 mg/kg) and 1 hour later, Groups III and IV were given sesame oil (1 and 2 mL/kg) and Groups V and VI were given peanut oil (1 and 2 mL/kg). RESULTS Monocrotaline significantly decreased (P < .05) serum amylase activity, but, over time, increased (P < .05) pancreatic and lung injury. AST and ALT activity and liver injury peaked at 24 hours. Sesame oil and peanut oil (P < .05) inhibited the changes in all tested parameters in acute monocrotaline poisoning. Although peanut oil inhibited acute monocrotaline poisoning, it induced steatosis, but sesame oil did not. CONCLUSION AND CLINICAL IMPORTANCE We hypothesize that early pancreatic and lung injury and late liver injury contribute to acute monocrotaline poisoning and that sesame oil is more efficacious than peanut oil against acute monocrotaline poisoning in rats. However, additional studies are needed to confirm that these oils have the same effects in cattle and other animals.
Collapse
Affiliation(s)
- P Srinivasan
- Department of Environmental and Occupational Health, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | | |
Collapse
|