1
|
Mandal AK, Sahoo A, Almalki WH, Almujri SS, Alhamyani A, Aodah A, Alruwaili NK, Abdul Kadir SZBS, Mandal RK, Almalki RA, Lal JA, Rahman M. Phytoactives for Obesity Management: Integrating Nanomedicine for Its Effective Delivery. Nutr Rev 2025; 83:1152-1170. [PMID: 39331591 DOI: 10.1093/nutrit/nuae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Obesity is a global health concern that requires urgent investigation and management. While synthetic anti-obesity medications are available, they come with a high risk of side-effects and variability in their efficacy. Therefore, natural compounds are increasingly being used to treat obesity worldwide. The proposition that naturally occurring compounds, mainly polyphenols, can be effective and safer for obesity management through food and nutrient fortification is strongly supported by extensive experimental research. This review focuses on the pathogenesis of obesity while reviewing the efficacy of an array of phytoactives used for obesity treatment. It details mechanisms such as enzyme inhibition, energy expenditure, appetite suppression, adipocyte differentiation, lipid metabolism, and modulation of gut microbiota. Comprehensive in vitro, in vivo, and preclinical studies underscore the promise of phytoactives in combating obesity, which have been thoroughly reviewed. However, challenges, such as poor bioavailability and metabolism, limit their potential. Advances in nanomedicines may overcome these constraints, offering a new avenue for enhancing the efficacy of phytoactives. Nonetheless, rigorous and targeted clinical trials are essential before applying phytoactives as a primary treatment for obesity.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | | | | | - Rami A Almalki
- Clinical Pharmacy Unit, Pharmaceutical Care Department, King Faisal Hospital, Makkah Health Cluster, Makkah 24382, Saudi Arabia
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
2
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024; 15:11811-11833. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Lin Z, Sun L. Research advances in the therapy of metabolic syndrome. Front Pharmacol 2024; 15:1364881. [PMID: 39139641 PMCID: PMC11319131 DOI: 10.3389/fphar.2024.1364881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Metabolic syndrome refers to the pathological state of metabolic disorder of protein, fat, carbohydrate, and other substances in the human body. It is a syndrome composed of a group of complex metabolic disorders, whose pathogenesis includes multiple genetic and acquired entities falling under the category of insulin resistance and chronic low-grade inflammationand. It is a risk factor for increased prevalence and mortality from diabetes and cardiovascular disease. Cardiovascular diseases are the predominant cause of morbidity and mortality globally, thus it is imperative to investigate the impact of metabolic syndrome on alleviating this substantial disease burden. Despite the increasing number of scientists dedicating themselves to researching metabolic syndrome in recent decades, numerous aspects of this condition remain incompletely understood, leaving many questions unanswered. In this review, we present an epidemiological analysis of MetS, explore both traditional and novel pathogenesis, examine the pathophysiological repercussions of metabolic syndrome, summarize research advances, and elucidate the mechanisms underlying corresponding treatment approaches.
Collapse
Affiliation(s)
- Zitian Lin
- Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Meng Z, Lu J, Ge G, Wang G, Zhang R, Li Y, Guan S, Lu J. Ginsenoside Rb1 induces autophagic lipid degradation via miR-128 targeting TFEB. Food Funct 2023; 14:240-249. [PMID: 36484324 DOI: 10.1039/d2fo02719d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the effect of lipid metabolism on health has attracted more and more attention. Ginseng is a traditional Chinese herbal medicine in China and is widely used as food in Asia. Ginsenoside Rb1 (Gs-Rb1) is the most abundant ingredient in ginsenoside, which has a variety of biological activities. In this study, we found that Gs-Rb1 can reduce lipid accumulation in mice and HepG2 cells induced by a high-fat diet (HFD) and palmitic acid (PA). At the same time, we also found that Gs-Rb1 could stimulate the autophagic flux of HFD-fed mice and PA-treated HepG2 cells, and it is further verified by adding the autophagy activator rapamycin (Rapa) and autophagy inhibitor chloroquine (CQ). Furthermore, we found that Gs-Rb1 promoted the nucleus translocation of the transcription factor EB (TFEB) and the target role of miR-128, thus stimulating autophagic flux. Therefore, our results showed that Gs-Rb1 enhanced the transcription of TFEB and its downstream lysosome-related genes by inhibiting miR-128, improved the degradation ability of lysosomes to autophagosomes, and then promoted autophagic lipid degradation.
Collapse
Affiliation(s)
- Zhuoqun Meng
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Jianing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China. .,Health Technology College, Jilin Sport University, Changchun, Jilin 130062, People's Republic of China
| | - Guangcai Ge
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Guang Wang
- Office of Laboratory and Equipment Management, Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Ran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Yuhan Li
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China. .,Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China. .,Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
6
|
Li D, Tang W, Wang Y, Gao Q, Zhang H, Zhang Y, Wang Y, Yang Y, Zhou Y, Zhang Y, Li H, Li S, Zhao H. An overview of traditional Chinese medicine affecting gut microbiota in obesity. Front Endocrinol (Lausanne) 2023; 14:1149751. [PMID: 36936157 PMCID: PMC10016694 DOI: 10.3389/fendo.2023.1149751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Obesity, a chronic metabolic disease with a complex pathophysiology, is caused by several variables. High-fat diets lead to the disruption of the gut microbiota and impaired gut barrier function in obese people. The dysbiosis and its metabolites through the intestinal barrier lead to an imbalance in energy metabolism and inflammatory response, which eventually contributes to the development of chronic diseases such as diabetes, hypertension, and cardiovascular disease. Current medicines are therapeutic to obesity in the short term; however, they may bring significant physical and emotional problems to patients as major side effects. Therefore, it is urgent to explore new therapeutic methods that have definite efficacy, can be taken for a long time, and have mild adverse effects. Numerous studies have demonstrated that traditional Chinese medicine (TCM) can control the gut microbiota in a multi-targeted and comprehensive manner, thereby restoring flora homeostasis, repairing damaged intestinal mucosal barriers, and eventually curbing the development of obesity. The active ingredients and compounds of TCM can restore the normal physiological function of the intestinal mucosal barrier by regulating gut microbiota to regulate energy metabolism, inhibit fat accumulation, affect food appetite, and reduce intestinal mucosal inflammatory response, thereby effectively promoting weight loss and providing new strategies for obesity prevention and treatment. Although there are some studies on the regulation of gut microbiota by TCM to prevent and treat obesity, all of them have the disadvantage of being systematic and comprehensive. Therefore, this work comprehensively describes the molecular mechanism of obesity mediated by gut microbiota based on the research state of obesity, gut microbiota, and TCM. A comprehensive and systematic summary of TCM targeting the regulation of gut microbiota for the treatment of obesity should be conducted in order to provide new strategies and ideas for the treatment of obesity.
Collapse
Affiliation(s)
- Donghui Li
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Weiwei Tang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yanyan Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Qi Gao
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hongwei Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yongyi Yang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yingming Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yike Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Haonan Li
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shuo Li
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, China
- *Correspondence: Hong Zhao,
| |
Collapse
|
7
|
Phung HM, Jang D, Trinh TA, Lee D, Nguyen QN, Kim CE, Kang KS. Regulation of appetite-related neuropeptides by Panax ginseng: A novel approach for obesity treatment. J Ginseng Res 2022; 46:609-619. [PMID: 35818423 PMCID: PMC9270656 DOI: 10.1016/j.jgr.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity is a primary factor provoking various chronic disorders, including cardiovascular disease, diabetes, and cancer, and causes the death of 2.8 million individuals each year. Diet, physical activity, medications, and surgery are the main therapies for overweightness and obesity. During weight loss therapy, a decrease in energy stores activates appetite signaling pathways under the regulation of neuropeptides, including anorexigenic [corticotropin-releasing hormone, proopiomelanocortin (POMC), cholecystokinin (CCK), and cocaine- and amphetamine-regulated transcript] and orexigenic [agouti-related protein (AgRP), neuropeptide Y (NPY), and melanin-concentrating hormone] neuropeptides, which increase food intake and lead to failure in attaining weight loss goals. Ginseng and ginsenosides reverse these signaling pathways by suppressing orexigenic neuropeptides (NPY and AgRP) and provoking anorexigenic neuropeptides (CCK and POMC), which prevent the increase in food intake. Moreover, the results of network pharmacology analysis have revealed that constituents of ginseng radix, including campesterol, beta-elemene, ginsenoside Rb1, biotin, and pantothenic acid, are highly correlated with neuropeptide genes that regulate energy balance and food intake, including ADIPOQ, NAMPT, UBL5, NUCB2, LEP, CCK, GAST, IGF1, RLN1, PENK, PDYN, and POMC. Based on previous studies and network pharmacology analysis data, ginseng and its compounds may be a potent source for obesity treatment by regulating neuropeptides associated with appetite.
Collapse
Affiliation(s)
- Hung Manh Phung
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Dongyeop Jang
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Tuy An Trinh
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Quynh Nhu Nguyen
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Ki Sung Kang
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
8
|
Li Y, Zhang S, Zhu Z, Zhou R, Xu P, Zhou L, Kan Y, Li J, Zhao J, Fang P, Yu X, Shang W. Upregulation of adiponectin by Ginsenoside Rb1 contributes to amelioration of hepatic steatosis induced by high fat diet. J Ginseng Res 2022; 46:561-571. [PMID: 35818425 PMCID: PMC9270646 DOI: 10.1016/j.jgr.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Ginsenoside Rb1 (GRb1) is capable of regulating lipid and glucose metabolism through its action on adipocytes. However, the beneficial role of GRb1-induced up-regulation of adiponectin in liver steatosis remains unelucidated. Thus, we tested whether GRb1 ameliorates liver steatosis and insulin resistance by promoting the expression of adiponectin. METHODS 3T3-L1 adipocytes and hepatocytes were used to investigate GRb1's action on adiponectin expression and triglyceride (TG) accumulation. Wild type (WT) mice and adiponectin knockout (KO) mice fed high fat diet were treated with GRb1 for 2 weeks. Hepatic fat accumulation and function as well as insulin sensitivity was measured. The activation of AMPK was also detected in the liver and hepatocytes. RESULTS GRb1 reversed the reduction of adiponectin secretion in adipocytes. The conditioned medium (CM) from adipocytes treated with GRb1 reduced TG accumulation in hepatocytes, which was partly attenuated by the adiponectin antibody. In the KO mice, the GRb1-induced significant decrease of TG content, ALT and AST was blocked by the deletion of adiponectin. The elevations of GRb1-induced insulin sensitivity indicated by OGTT, ITT and HOMA-IR were also weakened in the KO mice. The CM treatment significantly enhanced the phosphorylation of AMPK in hepatocytes, but not GRb1 treatment. Likewise, the phosphorylation of AMPK in liver of the WT mice was increased by GRb1, but not in the KO mice. CONCLUSIONS The up-regulation of adiponectin by GRb1 contributes to the amelioration of liver steatosis and insulin resistance, which further elucidates a new mechanism underlying the beneficial effects of GRb1 on obesity.
Collapse
Affiliation(s)
- Yaru Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuchen Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Zhu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruonan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pingyuan Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingyan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Kan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiao Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Zou H, Zhang M, Zhu X, Zhu L, Chen S, Luo M, Xie Q, Chen Y, Zhang K, Bu Q, Wei Y, Ye T, Li Q, Yan X, Zhou Z, Yang C, Li Y, Zhou H, Zhang C, You X, Zheng G, Zhao G. Ginsenoside Rb1 Improves Metabolic Disorder in High-Fat Diet-Induced Obese Mice Associated With Modulation of Gut Microbiota. Front Microbiol 2022; 13:826487. [PMID: 35516426 PMCID: PMC9062662 DOI: 10.3389/fmicb.2022.826487] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota plays an important role in metabolic homeostasis. Previous studies demonstrated that ginsenoside Rb1 might improve obesity-induced metabolic disorders through regulating glucose and lipid metabolism in the liver and adipose tissues. Due to low bioavailability and enrichment in the intestinal tract of Rb1, we hypothesized that modulation of the gut microbiota might account for its pharmacological effects as well. Here, we show that oral administration of Rb1 significantly decreased serum LDL-c, TG, insulin, and insulin resistance index (HOMA-IR) in mice with a high-fat diet (HFD). Dynamic profiling of the gut microbiota showed that this metabolic improvement was accompanied by restoring of relative abundance of some key bacterial genera. In addition, the free fatty acids profiles in feces were significantly different between the HFD-fed mice with or without Rb1. The content of eight long-chain fatty acids (LCFAs) was significantly increased in mice with Rb1, which was positively correlated with the increase of Akkermansia and Parasuttereller, and negatively correlated with the decrease of Oscillibacter and Intestinimonas. Among these eight increased LCFAs, eicosapentaenoic acid (EPA), octadecenoic acids, and myristic acid were positively correlated with metabolic improvement. Furthermore, the colonic expression of the free fatty acid receptors 4 (Ffar4) gene was significantly upregulated after Rb1 treatment, in response to a notable increase of LCFA in feces. These findings suggested that Rb1 likely modulated the gut microbiota and intestinal free fatty acids profiles, which should be beneficial for the improvement of metabolic disorders in HFD-fed mice. This study provides a novel mechanism of Rb1 for the treatment of metabolic disorders induced by obesity, which may provide a therapeutic avenue for the development of new nutraceutical-based remedies for treating metabolic diseases, such as hyperlipidemia, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Hong Zou
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Man Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaoting Zhu
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Liyan Zhu
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Shuo Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingjing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qinglian Xie
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yue Chen
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kangxi Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qingyun Bu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuchen Wei
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Ye
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Qiang Li
- Suzhou BiomeMatch Therapeutics Co., Ltd., Shanghai, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haokui Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Haokui Zhou,
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Chenhong Zhang,
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Xiaoyan You,
| | - Guangyong Zheng
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Guangyong Zheng,
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
- Suzhou BiomeMatch Therapeutics Co., Ltd., Shanghai, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Guoping Zhao,
| |
Collapse
|
10
|
Cai Z, Chen Y. Synergetic protective effect of berberine and ginsenoside Rb1 against tumor necrosis factor alpha-induced inflammation in adipocytes. Bioengineered 2021; 12:11784-11796. [PMID: 34699329 PMCID: PMC8810088 DOI: 10.1080/21655979.2021.1996508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Obesity significantly impacts living a normal life by increasing morbidity. Additionally, obesity has been shown to be closely associated with severe inflammation in adipocytes. It is widely reported that berberine (BBR) has an anti-inflammatory effect and can reduce glucose and lipid accumulation, whereas ginsenoside Rb1 (Rb1) has been shown to have a significant inhibitory effect on insulin resistance and lipid peroxidation. In this study, we aimed to explore the synergetic effect of BBR and Rb1 on tumor necrosis factor alpha (TNF-α)-treated adipocytes and the mechanisms underlying it. We found that TNF-α reduced cell viability, facilitated the production of inflammatory factors, induced adipogenesis, activated the nuclear factor kappa B (NF-κB) pathway, and increased the expression of peroxisome proliferator-activated receptor gamma, CCAAT enhancer-binding protein alpha, and sterol regulatory element-binding protein-1 c in adipocytes. However, these effects were significantly alleviated by BBR or Rb1. Additionally, a synergetic effect was observed when BBR and Rb1 were used in combination. The effects of BBR in combination with Rb1 on cell proliferation, inflammation, adipogenesis, and the NF-κB pathway in TNF-α-treated adipocytes were significantly abolished by receptor activator of nuclear factor kappa-Β ligand, which is an activator of the NF-κB pathway. Collectively, the results revealed that BBR and Rb1 have a synergetic protective effect against TNF-α-induced inflammation in adipocytes. The mechanism underlying this synergetic effect was found to be inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhixing Cai
- Department of Traditional Chinese Medicine, Tongren Hospital, Shanghai, China
| | - Yue Chen
- Department of Traditional Chinese Medicine, Tongren Hospital, Shanghai, China
| |
Collapse
|
11
|
Aminifard T, Razavi BM, Hosseinzadeh H. The effects of ginseng on the metabolic syndrome: An updated review. Food Sci Nutr 2021; 9:5293-5311. [PMID: 34532035 PMCID: PMC8441279 DOI: 10.1002/fsn3.2475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is a group of risk factors including high blood glucose, dyslipidemia, high blood pressure, and high body weight. It can increase the risk of diabetes and cardiovascular disorders, which are the important reasons for death around the world. Nowadays, there are numerous demands for herbal medicine because of less harmful effects and more useful effects in comparison with chemical options. Ginseng is one of the most famous herbs used as a drug for a variety of disorders in humans. The antihyperlipidemia, antihypertension, antihyperglycemic, and anti-obesity effects of ginseng and its active constituents such as ginsenosides have been shown in different studies. In this review article, the different in vitro, in vivo, and human studies concerning the effects of ginseng and its active constituents in metabolic syndrome have been summarized. According to these studies, ginseng can control metabolic syndrome and related diseases.
Collapse
Affiliation(s)
- Tahereh Aminifard
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
12
|
Shende P, Narvenker R. Herbal nanotherapy: A new paradigm over conventional obesity treatment. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed Pharmacother 2020; 132:110915. [DOI: 10.1016/j.biopha.2020.110915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
|
14
|
Guo R, Wang L, Zeng X, Liu M, Zhou P, Lu H, Lin H, Dong M. Aquaporin 7 involved in GINSENOSIDE-RB1-mediated anti-obesity via peroxisome proliferator-activated receptor gamma pathway. Nutr Metab (Lond) 2020; 17:69. [PMID: 32821266 PMCID: PMC7433204 DOI: 10.1186/s12986-020-00490-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background Obesity, characterized by the excessive accumulation of triglycerides in adipocytes and their decreased excretion from adipocytes, is closely related to various health problems. Ginsenoside Rb1 (Rb1), the most active component of the traditional Chinese medicine ginseng, has been reported to have positive effects on lipid metabolism. The aim of the present study was to determine the protective effects of Rb1 on glycolipid metabolism under obesity conditions and its mechanisms and to reveal the signaling pathways involved. Methods In our study, male C57BL/6 mice with obesity induced by a high-fat diet (HFD) and mature 3 T3-L1 adipocytes were used to investigate the role of Rb1 in lipid accumulation and explore its possible molecular mechanism in vivo and in vitro, respectively. Results Rb1 reduced the body weight, fat mass, adipocytes size and serum free fatty acid (FFA) concentration of obese mice. In differentiated 3 T3-L1 adipocytes, Rb1 reduced the accumulation of lipid droplets and stimulated output of triglycerides. Additionally, the expression of peroxisome proliferator-activated receptor gamma (PPARγ), phosphorylated PPARγ (Ser112) and aquaporin 7 (AQP7) was upregulated in adipocytes and adipose tissues upon Rb1 treatment. However, intervention of GW9662, PPARγ antagonist, attenuated Rb1-mediated effects on glycolipid metabolism and AQP7 levels. Conclusions These data indicated that Rb1 reduced body weight and improved glycolipid metabolism by upregulating PPARγ and AQP7 protein levels. Our study indicated a potential role for Rb1 in the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Rong Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China.,Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China.,Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, Jiangxi China
| | - Lei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Xianqin Zeng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China.,Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, Jiangxi China
| | - Minghao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 People's Republic of China
| | - Peng Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Huili Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| |
Collapse
|
15
|
Lim S, Park J, Um JY. Ginsenoside Rb1 Induces Beta 3 Adrenergic Receptor-Dependent Lipolysis and Thermogenesis in 3T3-L1 Adipocytes and db/db Mice. Front Pharmacol 2019; 10:1154. [PMID: 31680950 PMCID: PMC6803469 DOI: 10.3389/fphar.2019.01154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity is constantly rising into a major health threat worldwide. Activation of brown-like transdifferentiation of white adipocytes (browning) has been proposed as a promising molecular target for obesity treatment. In this study, we investigated the effect of ginsenoside Rb1 (Rb1), a saponin derived from Panax ginseng Meyer, on browning. We used 3T3-L1 murine adipocytes and leptin receptor mutated db/db mice. The lipid accumulation, AMP-activated protein kinase alpha (AMPKα)-related pathways, lipolytic and thermogenic factors were measured after Rb treatment in 3T3-L1 adipocytes. Body weight change and lipolysis-thermogenesis factors were investigated in Rb1-treated db/db mice. Beta 3 adrenergic receptor activation (β3AR) changes were measured in Rb1-treated 3T3-L1 cells with or without β3AR inhibitor L748337 co-treatment. As a result, Rb1 treatment decreased lipid droplet size in 3T3-L1 adipocytes. Rb1 also induced phosphorylations of AMPKα pathway and sirtuins. Moreover, lipases and thermogenic factors such as uncoupling protein 1 were increased by Rb1 treatment. Through these results, we could expect that the non-shivering thermogenesis program can be induced by Rb1. In db/db mice, 6-week injection of Rb1 resulted in decreased inguinal white adipose tissue (iWAT) weight associated with shrunken lipid droplets and increased lipolysis and thermogenesis. The thermogenic effect of Rb1 was possibly due to β3AR, as L748337 pre-treatment abolished the effect of Rb1. In conclusion, we suggest Rb1 as a potential lipolytic and thermogenic therapeutic agent which can be used for obesity treatment.
Collapse
Affiliation(s)
- Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
16
|
Suh JH, Wang Y, Ho CT. Natural Dietary Products and Their Effects on Appetite Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:36-39. [PMID: 29237125 DOI: 10.1021/acs.jafc.7b05104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Natural dietary products have been thoroughly studied for their effects of antiadipogenesis to prevent and treat obesity for decades. Nevertheless, in the past few years appetite control for the treatment of obesity has attracted much attention as a new target. Homeostatic control of energy intake involves a complex system that conveys peripheral signals to the central nervous system where multiple signals are integrated and then provide feedback to regulate satiation. This perspective aims at elucidating the neuronal mechanisms of food intake and energy balance as well as providing an alternative pathway of controlling weight using natural dietary products.
Collapse
Affiliation(s)
- Joon Hyuk Suh
- Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida , 700 Experiment Station Rd, Lake Alfred, Florida 33850, United States
| | - Yu Wang
- Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida , 700 Experiment Station Rd, Lake Alfred, Florida 33850, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University , 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
17
|
Xi G, Wang J, Li P, Gao Y, Zhou S, Wang Y. Effects of Compound Amino Acids and Ginsenosides on Physiological Measures. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2018.108.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Ye K, Li L, Zhang D, Li Y, Wang HQ, Lai HL, Hu CL. Effect of Maternal Obesity on Fetal Growth and Expression of Placental Fatty Acid Transporters. J Clin Res Pediatr Endocrinol 2017; 9:300-307. [PMID: 28588000 PMCID: PMC5785635 DOI: 10.4274/jcrpe.4510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To explore the effects of maternal high-fat (HF) diet-induced obesity on fetal growth and the expression of placental nutrient transporters. METHODS Maternal obesity was established in rats by 8 weeks of pre-pregnancy fed HF diet, while rats in the control group were fed normal (CON) diet. Diet-induced obesity (DIO) rats and diet-induced obesity-resistant (DIR) rats were selected according to body weight gain over this period. After copulation, the CON rats were divided into two groups: switched to HF diet (CON-HF group) or maintained on the CON diet (CON-CON group). The DIO rats and DIR rats were maintained on the HF diet throughout pregnancy. Pregnant rats were euthanized at day 21 gestation, fetal and placental weights were recorded, and placental tissue was collected. Reverse transcription-polymerase chain reaction was used to determine mRNA expression of placental nutrient transporters. Protein expression was determined by Western blot. RESULTS Average fetal weight of DIO dams was reduced by 6.9%, and the placentas of CON-HF and DIO dams were significantly heavier than the placentas of CON-CON and DIR dams at day 21 of gestation (p<0.05). The fetal/placental weight ratio of DIO dams was significantly reduced compared with the fetal/placental weight ratio of CON-CON dams (p<0.05). The mRNA expression of GLUT-1 and SNAT-2 were not significantly different between groups. The mRNA and protein expression levels of CD36, FATP-1, and FATP-4 in DIO dams were decreased significantly (p<0.05). CONCLUSION Maternal obesity induced by a HF diet led to intrauterine growth retardation and down-regulated the expression of placental fatty acid transporters.
Collapse
Affiliation(s)
- Kui Ye
- Anhui Medical University School of Public Health, Department of Nutrition and Food Hygiene, Anhui, China
| | - Li Li
- Anhui Medical University School of Public Health, Department of Nutrition and Food Hygiene, Anhui, China
,* Address for Correspondence: Anhui Medical University School of Public Health, Department of Nutrition and Food Hygiene, Anhui, China Phone: +86 551 63869176 E-mail:
| | - Dan Zhang
- Lujiang Center for Disease Control and Prevention, Department of Public Health, Anhui, China
| | - Yi Li
- Anhui Provincial Hospital, Clinic of Clinical Nutrition, Anhui, China
| | - Hai-Qing Wang
- Anhui Medical University School of Public Health, Department of Nutrition and Food Hygiene, Anhui, China
| | - Han-Lin Lai
- Anhui Medical University School of Public Health, Department of Nutrition and Food Hygiene, Anhui, China
| | - Chuan-Lai Hu
- Anhui Medical University School of Public Health, Department of Nutrition and Food Hygiene, Anhui, China
| |
Collapse
|
19
|
Herbal Medicine for the Treatment of Obesity: An Overview of Scientific Evidence from 2007 to 2017. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8943059. [PMID: 29234439 PMCID: PMC5632873 DOI: 10.1155/2017/8943059] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 12/02/2022]
Abstract
Obesity is a very common global health problem, and it is known to be linked to cardiovascular and cerebrovascular diseases. Western medical treatments for obesity have many drawbacks, including effects on monoamine neurotransmitters and the potential for drug abuse and dependency. The safety of these medications requires improvement. Herbal medicine has been used for treatment of disease for more than 2000 years, and it has proven efficacy. Many studies have confirmed that herbal medicine is effective in the treatment of obesity, but the mechanisms are not clear. This article will discuss the possible effects and mechanisms of herbal medicine treatments for obesity that have been reported in the past decade.
Collapse
|
20
|
Liu D, Liu T, Teng Y, Chen W, Zhao L, Li X. Ginsenoside Rb1 inhibits hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells by regulating microRNA-25. Exp Ther Med 2017; 14:2895-2902. [PMID: 28928801 PMCID: PMC5590044 DOI: 10.3892/etm.2017.4889] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/19/2017] [Indexed: 12/14/2022] Open
Abstract
Metastasis frequently occurs in advanced ovarian cancer, which not only leads to substantial mortality but also becomes a major challenge to effective treatment. Epithelial-mesenchymal transition (EMT) is a key mechanism facilitating cancer metastasis. Targeting the EMT process with more efficacious and less toxic agents to prevent metastasis is of significant therapeutic value for ovarian cancer treatment. The anti-EMT function and mechanism of ginsenoside Rb1, a monomer composition extracted from the traditional Chinese herb Panax ginseng or P. notoginseng, was investigated in the present study. Western blotting demonstrated that treatment with ginsenoside Rb1 antagonized hypoxia-induced E-cadherin downregulation and vimentin upregulation in SKOV3 and 3AO human ovarian cancer cells. Wound healing assays and in vitro migration assays indicated that ginsenoside Rb1 weakened hypoxia-enhanced cell migration ability. Furthermore, it was demonstrated that microRNA (miR)-25 is upregulated by hypoxia in ovarian cancer cells, which was attenuated by ginsenoside Rb1 treatment. Additionally, forced expression of miR-25 in ovarian cancer cells was identified to not only trigger EMT, but also block the suppressive effects of ginsenoside Rb1 on hypoxia-induced EMT by negatively targeting the E-cadherin transactivator, EP300. In conclusion, ginsenoside Rb1 may reverse hypoxia-induced EMT by abrogating the suppression of miR-25 on EP300 and E-cadherin, which suggests that ginsenoside Rb1 may be a potential therapeutic candidate for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Dan Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ting Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue Teng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Chen
- Center for Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Le Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
21
|
Palaniyandi SA, Suh JW, Yang SH. Preparation of Ginseng Extract with Enhanced Levels of Ginsenosides Rg1 and Rb1 Using High Hydrostatic Pressure and Polysaccharide Hydrolases. Pharmacogn Mag 2017; 13:S142-S147. [PMID: 28479739 PMCID: PMC5407106 DOI: 10.4103/0973-1296.203992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/12/2015] [Indexed: 01/16/2023] Open
Abstract
Background: Ginsenosides are the principal components responsible for the pharmacological activities of ginseng. Ginsenosides Rg1 and Rb1 are the major compounds recognized as marker substances for quality control of ginseng-based products. These major compounds can be transformed to several pharmacologically active minor ginsenosides by chemical, microbial, and enzymatic means. Materials and Methods: In the present study, a combination of polysaccharide hydrolases and high hydrostatic pressure (HHP) were used to extract ginseng saponins enriched with ginsenosides Rg1 and Rb1. Temperature, pH, time, ginseng-to-water ratio, and pressure were optimized to obtain the maximum amount of Rg1 and Rb1 in the resulting extract using commercial polysaccharide hydrolases. Results: This study showed that treatment with a combination of cellulase, amylase, and pectinase at 100 MPa pressure, pH 4.8, and 45°C for 12 h resulted in higher Rg1 and Rb1 levels in the extract. Conclusion: This study describes a cheap and ecofriendly method for preparing ginseng extract enriched with Rg1 and Rb1. SUMMARY Ginsenosides are the principal bioactive components present in ginseng Ginsenosides Rg1 and Rb1 are the most abundant compounds in ginseng High hydrostatic pressure (HHP) and Polysaccharide hydrolases (PH) were combined to extract ginseng saponins enriched with Rg1 and Rb1 Extraction conditions were optimized to obtain the maximum amount of Rg1 and Rb1 Extraction with a combination of cellulase, amylase, and pectinase at 100 MPa pressure at pH 4.8, and 45°C for 12 h resulted in higher levels of Rg1 and Rb1 in the ginseng extract
Abbreviations used: ATCC: American Type Culture Collection, Mpa: Mega Pascal
Collapse
Affiliation(s)
- Sasikumar Arunachalam Palaniyandi
- Interdisciplinary Program of Biomodulation, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, Korea.,Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, Korea.,Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Daehak-ro, Yeosu-si, Jeollanam-do, Korea
| |
Collapse
|
22
|
Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2017; 42:123-132. [PMID: 29719458 PMCID: PMC5926405 DOI: 10.1016/j.jgr.2017.01.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/16/2017] [Indexed: 11/02/2022] Open
Abstract
Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-d-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| |
Collapse
|
23
|
Marrelli M, Conforti F, Araniti F, Statti GA. Effects of Saponins on Lipid Metabolism: A Review of Potential Health Benefits in the Treatment of Obesity. Molecules 2016; 21:molecules21101404. [PMID: 27775618 PMCID: PMC6273086 DOI: 10.3390/molecules21101404] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Obesity is one of the greatest public health problems. This complex condition has reached epidemic proportions in many parts of the world, and it constitutes a risk factor for several chronic disorders, such as hypertension, cardiovascular diseases and type 2 diabetes. In the last few decades, several studies dealt with the potential effects of natural products as new safe and effective tools for body weight control. Saponins are naturally-occurring surface-active glycosides, mainly produced by plants, whose structure consists of a sugar moiety linked to a hydrophobic aglycone (a steroid or a triterpene). Many pharmacological properties have been reported for these compounds, such as anti-inflammatory, immunostimulant, hypocholesterolemic, hypoglycemic, antifungal and cytotoxic activities. The aim of this review is to provide an overview of recent studies about the anti-obesity therapeutic potential of saponins isolated from medicinal plants. Results on the in vitro and in vivo activity of this class of phytochemicals are here presented and discussed. The most interesting findings about their possible mechanism of action and their potential health benefits in the treatment of obesity are reported, as well.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS) I-87036, Italy.
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS) I-87036, Italy.
| | - Fabrizio Araniti
- Department of AGRARIA, University "Mediterranea" of Reggio Calabria, Reggio Calabria (RC) I-89124, Italy.
| | - Giancarlo A Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS) I-87036, Italy.
| |
Collapse
|
24
|
Mu Q, Fang X, Li X, Zhao D, Mo F, Jiang G, Yu N, Zhang Y, Guo Y, Fu M, Liu JL, Zhang D, Gao S. Ginsenoside Rb1 promotes browning through regulation of PPARγ in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2015; 466:530-5. [PMID: 26381176 DOI: 10.1016/j.bbrc.2015.09.064] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022]
Abstract
Browning of white adipocyte tissue (WAT) has received considerable attention due to its potential implication in preventing obesity and related comorbidities. Ginsenoside Rb1 is reported to improve glycolipid metabolism and reduce body weight in obese animals. However whether the body reducing effect mediates by browning effect remains unclear. For this purpose, 3T3-L1 adipocytes were used to study the effect of ginsenoside Rb1 on browning adipocytes specific genes and oxygen consumptions. The results demonstrate that 10 μM of ginsenoside Rb1 increases basal glucose uptake and promoted browning evidenced by significant increases in mRNA expressions of UCP-1, PGC-1α and PRDM16 in 3T3-L1 mature adipocytes. Further, ginsenoside Rb1 also increases PPARγ activity. And the browning effect is abrogated by GW9692, a PPARγ antagonist. In addition, ginsenoside Rb1 increases basal respiration rate, ATP production and uncoupling capacity in 3T3-L1 adipocytes. Those effects are also blunted by GW9692. The results suggest that ginsenoside Rb1 promote browning of 3T3-L1 adipocytes through induction of PPARγ. Our finding offer a new source to discover browning agonists and also useful to understand and extend the applications of ginseng and its constituents.
Collapse
Affiliation(s)
- Qianqian Mu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xin Fang
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoke Li
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangfang Mo
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guangjian Jiang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Na Yu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yubo Guo
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Min Fu
- The Research Institute of McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Jun-Li Liu
- The Research Institute of McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
25
|
Ginsenoside-Rb1 Protects Hypoxic- and Ischemic-Damaged Cardiomyocytes by Regulating Expression of miRNAs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:171306. [PMID: 26074986 PMCID: PMC4449925 DOI: 10.1155/2015/171306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
Ginsenoside (GS-Rb1) is one of the most important active compounds of ginseng, with extensive evidence of its cardioprotective properties. However, the miRNA mediated mechanism of GS-Rb1 on cardiomyocytes remains unclear. Here, the roles of miRNAs in cardioprotective activity of GS-Rb1 were investigated in hypoxic- and ischemic-damaged cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs) were first isolated, cultured, and then incubated with or without GS-Rb1 (2.5–40 μM) in vitro under conditions of hypoxia and ischemia. Cell growth, proliferation, and apoptosis were detected by MTT and flow cytometry. Expressions of various microRNAs were analyzed by real-time PCR. Compared with that of the control group, GS-Rb1 significantly decreased cell death in a dose-dependent manner and expressions of mir-1, mir-29a, and mir-208 obviously increased in the experimental model groups. In contrast, expressions of mir-21 and mir-320 were significantly downregulated and GS-Rb1 could reverse the differences in a certain extent. The miRNAs might be involved in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in cardiomyocytes. The effect might be based on the upregulation of mir-1, mir-29a, and mir-208 and downregulation of mir-21 and mir-320. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.
Collapse
|
26
|
Xu D, Huang P, Yu Z, Xing DH, Ouyang S, Xing G. Efficacy and Safety of Panax notoginseng Saponin Therapy for Acute Intracerebral Hemorrhage, Meta-Analysis, and Mini Review of Potential Mechanisms of Action. Front Neurol 2015; 5:274. [PMID: 25620952 PMCID: PMC4288044 DOI: 10.3389/fneur.2014.00274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022] Open
Abstract
Intracranial/intracerebral hemorrhage (ICH) is a leading cause of death and disability in people with traumatic brain injury (TBI) and stroke. No proven drug is available for ICH. Panax notoginseng (total saponin extraction, PNS) is one of the most valuable herb medicines for stroke and cerebralvascular disorders in China. We searched for randomized controlled clinical trials (RCTs) involving PNS injection to treat cerebral hemorrhage for meta-analysis from various databases including the Chinese Stroke Trials Register, the trials register of the Cochrane Complementary Medicine Field, the Cochrane Central Register of Controlled Trials, MEDLINE, Chinese BioMedical disk, and China Doctorate/Master Dissertations Databases. The quality of the eligible trials was assessed by Jadad’s scale. Twenty (20) of the 24 identified randomized controlled trials matched the inclusive criteria including 984 ICH patients with PNS injection and 907 ICH patients with current treatment (CT). Compared to the CT groups, PNS-treated patients showed better outcomes in the effectiveness rate (ER), neurological deficit score, intracranial hematoma volume, intracerebral edema volume, Barthel index, the number of patients died, and incidence of adverse events. Conclusion: PNS injection is superior to CT for acute ICH. A review of the literature shows that PNS may exert multiple protective mechanisms against ICH-induced brain damage including hemostasis, anti-coagulation, anti-thromboembolism, cerebral vasodilation, invigorated blood dynamics, anti-inflammation, antioxidation, and anti-hyperglycemic effects. Since vitamin C and other brain cell activators (BCA) that are not considered common practice were also used as parts of the CT in several trials, potential PNS and BCA interactions could exist that may have made the effect of PNS therapy less or more impressive than by PNS therapy alone. Future PNS trials with and without the inclusion of such controversial BCAs as part of the CT could clarify the situation. As PNS has a long clinical track record in Asia, it could potentially become a therapy option to treat ICH in the US and Europe. Further clinical trials with better experimental design could determine the long-term effects of PNS treatment for TBI and stroke.
Collapse
Affiliation(s)
- Dongying Xu
- Faculty of Nursing, Guangxi University of Chinese Medicine , Nanning , China
| | - Ping Huang
- Faculty of Nursing, Guangxi University of Chinese Medicine , Nanning , China
| | - Zhaosheng Yu
- Department of Oncology, Huanggang Hospital of Traditional Chinese Medicine , Huanggang , China
| | | | - Shuai Ouyang
- School of Business, University of Alberta , Edmonton, AB , Canada
| | | |
Collapse
|
27
|
Ginsenoside rb1 protects neonatal rat cardiomyocytes from hypoxia/ischemia induced apoptosis and inhibits activation of the mitochondrial apoptotic pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:149195. [PMID: 25120573 PMCID: PMC4120487 DOI: 10.1155/2014/149195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/02/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
Abstract
Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytes in vitro and the mitochondrial apoptotic pathway mediated mechanism. Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP) were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit. Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS) burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm). Its administration also inhibited activities of caspase-9 and caspase-3. Conclusion. Administration of GS-Rb1 during H/I in vitro is involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.
Collapse
|
28
|
A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect. BIOMED RESEARCH INTERNATIONAL 2014; 2014:925302. [PMID: 25110708 PMCID: PMC4109135 DOI: 10.1155/2014/925302] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/04/2014] [Accepted: 05/10/2014] [Indexed: 12/18/2022]
Abstract
Hyperlipidemia, characterized by the abnormal blood lipid profiles, is one of the dominant factors of many chronic diseases such as diabetes, obesity, and cardiovascular diseases (CVD). For the low cost, effectiveness, and fewer side effects, the popularity of using traditional Chinese medicine (TCM) to handle hyperlipidemia is increasing and its role in health care has been recognized by the public at large. Despite the importance of TCM herbs and formulations, there is no comprehensive review summarizing their scientific findings on handling hyperlipidemia. This review summarizes the recent experimental and clinical results of nine representative single Chinese herbs and seven classic TCM formulae that could improve lipid profiles so as to help understand and compare their underlying mechanisms. Most of single herbs and formulae demonstrated the improvement of hyperlipidemic conditions with multiple and diverse mechanisms of actions similar to conventional Western drugs in spite of their mild side effects. Due to increasing popularity of TCM, more extensive, well-designed preclinical and clinical trials on the potential synergistic and adverse side effects of herb-drug interactions as well as their mechanisms are warranted. Hyperlipidemic patients should be warned about the potential risks of herb-drug interactions, particularly those taking anticoagulants and antiplatelet drugs.
Collapse
|
29
|
Wu Y, Yu Y, Szabo A, Han M, Huang XF. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet. PLoS One 2014; 9:e92618. [PMID: 24675731 PMCID: PMC3968027 DOI: 10.1371/journal.pone.0092618] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/16/2014] [Indexed: 01/07/2023] Open
Abstract
A low-grade pro-inflammatory state is at the pathogenic core of obesity and type 2 diabetes. We tested the hypothesis that the plant terpenoid compound ginsenoside Rb1 (Rb1), known to exert anti-inflammatory effects, would ameliorate obesity, obesity-associated inflammation and glucose intolerance in the high-fat diet-induced obese mouse model. Furthermore, we examined the effect of Rb1 treatment on central leptin sensitivity and the leptin signaling pathway in the hypothalamus. We found that intraperitoneal injections of Rb1 (14 mg/kg, daily) for 21 days significantly reduced body weight gain, fat mass accumulation, and improved glucose tolerance in obese mice on a HF diet compared to vehicle treatment. Importantly, Rb1 treatment also reduced levels of pro-inflammatory cytokines (TNF-α, IL-6 and/or IL-1β) and NF-κB pathway molecules (p-IKK and p-IκBα) in adipose tissue and liver. In the hypothalamus, Rb1 treatment decreased the expression of inflammatory markers (IL-6, IL-1β and p-IKK) and negative regulators of leptin signaling (SOCS3 and PTP1B). Furthermore, Rb1 treatment also restored the anorexic effect of leptin in high-fat fed mice as well as leptin pSTAT3 signaling in the hypothalamus. Ginsenoside Rb1 has potential for use as an anti-obesity therapeutic agent that modulates obesity-induced inflammation and improves central leptin sensitivity in HF diet-induced obesity.
Collapse
Affiliation(s)
- Yizhen Wu
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yinghua Yu
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- * E-mail: (XFH); (YHY)
| | - Alexander Szabo
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia
| | - Mei Han
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- * E-mail: (XFH); (YHY)
| |
Collapse
|